一种聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法与流程

文档序号:12417563阅读:170来源:国知局
一种聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法与流程

发明创造名称:聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法

技术领域

本发明涉及聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法。



背景技术:

北卡罗莱纳州立大学非织造布研究中心的Fedorova et al.[Fedorova N,Pourdeyhimi B:High strength nylon micro-and nanofiber based nonwovens via spunbonding.J Appl Polym Sci 2007,104(5):3434-3442.]利用锦纶6(N6)和PLA(Natureworks)制备不同的海岛纤维(锦纶6为岛,PLA为海),然后纤维网通过30m/min的水刺加固成织物。再将织物利用3%的NaOH溶液,在100℃处理10min去除掉PLA成分。通过溶掉PLA组分后,可以得到微米和纳米纤维,并且纤维直径可以达到0.36-1.3mm。

关于PLA熔融纺纤维,还有Polypropylene/Poly(lactic acid)(PP/PLA)双组份纤维[Arvidson SA,Roskov KE,Pate JJ,Spontak RJ,Khan SA,Gorga RE:Modification of Melt-Spun Isotactic Polypropylene and Poly(lactic acid)Bicomponent Filaments with a Premade Block Copolymer.Macromolecules 2012,45(2):913-925.;Liu Y,Tovia F,Pierce JD:Consumer Acceptability of Scent-infused Knitting Scarves Using Functional Melt-spun PP/PLA Bicomponent Fibers.Text Res J 2009,79(6):566-573.]、poly(lactic acid)/hydroxyapatite(PLA/HA)[Persson M,Lorite GS,Cho SW,Tuukkanen J,Skrifvars M:Melt Spinning of Poly(lactic acid)and Hydroxyapatite Composite Fibers:Influence of the Filler Content on the Fiber Properties.Acs Appl Mater Inter 2013,5(15):6864-6872.]、poly(lactic acid)/Poly(R)-3-hydroxybutyrate-co-R-3-hydroxyvalerate(PLA/PHBV)[Pivsa-Art S,Srisawat N,O-Charoen N,Pavasupree S,Pivsa-Art W:Preparation of Knitting Socks from Poly(lactic acid)and Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate](PHBV)blends for Textile Industrials.Enrgy Proced 2011,9.]、poly(lactic acid)/polyvinylidene fluoride(PLA/PVDF)[Fryczkowski R,Fryczkowska B,Binias W,Janicki J:Morphology of fibrous composites of PLA and PVDF.Compos Sci Technol 2013,89:186-193.]、Polylactide/Multiwall Carbon Nanotube(PLA/MWNT)[Rizvi R,Tong L,Naguib H:Processing and Properties of Melt Spun Polylactide-Multiwall Carbon Nanotube Fiber Composites.J Polym Sci Pol Phys 2014,52(6):477-484.]、Polylactide/poly(vinyl alcohol)(PLA/PVA)[Tran NHA,Brunig H,Hinuber C,Heinrich G:Melt Spinning of Biodegradable Nanofibrillary Structures from Poly(lactic acid)and Poly(vinyl alcohol)Blends.Macromol Mater Eng 2014,299(2):219-227.]、Polylactide/poly(butylene succinate)(PLA/PBS)[Jompang L,Thumsorn S,On JW,Surin P,Apawet C,Chaichalermwong T,Kaabbuathong N,O-Charoen N,Srisawat N:Poly(lactic acid)and Poly(butylene succinate)Blend Fibers Prepared by Melt Spinning Technique.10th Eco-Energy and Materials Science and Engineering Symposium 2013,34:493-499.]。

此外,也有研究人员将PLA加工成织物(机织物、针织物、三维正交织物)、非织造布(熔喷非织造布、纺粘非织造布、针刺非织造布、热粘合非织造布和静电纺纳米纤维非织造布)、复合材料、膜等形式。

Dai et al.[Dai XJJ,du Plessis J,Kyratzis IL,Maurdev G,Huson MG,Coombs C:Controlled Amine Functionalization and Hydrophilicity of a Poly(lactic acid)Fabric.Plasma Process Polym 2009,6(8):490-497.]将PLA熔融纺纤维制备成针织物然后进行等离子体处理。Bae et al.[Bae GY,Jang J,Jeong YG,Lyoo WS,Min BG:Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups.J Colloid Interf Sci 2010,344(2):584-587.]利用紫外照射技术在PLA织物表面接枝疏水性的二氧化硅粒子制备超疏水织物。Nodo et al.[Nodo K,Leong YW,Hamada H:Effect of knitted and woven textile structures on the mechanical performance of poly(lactic acid)textile insert injection-compression moldings.J Appl Polym Sci 2012,125:E200-E207.]研究PLA机织物和针织物冲击试验的载荷性能,结果表明通过压缩成型制备的PLA织物具有较好的韧性和延伸性。此外,还有PLA三维正交织物[Zhou NT,Geng XY,Ye MQ,Yao L,Shan ZD,Qiu YP:Mechanical and sound adsorption properties of cellular poly(lactic acid)matrix composites reinforced with 3D ramie fabrics woven with co-wrapped yarns.Ind Crop Prod 2014,56:1-8.]。

熔喷技术是借助高速气流将热塑性聚合物制备成超细纤维非织造布,这种非织造布具有较小的孔径和较大的孔隙率。Liu et al.[Liu Y,Cheng BW,Cheng GX:Development and Filtration Performance of Polylactic Acid Meltblowns.Text Res J 2010,80(9):771-779.]将美国Natureworks的PLA切片(Tg=52℃,Tm=168℃)依次经过干燥、熔融挤出、过滤、齿轮计量、纺丝、热空气拉伸、冷却和卷绕接收来制备PLA熔喷非织造布。其中接收距离为20cm,热空气压力为0.15MPa,纺丝温度为220℃,热空气温度分别为250、260、270、280、290和300℃,狭缝宽度分别为0.3、0.4、0.5和0.6cm。并且分别研究了热空气温度(250-290℃)和狭缝宽度(0.3-0.6cm)的变化对PLA熔喷非织造布的纤维直径、孔隙率、平均孔径、0.3μm和0.5μm颗粒的过滤效率以及透气量的影响及变化规律。Majchrzycka[Majchrzycka K:Evaluation of a New Bioactive Nonwoven Fabric for Respiratory Protection.Fibres Text East Eur 2014,22(1):81-88.]利用Natureworks的PLA切片(Tm=160-170℃),270℃的纺丝温度,270℃的热空气温度,8.8m3/h的空气流速,300mm的接收距离制备PLA熔喷非织造布,并且利用生物活性物质对PLA熔喷非织造布进行改性,同时研究细菌在该生物活性非织造布上的存活性以及气溶胶的过滤效率。Cerkez et al.[Cerkez I,Worley SD,Broughton RM,Huang TS:Rechargeable antimicrobial coatings for poly(lactic acid)nonwoven fabrics.Polymer 2013,54(2):536-541.]将田纳西大学纺织品和非织造布发展中心提供的PLA熔喷非织造布(30g/m2)利用杂环N-卤代胺醋酸盐的均聚物(1.5wt%,40℃,10min)进行涂层。实验结果表明,涂层非常稳定,并且具有高效的对金黄色葡萄球菌和大肠杆菌的抗菌性。这种涂层支架可以用在抗菌食品包装、过滤器和卫生产品方面。Krucinska et al.[Krucinska I,Surma B,Chrzanowski M,Skrzetuska E,Puchalski M:Application of melt-blown technology in the manufacturing of a solvent vapor-sensitive,non-woven fabric composed of poly(lactic acid)loaded with multi-walled carbon nanotubes.Text Res J 2013,83(8):859-870.]首次制备了98%PLA/2%多壁纳米碳管(MWCNTs)熔喷非织造布。

Puchalski et al.[Puchalski M,Krucinska I,Sulak K,Chrzanowski M,Wrzosek H:Influence of the calender temperature on the crystallization behaviors of polylactide spun-bonded non-woven fabrics.Text Res J 2013,83(17):1775-1785.]将美国Natureworks的PLA切片6251D(Mn=45800g/mol,Tg=61℃,Tm=168℃),在80℃干燥4h,纺丝温度为205-216℃,聚合物的生产量为0.10-0.43g/min/Hole,喷丝板总共有467孔,热压温度为60-130℃。并且研究了不同热压温度下PLA纺粘非织造布的内部形态、结晶度、物理-力学性能以及热降解性能。Gutowska et al.[Gutowska A,Jozwicka J,Sobczak S,Tomaszewski W,Sulak K,Miros P,Owczarek M,Szalczynska M,Ciechanska D,Krucinska I:In-Compost Biodegradation of PLA Nonwovens.Fibres Text East Eur 2014,22(5):99-106.]利用Natureworks的PLA切片(Tm=160-170℃),212±1℃的纺丝温度,2.9-6.8m/min转速的卷取辊,42.4-101.8g/min的挤出生产量,60-105℃的热粘合温度和1500-2000Pa的压力制备PLA纺粘非织造布并且研究其在58±2℃、pH=7和52.6%湿度环境中的降解性能。Wang et al.[Wang HB,Wei QF,Wang X,Gao WD,Zhao XY:Antibacterial properties of PLA nonwoven medical dressings coated with nanostructured silver.Fiber Polym 2008,9(5):556-560.]首先将江西国桥非织造布有限公司提供的PLA纺粘非织造布(35g/m2)浸没在丙酮溶液中,然后超声冲洗30分钟去除有机溶剂,再用等离子水清洗两次,在30-35℃烘箱中干燥。再利用氩等离子体的磁控溅射镀膜系统在其上镀银,得到纳米银涂层的PLA纺粘非织造布,并且研究纳米涂层厚度对非织造布抗菌性能的影响。实验结果表明,当涂层厚度在1nm时,对金黄色葡萄球菌和大肠杆菌的抗菌效果可以达到100%。

Yilmaz et al.[Yilmaz ND,Banks-Lee P,Powell NB,Michielsen S:Effects of Porosity,Fiber Size,and Layering Sequence on Sound Absorption Performance of Needle-Punched Nonwovens.J Appl Polym Sci 2011,121(5):3056-3069.]将美国约翰逊纤维创新技术的PLA纤维,依次经过Truetzschler纤维开松、气流铺网和针刺加固工序制备多层复合PLA针刺非织造布,并且研究其厚度、重量、孔隙率和气流阻力。Pelto et al.[Tingaut P,Zimmermann T,Lopez-Suevos F:Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid)and Acetylated Microfibrillated Cellulose.Biomacromolecules 2010,11(2):454-464.]将10-20mm的PLA熔融纺单丝切断、梳理后利用针刺加固制备PLA针刺非织造布,然后再使用硫酸软骨素和导电聚吡(polypyrrole,PPy)咯涂层改性来制备成骨支架。实验结果表明与未涂层的PLA针刺非织造布相比,涂层后的导电支架在电刺激作用下能够提高人体脂肪干细胞的增殖和成骨的分化。并且涂层后的导电支架在水解开始时的导电性比较显著,但在孵化一周后开始下降。这种涂层的导电支架可以应用在骨组织工程。

Bhat et al.[Bhat GS,Gulgunje P,Desai K:Development of structure and properties during thermal calendering of polylactic acid(PLA)fiber webs.Express Polym Lett 2008,2(1):49-56.]将PLA短纤维(纤维长度为76mm,细度为3denier)利用SDS Atlas梳理机梳理后形成重量为35g/m2的纤维网,纤维网尺寸为120cm×30cm,然后对纤维网通过热轧复合(热轧温度高于纤维的玻璃化温度而低于熔点,为130-150℃)。在热轧过程中,热压辊的速度和压力保持不变,从而制备PLA短纤维非织造布。

Wakita et al.[Wakita T,Obata A,Poologasundarampillai G,Jones JR,Kasuga T:Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration.Compos Sci Technol 2010,70(13):1889-1893.]利用静电纺丝方法制备了siloxane-poly(lactic acid)(PLA)-vaterite复合非织造布作为引导骨再生的支架,并且利用hydroxyapatite(HA)涂层来提高织物的细胞相容性。实验结果表明,经过涂层后的复合非织造布具有释放可溶性硅和钙的能力,可以在基因水平刺激成骨细胞。并且这种多孔支架具有较小的孔径可以阻止软组织的进入,促进骨形成和离子的释放,同时增强骨骼生长。Chen et al.[Chen HC,Tsai CH,Yang MC:Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.]将PLA与poly(vinylidene fluoride)(PVDF)混合后溶解在共同溶剂N,N-二甲基甲酰胺和丙酮中进行静电纺丝,分别制备不同混合比例的纳米纤维非织造布,并且研究纤维形态、接触角、热学性能、拉伸性能、血液相容性和细胞相容性。实验结果表明,与PLA和PVDF非织造布相比,PLA/PVDF复合非织造布具有较好的成纤维细胞增殖能力和应用潜力。Au et al.[Chen HC,Tsai CH,Yang MC:Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.]利用静电纺丝技术分别制备了聚乳酸/壳聚糖(PLA/CS)和聚乳酸/壳聚糖/纳米银(PLA/CS/Ag)非织造布,实验结果表明含有纳米银的静电纺非织造布具有对大肠杆菌和金黄色葡萄球菌较好的抗菌性能。Haroosh et al.[Haroosh HJ,Dong Y,Ingram GD:Synthesis,Morphological Structures,and Material Characterization of Electrospun PLA:PCL/Magnetic Nanoparticle Composites for Drug Delivery.J Polym Sci Pol Phys 2013,51(22):1607-1617.]将磁性纳米颗粒(MPs)加入到poly(lactic acid)(PLA):poly(e-caprolactone)(PCL)溶液中进行静电纺丝制备复合非织造布,并且将盐酸四环素加入到复合物中研究药物释放性能。实验结果与前人研究理论一致,表明该复合非织造布具有较好的药物释放性能,可以应用在药物传递方面。Casasola et al.[Casasola R,Thomas NL,Trybala A,Georgiadou S:Electrospun poly lactic acid(PLA)fibres:Effect of different solvent systems on fibre morphology and diameter.Polymer 2014,55(18):4728-4737.]系统的研究了PLA在不同溶剂中的静电纺可纺性、纤维形态、纺丝液的粘度、导电性和表面张力。实验结果表明,在所有溶剂中,丙酮/二甲基甲酰胺具有较高的生产效率,可以制备最好的没有缺陷(串珠形貌)的纳米纤维。Parwe et al.[Parwe SP,Chaudhari PN,Mohite KK,Selukar BS,Nande SS,Garnaik B:Synthesis of ciprofloxacin-conjugated poly(L-lactic acid)polymer for nanofiber fabrication and antibacterial evaluation.Int J Nanomed 2014,9:1463-1477.]将环丙沙星和PLA通过静电纺丝制备纳米纤维复合膜,其纤维直径为150-400nm,孔径为62-102nm。实验结果表明,该复合膜具有较好的对环丙沙星的释放能力和抑制金黄色葡萄球菌和大肠杆菌的生长能力。这种可生物降解的环丙沙星-纳米纤维非织造布可以应用在药物输送方面。Li et al.[Li DP,Frey MW,Baeumner AJ:Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies.J Membrane Sci 2006,279(1-2):354-363.]将生物素加入到PLA纺丝液中进行静电纺丝,制备生物传感器用纳米纤维膜。

Moran et al.[Moran JM,Pazzano D,Bonassar LJ:Characterization of polylactic acid polyglycolic acid composites for cartilage tissue engineering.Tissue Eng 2003,9(1):63-70.]将polyglycolic acid(PGA)非织造布(纤维直径为15mm,孔隙率>95%)分别剪成小块,然后分别用1mL的0.5、1.0、2.0和3.0%的PLA溶液(PLA溶在二氯甲烷)涂层,然后将支架经过干燥后测试性能并且研究牛关节软骨细胞在聚乳酸(PLA)/聚乙醇酸(PGA)复合材料上的生长情况。实验结果表明,细胞在PGA上显示扁平形状,而在PLA上更为接近圆形。这种支架可以用在软骨组织工程方面。此外,还有PLA/亚麻复合非织造布材料[Alimuzzaman S,Gong RH,Akonda M:Nonwoven Polylactic Acid and Flax Biocomposites.Polym Composite 2013,34(10):1611-1619.;Alimuzzaman S,Gong RH,Akonda M:Three-dimensional nonwoven flax fiber reinforced polylactic acid biocomposites.Polym Composite 2014,35(7):1244-1252.],PLA/大麻层压复合材料[Song YS,Lee JT,Ji DS,Kim MW,Lee SH,Youn JR:Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid)composites.Compos Part B-Eng 2012,43(3):856-860.],PLA/竹纤维织物层压复合材料[Porras A,Maranon A:Development and characterization of a laminate composite material from polylactic acid(PLA)and woven bamboo fabric.Compos Part B-Eng 2012,43(7):2782-2788.],椰子纤维/PLA纤维复合材料[Jang JY,Jeong TK,Oh HJ,Youn JR,Song YS:Thermal stability and flammability of coconut fiber reinforced poly(lactic acid)composites.Compos Part B-Eng 2012,43(5):2434-2438.],苎麻织物/PLA膜层压复合材料[Zhou NT,Yao L,Liang YZ,Yu B,Ye MQ,Shan ZD,Qiu YP:Improvement of mechanical properties of ramie/poly(lactic acid)(PLA)laminated composites using a cyclic load pre-treatment method.Ind Crop Prod 2013,45:94-99.],红麻/PLA复合电子材料[Serizawa S,Inoue K,Iji M:Kenaf-fiber-reinforced poly(lactic acid)used for electronic products.J Appl Polym Sci 2006,100(1):618-624.],大麻/PLA生物降解复合材料[Hu R,Lim JK:Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites.J Compos Mater 2007,41(13):1655-1669.]。

Tingaut et al.[Tingaut P,Zimmermann T,Lopez-Suevos F:Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid)and Acetylated Microfibrillated Cellulose.Biomacromolecules 2010,11(2):454-464.]将PLA溶解在氯仿中(2%w/w),并且以PLA作为基体,乙酰化的微原纤(MFC)为增强体制备生物纳米复合材料。实验结果表明,这种生物复合材料具有较好的热稳定性和吸湿性。

由于无序支架的发展前景和应用潜力,以及前人文献中制备无序支架方法的不足之处,本发明尝试将PLA熔融纺纤维,利用热粘合方法,制备为无序支架。



技术实现要素:

本发明的目的是提供一种简单易行,符合绿色环保要求,并且聚乳酸熔融纺纤维之间粘合紧密、不会脱散、成形性较好的聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法。

本发明的聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,有以下二种技术解决方案:

方案1:

聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,包括如下步骤:

1)将具有良好生物降解性和生物相容性的聚乳酸切片通过熔融纺丝方法制备纤维;

2)将步骤1)制备的聚乳酸纤维,用缕纱测长仪在周长为999-1001mm,宽度为3-4cm的纱框,以1-300r/min的转速和100cN的初始张力,对纤维进行平行绕制,得到聚乳酸有序纤维束;

3)将步骤2)制备的聚乳酸有序纤维束剪成长度为1-4cm的短纤维,然后将短纤维集合体均匀铺成网状,在60-140℃温度,13×106Pa压力下,热压1-60min,得到三维多孔无序支架;

或者将步骤2)制备的聚乳酸有序纤维束剪成长度为1-4cm的短纤维,然后将短纤维集合体均匀铺成网状,在60-140℃温度,13×106Pa压力下,热压1-60min,再在0℃,1-13×106Pa压力条件下冷压1-5min进行粘合,然后自然冷却至室温,得到三维多孔无序支架。

方案2:

聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,包括如下步骤:

将具有良好生物降解性和生物相容性的聚乳酸切片,利用单螺杆塑料挤出机,螺杆长径比L/D=28:1,滚筒转速为21.0rpm,横动速度为38.8cm/min,螺杆转速为5.65r/min,喷丝孔直径为0.02mm,纺丝模头温度为250℃,热空气温度为320℃,热空气压力为0.3MPa,喷丝口到接收滚筒之间的接收距离为75-200mm,通过自身热粘合,得到三维多孔无序支架。

本发明中,所述的聚乳酸(PLA)的分子量为170000-200000。

本发明的有益效果在于:

本发明方法简单易行,没有污染,并且聚乳酸熔融纺纤维之间粘合紧密、不会脱散、成形性较好,可以满足产业化应用的需要。利用聚乳酸熔融纺纤维热粘合固化制备三维多孔无序支架的方法,可以对其它高聚物(比如聚己内酯、聚乙醇酸、聚乙二醇、聚氨酯等)的熔融纺纤维制备类似支架提供参考。该制备方法制备的聚乳酸熔融纺纤维无序支架具有较好的内部孔隙结构、物理性能和力学性能,并且具有较好的应用潜力,可以作为生物材料应用在骨组织工程方面。

附图说明

图1是实施例1制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图2是实施例1制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

图3是实施例2制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图4是实施例2制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

图5是实施例3制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图6是实施例3制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

图7是实施例4制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图8是实施例4制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

图9是实施例5制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图10是实施例5制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

图11是实施例6制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。

图12是实施例6制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。

具体实施方式

以下结合实施例进一步说明本发明。

实施例1:

将分子量为170000的PLA切片通过熔融纺丝方法制备平均直径为12.41μm的PLA纤维;利用YG086型缕纱测长仪绕制1000根平行排列的集合体,转速为300r/min,纱框周长为1000mm,宽度为3.5cm,初始张力为100cN。将平行排列的有序PLA熔融纺纤维束用剪刀剪断10次,剪成长度为1cm短纤维10000根。然后将10000根的1cm短纤维集合体均匀铺网,再进行热压和冷压,热压温度为60℃,热压时间为5min,热压压力为13×106Pa,冷压温度为0℃,冷压时间为5min,冷压压力为13×106Pa。然后自然冷却至室温,得到三维多孔无序支架。

该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图1和2所示。由图可见,这种三维多孔无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.02cm,重量为0.0054g/cm2,有序度为81.7°,孔隙的平均孔径为17.8μm,孔隙率为54.4%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.0026MPa和48.9%。实施例2:

方法同实施例1,区别在于改变PLA熔融纺短纤维长度为2cm。该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图3和4所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.056cm,重量为0.019g/cm2,有序度为70.2°,孔隙的平均孔径为20.9μm,孔隙率为65.9%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.04MPa和73.3%。

实施例3:

方法同实施例1,区别在于改变PLA熔融纺短纤维长度为4cm。该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图5和6所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.092cm,重量为0.039g/cm2,有序度为37.3°,孔隙的平均孔径为19.8μm,孔隙率为74%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.16MPa和126.2%。

实施例4:

将分子量为170000的PLA切片,利用SJ-30/28单螺杆塑料挤出机,螺杆长径比L/D=28:1。滚筒转速为21.0rpm,横动速度为38.8cm/min,螺杆转速为5.65r/min,喷丝孔直径为0.02mm。纺丝模头温度为250℃,热空气温度为320℃,热空气压力为0.3MPa,喷丝口到滚筒之间的接收距离为75mm。无需热压和冷压过程,通过自身热粘合,得到纤维直径为3μm的PLA三维多孔无序支架。

该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图7和8所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.12cm,重量为0.014g/cm2,有序度为73.5°,孔隙的平均孔径为19.7μm,孔隙率为59.8%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.059MPa和70.7%。

实施例5:

方法同实施例4,区别在于改变接收距离为100mm。得到纤维直径为5.3μm的PLA三维多孔无序支架。该实施例制备的PLA熔融纺纤维无序支架的表面及横截面形态如图9和10所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.072cm,重量为0.0093g/cm2,有序度为60.2°,孔隙的平均孔径为17.8μm,孔隙率为65.4%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.028MPa和58.5%。

实施例6:

方法同实施例4,区别在于改变接收距离为200mm。得到纤维直径为5.3μm的PLA三维多孔无序支架。该实施例制备的PLA熔融纺纤维无序支架的表面及横截面形态如图11和12所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.13cm,重量为0.012g/cm2,有序度为79.2°,孔隙的平均孔径为13μm,孔隙率为51.2%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.035MPa和53.5%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1