一种压裂用改性纤维、该改性纤维的混注装备及混注方法与流程

文档序号:11456055阅读:364来源:国知局
一种压裂用改性纤维、该改性纤维的混注装备及混注方法与流程

本发明涉及油气田开发技术领域,特别涉及一种压裂用改性纤维、该改性纤维的混注装备及混注方法。



背景技术:

水力压裂的主要目标是在油气藏中形成一定长度的人工渗流通道,需要裂缝具有稳定的几何形态和较高的导流能力,通常认为支撑剂在人工裂缝内需连续、均匀铺置。但是,压裂液破胶残渣、支撑剂破碎颗粒等会堵塞孔道,以及支撑剂嵌入等造成了裂缝内部污染,往往使裂缝导流能力大大降低。

为增加裂缝导流能力,近几年,国内外广泛采用了一种称为“高导缝”压裂的新工艺,在南美、中东等多个地区已应用超过3800井次。高导缝压裂是指在加砂过程中,通过采取以支撑剂柱塞方式泵入,先泵入一段混入纤维的支撑剂,再泵入一段纯交联液,以此作为一个加砂脉冲周期,进行反复交替循环加砂。通过这种特殊的纤维压裂液、独特的泵注程序,使普通的支撑剂颗粒聚结成团,从而可在支撑剂充填层内形成高导流能力通道,比常规裂缝导流能力高出几个数量级。与常规压裂方案相比,高导缝压裂通常需要将一定量的纤维加入到压裂液中,通过添加纤维来实现对支撑剂的成团、悬浮、携砂、固砂。压裂液中的纤维通过均匀分散的状态形成空间交联网状结构,通过物理手段运移、悬浮和置放支撑剂,提高压裂液的携砂能力,能将支撑剂携带到裂缝更深处,因此,该工艺要求纤维在清水或者压裂中具有较好的自分散能力。但常规的工业化基础纤维,往往没有结合压裂施工的实际,配合高导缝压裂时,通常会出现纤维缠绕打结、浮在压裂液表面,纤维无法有效携砂等问题,影响了压裂施工的成功率及有效率。



技术实现要素:

本发明针对现有的高导缝压裂技术中的常规纤维不能满足压裂施工的使用要求,提供一种压裂用改性纤维,以提高纤维在压裂液中的分散性和悬砂能力。

为实现本发明的目的,本发明首先提供一种压裂用改性纤维,包括基础纤维和纤维改性剂,所述纤维改性剂通过如下质量组份的原料制剂:磷酸型单烷氧基类钛酸酯偶联剂0.1-2%、二丁基羟基甲苯0.2-2%、亲水油剂5-20%、正辛醇5-10%、助剂0.5-10%,余量为水;上述纤维改性剂的原料制剂混合后在40—50℃水浴下搅拌2-4h后制得压裂用纤维改性剂;所述压裂用纤维的改性方法为:将基础纤维与压裂用纤维改性剂充分混合浸润,使所述压裂用纤维改性剂均匀覆在纤维表面,静置1—1.5小时,然后将纤维在40-60℃的烘箱中烘干即制得压裂用纤维。

本发明的压裂用改性纤维,具有配制搅拌不起泡,高效增塑润滑的作用,纤维通过改性处理后,加强了纤维的亲水分散性,并在压裂液中呈分散状,并使纤维在压裂液中呈空间网络结构,携砂能力好,避免在压裂液中缠绕打结和集中上浮的问题;并且该工艺具有处理步骤简单、操作方便、成本低廉的优点。

优选的,所述亲水油剂亲水硅油剂、亲水自乳化硅油、亲水双氨基硅油和聚醚改性硅油中的一种或一种以上任意比的组合。

优选的,所述助剂为丙二醇、丙三醇、丁醚、乙二醇中的一种或一种以上任意比的组合。

优选的,所述基础纤维与纤维改性剂的混合浸润方法为将基础纤维浸没入纤维改性剂中并泡透,常温下静置1—1.5小时,然后将纤维用筛网捞出进行后序的烘干。

另一优选的,所述基础纤维与纤维改性剂的混合浸润方法为:将纤维改性剂通过喷枪或碟式雾化器均匀喷涂到基础纤维表面,使喷涂的雾滴均匀分布并浸润在基础纤维的表面,常温下静置1—1.5小时,然后将纤维用筛网捞出进行后序的烘干。

为便于实现高导缝压裂,本发明的第二个目的是提供一种上述压裂用纤维的混注装备,包括机架,所述机架内设有搅拌筒,所述搅拌筒内的中上部设有水平并镂空的隔板,搅拌筒的上口部设有盖板,所述盖板上侧的搅拌筒周向设有护栏,所述隔板和盖板之间设有纤维送料斗,所述纤维送料斗内设有料位检测单元,纤维送料斗的下部出口对应隔板的部位设有进料口,纤维送料斗上口对应盖板的部位设有投料口,所述纤维送料斗内设有输送绞笼,所述输送绞笼通过电机一驱动,隔板下侧对应进料口的部位设有离心分散器,所述离心分散器通过电机二驱动;所述搅拌筒内设有螺旋轴为水平方向的双螺带可调速搅拌器,所述搅拌器通过电机三驱动;所述搅拌筒还连接有压裂液输入系统和输出系统,所述输入系统包括通过管道连接的储液罐、输入泵、电动蝶阀和流计量,所述流量计与搅拌筒之间通过道管连接,所述输出系统包括与搅拌筒通过管道连接的输出泵。本发明的上述压裂用纤维的混注装备,可以在压裂现场方便的实现改性纤维与压裂液的混注并向压裂管线连续周期输送高导缝压裂液。

本发明的第三个目的是提供一种上述采用压裂用纤维的混注装备的纤维混注方法,以便于向压裂管线连续周期的输送高导缝压裂液,具体加注方法包括如下步骤:

1)向纤维送料斗内添加定量预称的压裂用改性纤维;

2)启动电动蝶阀和输入泵,向搅拌筒内输入压裂液,10称钟后启动电机一、电机二和电机三,以同时启动输送绞笼、离心分散器和搅拌器;

3)当流量计监测的压裂液输入量达到设定值时,输入泵和电动蝶阀关闭停止加液;

4)当料位检测单元检测到纤维送料斗内无料时,电机一停止输送绞笼停止输送,电机三按照液量输出所设定的工作时间继续进行工作,输出泵启动将搅拌筒内的纤维压裂液按设定的输出流量输送至压裂加砂管线,直至搅拌筒内的液体全部输出,机电三和输出泵停止;

5)重复执行步骤1)—4)进入下一混注周期。

为便于合理配置纤维和压裂液的比例,所述步骤1)中纤维的预称定量为30公斤,所述步骤3)中压裂液输入量的设定值按改性纤维重量为压裂液重量的0.5%—1.5%计算。

为提高搅拌效率,所述步骤3)中向搅拌筒内输入完设定量的压裂液后,所述搅拌筒内压裂液的液面正好浸没双螺带可调速搅拌器的螺旋轴以露出上方的螺带。将搅拌器上螺片露出液面,可以消除连续、单向漩涡,提高搅拌效率,减少飞溅,节约能耗。

附图说明

图1为本发明的压裂用纤维的加注装备的主视图。

图2为图1的左视图。

图3为基础纤维在清水中的分散性示意图。

图4为压裂用改性纤维在清水中的分散性示意图。

图5不同浓度改性纤维对20—40目陶粒导流能力的影响。

其中,1护栏;2盖板;3输送绞笼;4纤维送料斗;5机架;6隔板;7离心分散器;8搅拌器;9搅拌筒;10电机一;11电机二;12扶梯;13流量计;14电动蝶阀;15输入泵;16排泄口;17输出泵;18电机三。

具体实施方式

实施例1

一种压裂用改性纤维,包括基础纤维和纤维改性剂,其中,纤维改性剂通过如下质量组份的原料制剂:磷酸型单烷氧基类钛酸酯偶联剂0.1%、二丁基羟基甲苯0.2%、亲水硅油剂5%、正辛醇5%、助剂0.5%,余量为水;其中,助剂为等比例混合的丙二醇和丙三醇。上述纤维改性剂的原料制剂混合后在40℃水浴下搅拌4h后制得压裂用纤维改性剂;然后将基础纤维与上述压裂用纤维改性剂进行改性处理。本实施例中,基础纤维选用聚丙烯纤维、玻璃纤维、聚酯类纤维、聚酰亚胺纤维的混合纤维,纤维的密度为0.96g/cm3,纤维长度为2-15mm,纤维抗拉强度为20~3000mpa,纤维直径为15~150um的短切纤维和长纤维、纤维形态为直纤维和卷曲纤维的混合纤维。具体的改性方法为:将基础纤维浸没入纤维改性剂中并泡透,常温下静置1小时,然后将纤维用筛网捞出在45℃的烘箱中烘干即制得本实施例的压裂用改性纤维。改性后的纤维密度为1.32g/cm3

实施例2

一种压裂用改性纤维,包括基础纤维和纤维改性剂,其中,纤维改性剂通过如下质量组份的原料制剂:磷酸型单烷氧基类钛酸酯偶联剂2%、二丁基羟基甲苯2%、亲水自乳化硅油20%、正辛醇10%、丙三醇10%,余量为水。上述纤维改性剂的原料制剂混合后在50℃水浴下搅拌2h后制得压裂用纤维改性剂;然后将基础纤维与上述压裂用纤维改性剂进行改性处理。本实施例中,基础纤维选用玻璃纤维、聚酯类纤维、聚酰亚胺纤维的混合纤维,纤维的密度为1.58g/cm3,纤维长度为2-15mm,纤维抗拉强度为58~2850mpa,纤维直径为15~150um的短切纤维和长纤维、纤维形态为直纤维和卷曲纤维的混合纤维。具体的改性方法为:将本实施例制得的纤维改性剂通过喷枪均匀喷涂到基础纤维表面,使喷涂的雾滴均匀分布并浸润在基础纤维的表面,常温下静置1.5小时,然后将纤维移至50℃的烘箱中烘干即制得本实施例的压裂用改性纤维。改性后的纤维密度为1.62g/cm3

实施例3

一种压裂用改性纤维,包括基础纤维和纤维改性剂,其中,纤维改性剂通过如下质量组份的原料制剂:磷酸型单烷氧基类钛酸酯偶联剂1.2%、二丁基羟基甲苯1%、亲水油剂15%、正辛醇10%、助剂10%,余量为水;其中,亲水油剂为亲水双氨基硅油和聚醚改性硅油等比例混合而成,助剂选用等比例混合的丁醚和乙二醇。上述纤维改性剂的原料制剂混合后在45℃水浴下搅拌1.2h后制得压裂用纤维改性剂;然后将基础纤维与上述压裂用纤维改性剂进行改性处理。本实施例中,基础纤维选用聚酯类纤维、聚酰亚胺纤维的混合纤维,纤维的密度为1.25g/cm3,纤维长度为2-15mm,纤维抗拉强度为90~1250mpa,纤维直径为15~150um的短切纤维和长纤维、纤维形态为直纤维和卷曲纤维的混合纤维。具体的改性方法为:将本实施例制得的纤维改性剂通过蝶式雾化器均匀喷涂到基础纤维表面,使喷涂的雾滴均匀分布并浸润在基础纤维的表面,常温下静置1.5小时,然后将纤维移至60℃的烘箱中烘干即制得本实施例的压裂用改性纤维。改性后的纤维密度为1.30g/cm3

为进一步说明经改性后的纤维的性能对上述压裂用改性纤维进行一系列的性能实验:

(1)分散性评价:

将实施例1中改性前的基础纤维和改性后的压裂用改性纤维以0.5%的质量浓度加入清水中的搅拌后如图3和图4所示,经改性的纤维在清水中分散的均匀性明显好于改性前的基础纤维。然后,再配制如下质量配比的压裂液:0.40%羟丙基瓜胶+0.25%杀菌剂+0.05%防膨剂+0.25%助排剂+0.3%ph调节剂,制得压裂基液,然后在压裂基液中再添加0.15%有机膨,制得压裂冻胶。

将实施例2得到的压裂用改性纤维分别加入到清水、压裂基液、压裂冻胶三种溶液中,纤维的加入量为溶液重量的0.5%,分别观察纤维在三种溶液中的分散性,测试结果如表1所述,可以看出,压裂用改性纤维在三种溶液中均匀具有较好的分散性。

(2)对压裂液成胶破胶性能评价:

按如下质量配比配制压裂液:0.40%羟丙基瓜胶+0.25%杀菌剂+0.05%防膨剂+0.25%助排剂+0.3%ph调节剂,实验中所用交联剂为0.4%的有机硼交联剂;破胶性能活性评价采用过硫酸盐活性评价方法(按照标准sy/t5107-2005测试),实验所用过硫酸盐为过硫酸铵,浓度为200ppm。测试结果如表2所述,从表2的测试结果可以看出,压裂液加入改性纤维后成胶和破胶性能并未受到影响。

(3)悬砂能力的评价

配制压裂液,配方为:0.40%羟丙基瓜胶+0.25%杀菌剂+0.05%防膨剂+0.25%助排剂+0.3%ph调节剂,在压裂液中再添加0.15%有机膨,制得压裂冻胶。

测试方法:取400ml基液至广口瓶,先加入交联剂,然后按照30%的砂比加入陶粒及0.5%陶粒重量的实施例3中制得的压裂用改性纤维,陶粒的粒径0.425~0.850mm,密度1.75g/cmm,接着迅速摇晃密封的广口瓶使陶粒以及纤维在压裂液中混合均匀。将混合均匀后的悬砂压裂液静置,观察陶粒沉降情况,同时做未加纤维的压裂液和同量的未改性的纤维的压裂液为对照。测试结果如表3所述。结果表明:加入改性后的纤维相对于不加纤维和加未改性的纤维相比,其悬砂能力显著增强。

(4)导流能力测试(按照标准sy/t6302-1997测试)

实验仪器:裂缝导流能力评价仪

实验陶粒粒度:20—40目

实验方案如下:将实施例1制得的压裂用改性纤维以浓度分别为0%、0.5%、0.7%、1%,最高压力82mpa。

测量介质:去离子水,导流室铺砂浓度:10kg/m3

实验结果如图5所示,改性纤维对导流能力的影响不是很大,加入纤维后的导流能力依然能够满足现场应用的要求。

实施例4

本实施例具体介绍将上述压裂用纤维的混注装备及该装备的混注方法,如图1和图2所示,包括机架5,机架5内设有搅拌筒9,搅拌筒9内的中上部设有水平并镂空的隔板6,搅拌筒9的上口部设有盖板2,该盖板2也充当搅拌筒9上侧的操作平台,供操作人员填料时的活动平台,为保证操作人员的安全,盖板2上侧的搅拌筒周向设有护栏1,隔板6和盖板2之间设有纤维送料斗4,纤维送料斗4内设有料位检测单元用于测量斗内的纤维量,纤维送料斗4的下部出口对应隔板6的部位设有进料口,纤维送料斗4上口对应盖板2的部位设有投料口,纤维送料斗4内设有输送绞笼3,输送绞笼3通过电机一10驱动,隔板6下侧对应进料口的部位设有离心分散器7,该离心分散器7通过电机二驱动用于分散从料斗送出的纤维,使纤维均匀分散落入搅拌筒9内。搅拌筒9内设有螺旋轴为水平方向的双螺带可调速搅拌器8,该搅拌器8通过电机三18驱动;搅拌筒9还连接有压裂液输入系统和输出系统,输入系统包括通过管道连接的储液罐、输入泵15、电动蝶阀14和流计量13,流量计13与搅拌筒9之间通过道管连接,输出系统包括与搅拌筒9通过管道连接的输出泵17。为便于操作人员上料和维修,在机架的侧方还设置有通过盖板上侧的扶梯,另外搅拌筒的底侧还设有排阀口。

本实施例的上述压裂用纤维的混注装备进行上述压裂用改性纤维混注方法具体包括如下步骤:

1)向纤维送料斗内添加预称好的30公斤的压裂用改性纤维;

2)电动蝶阀14和输入泵15启动,向搅拌筒9内输入压裂液,10称钟后启动电机一10、电机二11和电机三18,以同时启动输送绞笼3、离心分散器7和搅拌器8;

3)当流量计13监测的压裂液输入量按重量计达到6吨时,输入泵15和电动蝶阀14关闭停止加液;为提高搅拌效率,本步中向搅拌筒9内输入完压裂液后,搅拌筒9内压裂液的液面正好浸没双螺带可调速搅拌器的螺旋轴以露出上方的螺带,这样可以消除连续、单向漩涡,提高搅拌效率,减少飞溅,节约能耗;

4)当料位检测单元检测到纤维送料斗4内无料时,表明纤维输送完毕,电机一10停止输送绞笼3停止输送,电机三18按照液量输出所设定的工作时间继续进行工作,使压裂液与改性纤维均匀混合,输出泵17启动将搅拌筒9内的混有改性纤维的压裂液按设定的输出流量输送至压裂加砂管线,直至搅拌筒9内的液体全部输出,机电三和输出泵停止;

5)重复执行步骤1)—4)进入下一混注周期。

采用本实施例的上述实施方式于2015年12月27日在江苏油田某井的高导缝加砂压裂施工,其中改性纤维的添加量按压裂液重量的0.5%,在施工期间纤维分散性较好,没有出现纤维上浮下沉、堵泵等现象,压裂施工顺利完成。该施工井压裂前日产油0.5t,高导缝压裂后放喷阶段出油,日自喷产油8吨,2016年2月7日开井生产,峰值日产油量9.1吨,目前日产油量4.1吨,压裂继续有效,累计增油1387吨,压裂效果明显。

当前第1页1 2 
网友询问留言 已有1条留言
  • 访客 来自[中国] 2023年06月27日 13:41
    有电话告诉一下?电话和你沟通
    0
1