高密度非织造织物过滤介质的制作方法

文档序号:1766043阅读:291来源:国知局
专利名称:高密度非织造织物过滤介质的制作方法
技术领域
本发明的背景本发明涉及由复合纤维生产的一种非织造织物。更具体地说,本发明涉及一种复合纤维的非织造织物的过滤介质。
多孔的非织造织物的片状介质,例如含熔喷法或溶液喷射法的微细纤维织物和传统的纺粘型非织造织物的复合材料已经在各种各样的过滤中应用,例如冷却液的过滤,切削液的过滤、游泳池水的过滤、传动流体的过滤、室内空气的过滤和汽车空气的过滤中使用。在液体过滤应用方面,特别是对大量流体过滤应用方面,例如冷却液和切削液的过滤方面,通常在水平设置的过滤介质之上给污染的液体施加压力。因此,过滤介质必须坚固得足以经受住液体的重量和施加的驱动压力。这样,液体过滤介质除了有适合的过滤效率、容量和寿命外,还必须提供高的强度性质。
一般来说,由于微纤维层没有足够自支持的物理强度,因此复合过滤纤维介质都是由微纤维层层压在高度多孔的支撑层上,或层压在两高度多孔的支撑层之间。因此,复合过滤介质的生产方法不仅要求不同的层材,而且还要求复杂费事的成层和层压步骤,才能昂贵地制得过滤介质。虽然为了避免通过增加微纤维过滤层的厚度生成复合过滤介质的复杂性,可以生产自支撑的单层微纤维过滤介质,但是,穿过这种厚度微纤维过滤介质的压降是不可接受的高,使得该微纤维介质不适宜过滤应用,特别是不适合高物料通量的过滤应用。现有的微纤维过滤介质和含微纤维织物的层压过滤介质的另一缺点是它们往往显示出弱的物理性质。因此,这些过滤介质对大量液体过滤来说,特别不适用。
在工业上广泛使用的其它片状过滤介质是热力学或化学加工的木桨纤维的纤维素纤维织物。例如纤维素纤维介质通常用于车用润滑油和燃料过滤介质和真空吸尘器过滤介质。但是,纤维素纤维过滤介质往往过滤效率有限,并且不能够提供高压、大容量液体过滤应用所要求的高强度特性。
在液体过滤应用中已经被利用的过滤介质的另一类是压延纺粘型非织造织物。例如,压延的聚酯纺粘型过滤介质是从Reemay有限公司(商标Reemay)购买。通常,纺粘型过滤介质是通过熔纺结构长丝与粘合剂长丝的物理掺合物,随意地和各向同性地使长丝沉积在成形的表面上,以形成非织造织物,然后压延该非织造织物,活化粘合剂长丝,以实现粘合,形成较均匀厚度的片状过滤介质。这些压延的片状过滤介质显示了良好的强度特性。但是,一般来说,这些纺粘型过滤介质的过滤效率显著地低于微纤维过滤介质。此外,在压延纺粘型过滤介质的表面上的孔隙率的分布往往不均匀。这是因为当纺成的长丝随意地沉积在成形表面上时,沉积的织物的长丝密度,即对给定表面积沉积的长丝股数从一个区域到另一个区域变化;而且当沉积的纤维织物压延和压实成均匀厚度时,高纤维密度和低纤维密度的区域分别生成低孔隙度和高孔隙度区域。因此,压延纺粘型过滤介质往往有不均匀的孔隙度分布。
因此要求提供高过滤效率、容量和高物理强度高度理想结合的经济的过滤介质。
本发明的概述本发明提供了一种片状的自动粘合不卷曲复合纤维的过滤介质。该过滤的密度在约0.07g/cm3和约0.2g/cm3之间,Frazier渗透性至少为3.5m3/分/m2(50ft2/min/ft2),和复合纤维具有聚烯烃和熔点高于聚烯烃的其它热塑性聚合物。该介质的Mullen Burst强度至少为3.5kg/cm2和该介质特别适宜于过滤液体。
本发明还提供了一种三维热成型过滤介质,该介质有选自包含聚烯烃和其它热塑性聚合物的纺粘型纤维和人造短纤维的自动粘合的解卷曲复合纤维,其中聚烯烃和热塑性聚合物有如此不同的差示扫描量热法的熔化曲线,以致暴露到熔化约50%低熔点聚烯烃组分的温度下,将熔化等于或小于约10%的其它热塑性组分。热成型过滤介质的密度在0.07g/cm3和约0.5g/cm3之间。
本文中所使用的复合纤维意指沿纤维的基本上的整个长度有至少两种占有不同横截面的不同组分的聚合物的组合物纤维。本文中所使用的术语“纤维”表示连续的长丝和不连续的纤维如人造短纤维两者。术语“纺粘型纤维”指的是通过如下方法形成的纤维从喷丝头的许多较小(通常为圆形)毛细管以连续长丝挤出熔融热塑性聚合物,然后通过引出或其它众所周知的拉伸挤出的长丝,使长丝有分子定向性和物理强度。拉伸的连续长丝以十分随意的方式沉积在带小孔的形成表面上,生成有均匀密度的非织造织物。真空设备可绕纤维沉积区域设置在形成表面的下面,便于纤维的适当放置和分布。然后沉积的非织造织物粘合产生物理完整性和强度。生产纺粘型纤维及其织物的方法公开在U.S.4340563号(Appel);3692618号(Dorsckner等)和U.S.3802817号(Matsuki等)中。按照本发明,过滤介质希望包含连续的复合长丝,例如纺粘型复合纤维。因为连续长丝提供了改进强度特性和不起毛。本文中所使用的术语“不卷曲”表示设有进行卷曲或进行膨松处理的纤维,并按ASTM D-3937-82测量,希望有少于2个卷/延伸英寸。本文中所使用的术语“均匀纤维覆盖度”表示通过随意地和各向同性的纤维或长丝的沉积过程实现的均匀或基本均匀的纤维覆盖度。
本发明非织造织物过滤介质非常适于要求高过滤效率、物理强度、耐磨性、热成型性等的各种过滤应用。另外,非织造织物过滤介质还特别适于将介质转化成高褶密度的过滤介质。
附图的简要说明

图1是线型低密度聚乙烯和聚丙烯的DSC熔化曲线。
图2是线型低密度聚乙烯和尼龙6的DSC熔化曲线。
图3描述适用于本发明的通气粘合器。
图4描述适用的打褶方法。
图5是不同的过滤介质的过滤效率与它们的密度的关系图。
图6是不同的过滤介质的过滤寿命与它们的密度的关系图。
图7是不同的过滤介质的起始过滤效率与它们的密度的关系图。
本发明的详细描述本发明提供了一种不卷曲或基本上不卷曲复合纤维的非织造的片状的过滤介质。该过滤介质对液体过滤非常有用。该过滤介质的密度在约0.07g/cm3和0.2g/cm3之间,希望在约0.08g/cm3和约0.19g/cm3之间,更希望在0.1g/cm3和约0.15g/cm3之间,和渗透性至少为约15m3/分/m2(50ft3/min/ft2),希望在约15m3/分/m2和约90m3/分/m2,更希望在约18m3/分/m2/和76m3/分/m2之间,最希望在30m3/分/m2和约60m3/分/m2之间,这是按Federal测试方法5440,标准号191A测量的。
复合纤维非织造过滤介质的特征是具有有用过滤特性的理想组合,包括高密度、高强度、光滑表面和较均匀的孔隙率分布。本发明过滤介质的理想特征是基于生产片状非织造织物过滤介质的特殊方法的。本发明的过滤介质是通气粘合,而不是压延粘合,并且本发明的过滤介质与压延的非织造织物过滤介质相比,可产生低的回弹力和高的密度。
复合纤维包含至少两组分有不同熔点的聚合物,即高熔点的聚合物和低熔点的聚合物,低熔点聚合物沿纤维长度的总圆周表面积的至少约25%,希望至少约40%,更希望至少约50%,从而低熔点聚合物可以加热活化而变成粘性物质,并生成自动相互粘合的纤维,而高熔点聚合物保持纤维结构的完整性。含生成自动相互粘合的复合纤维的本发明过滤介质显示出了高强度特性,特别是多方向的强度特性。这种多方向的强度特性可以用ASTM D3786-87试验、Mullen Burst试验测量。过滤介质的Mullen Burst强度为至少3.5kg/cm2,希望至少为4kg/cm2,更希望至少为4.5kg/cm2。
虽然本发明的复合纤维可含两种以上组分的聚合物,下文用有两组分聚合物的复合纤维(双组分纤维)来描述本发明。这种组分聚合物选自成纤的热塑性聚合物,并且聚合物间的熔点差至少为约5℃。希望至少约10℃。由于热塑性聚合物通常不是在特定温度熔化,而是在一温度范围内熔化,因此,低熔点聚合物组分与高熔点聚合物组分间的熔化温度差最好在传统的差示扫描量热法(DSC)中用熔化曲线的测量来确定。即使两种聚合物有明显不同的熔点,所述熔点通常定义为DSC熔化曲线的峰值,但由于熔化曲线的温度范围交接,因此聚合物在一温度范围内可同时熔化。按照本发明,这样来选择组分聚合物,即在低熔点聚合物熔化至少50%的温度下(由该聚合物的DSC熔化曲线确定),高熔点聚合物熔化10%或更低,希望熔化5%或更低。更希望组分聚合物的DSC熔化曲线都不交接;而最希望组分聚合物的DSC熔化曲线至少某种程度的分开。按照本发明的熔点选择标准所选择的组分,结果低熔点组分聚合物可以在加热下变成粘性物质,而其它组分聚合物保持纤维的物理完整性,靠此生成纤维间的紧密粘结,而不损失非织造织物的物理完整性或要求压实的压力。此外,当DSC熔化曲线不交接时,熔化温度范围的差能够使非织造织物甚至加热到低熔点组分聚合物熔化,并允许低熔点聚合物在不失去织物的结构完整性的情况下在纤维结构内流动和伸展的温度。一般来说,低熔点聚合物的流动改进耐磨性和强度,提高织物的密度,产生更致密的过滤介质。例如,低密度的线型聚乙烯和聚丙烯是非常适用于复合纤维的组分聚合物,这是由于它们的DSC熔化曲线完全不交接,如图1所示。图1熔化曲线中的第一个谷是低密度线型聚乙烯的熔化曲线,而第二个谷是聚丙烯的熔化曲线。图2是适用于复合纤维的聚合物组合的另一个实例。如图2所示,低密度线型聚乙烯和尼龙-6的DSC熔化曲线明显地分开。图2熔化曲线中的第一个明显的谷是低密度线型聚乙烯的熔化曲线,而第二个谷是尼龙-6的熔化曲线。熔化曲线表明,两种聚合物的熔化温度范围是明显的不同,使得它们非常适合本发明。
按照本发明,低熔点组分聚合物选自聚烯烃,以纤维的总重量计,低熔点聚合物占纤维的约10-90%(wt),希望约30-80%(wt),更希望约40-70%(wt)。聚烯烃选自聚乙烯,例如低密度线型聚乙烯、高密度聚乙烯、低密度聚乙烯和中密度聚乙烯;聚丙烯,例如全同立构聚丙烯、间同立构聚丙烯、它们的掺合物和全同立构聚丙烯与无规立构聚丙烯的掺合物;聚丁烯,例如聚(1-丁烯)、聚(2-丁烯),和聚戊烯,例如聚-4-甲基戊烯-1和聚(2-戊烯);以及它们的掺合物和共聚物,例如乙烯-丙烯共聚物、乙烯-丁烯共聚物等。
复合纤维的其它的组分聚合物选自聚烯烃,聚酰胺类、聚酯类、聚碳酸酯类和它们的掺合物与共聚物,以及含丙烯酸单体的共聚物,条件是其它组分聚合物是按上述的熔点选择标准来选择。适宜的聚烯烃包括聚乙烯,例如,低密度线型聚乙烯、高密度聚乙烯,低密度聚乙烯和中密度聚乙烯、聚丙烯,例如全同立构聚丙烯、间同立构聚丙烯、它们的掺合物和全同立构聚丙烯与无规立构聚丙烯的掺合物;聚丁烯,例如聚(1-丁烯)和聚(2-丁烯);和聚戊烯,例如聚-4-甲基戊烯-1和聚(2-戊烯);以及它们的掺合物与共聚物。适宜的聚酰胺类包括尼龙-6、尼龙-6/6、尼龙-10、尼龙-4/6、尼龙-10/10、尼龙-12、尼龙-6/12、尼龙-12/12和亲水性聚酰胺共聚物,例如己内酰胺与烯化氧二胺的共聚物和六亚甲基己二酰二胺与烯化氧的共聚物以及它们的掺合物和共聚物。适宜的聚酯包括对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸环己二亚甲酯和它们的掺合物与共聚物。适宜本发明的丙烯酸共聚物包括乙烯丙烯酸共聚物、乙烯甲基丙烯酸共聚物、乙烯甲基丙烯酸酯共聚物、乙烯乙基丙烯酸酯共聚物、乙烯丁基丙烯酸酯共聚物和它们的掺合物。在上述适宜组分聚合物和不同组合中,由于经济可行性与所希望的物理性质的原因,特别适宜的复合纤维包含有上述讨论的熔点差的不同聚烯烃的组合。更特别适宜的复合纤维是有聚乙烯组分,如高密度聚乙烯、低密度线型聚乙烯和它们的掺合物和聚丙烯如全同立构聚丙烯、间同立构聚丙烯和它们掺合物的双组分聚烯烃复合纤维。
适宜的复合纤维构型包括同心的套-芯、偏心的套-芯、海中岛和并排构型。特别适用于本发明的是有对称排列的组分聚合物的复合纤维,例如同心套-芯的复合纤维,因为有对称聚合物排列的纤维不具有潜在的或隐藏的卷曲性。一般来说,不对称的复合纤维例如并排构型的复合纤维,包括不同结晶和/或收缩性的组分聚合物,具有潜在的卷曲性,这可以热活化或机械活化。据信复合纤维中隐藏的卷曲性是由于组分聚合物的收缩差异。当这样的复合纤维暴露于热处理或拉伸过程中时,在热处理或拉伸过程期间,复合纤维组分聚合物中收缩性的差异引起纤维卷曲。例如,当使用偏心套-芯或并排构型的纤维时,纤维必须以防止纤维具有或活化隐藏卷曲性这种方式进行处理。例如,Nakajima等的U.S.4315881号公开了用于生产没有卷曲和隐藏卷曲性的聚乙烯-聚丙烯并排构型人造复合纤维的方法,本文将其引入参考。该方法采用了特殊的拉伸比和温度以便得到没有卷曲和没有隐藏卷曲性的复合纤维。对于纺粘型复合纤维,可调整纤维的生产方法,以防止卷曲和隐藏的卷曲性。例如,在形成纺粘型纤维过程中,聚乙烯和聚丙烯的复合纤维可以高拉伸应力拉伸,例如通过提供低的聚合物物料通过速率和提高纤维的拉力,产生没有卷曲和隐藏卷曲性的复合纤维。
有较均匀纤维覆盖的本发明适用的非织造织物可以通过在形成表面上各向同性地沉积解卷曲复合纤维素生成。沉积复合纤维的未粘合的非织造织物载于有小孔的基材的表面上,然后在通气粘合器中粘合,图3示出了适用于本发明的通气粘合器10的一个实例。粘合器10将未粘合的非织造织物12支持在有小孔的支持表面14上。通气粘合器10设置一温度可调的加热空气源16,其加热空气并将加热后的空气导向非织造织物12,真空设备18置于支持表面14下面,直接在加热空气源16之下。真空设备18使加热空气易于穿过非织造织物12。与通用的加热空气炉或辐射加热器不同,其仅在非织造织物表面加热,并依赖织物的导热性加热织物内部,通气粘合器10迫使加热空气通过非织造织物,快速且均匀地将织物的温度升高到所希望的值。虽然可以改变加热空气的流速以适应每种非织造织物的厚度和纤维密度,但是非常希望速度为约100英尺/分-约500英尺/分。调节粘合器中加热空气的温度和非织造织物的停留时间,将织物加热到高于复合纤维的低熔点聚烯烃组分的熔化温度(即用DSC测定的峰值熔化温度)但是低于高熔点组分聚合物的熔点的温度。优选地,粘合器将织物加热到足以熔化至少约50%烯烃组分聚合物那么高的温度,但是不高于高熔点组分聚合物熔化10%以上那么高的温度,如DSC熔化曲线所定义的。更优选,粘合器将织物加热到完全熔化低熔点聚烯烃组分,但是高熔点组分聚合物熔化小于约10%的温度,如复合纤维高熔点组分聚合物的DSC熔化曲线所定义的。例如,当使用有聚丙烯和低密度线型聚乙烯双组分复合纤维的非织造织物时,优选通气粘合器施用温度为约260°F和约300°F之间的加热空气流,织物在粘合器中的停留时间优选为约0.1秒和6秒之间。应当注意的是,非常希望在粘合器中的停留时间短,这是因为,一般来说,如果粘合的持续时间短,则在纤维成形期间可能产生的任何隐藏卷曲性就不明显。此外,可调节加热空气的流速,控制非织造织物的厚度和孔隙率。通常,流速越高,就产生具有越低厚度和越低孔隙率的粘合织物。
与传统的有非均匀孔隙率和孔径分布的压延粘合的片状非织造织物不同,如上所述,本发明的通气粘合过滤介质提高了高度改进的孔隙率和孔径分布,介质不包含阻止介质的过滤功能的机械压实区域。此外,与根据未粘合织物不同部分的厚度,施加机械压实压力而不均匀地改变非织造织物的不同部分的孔径和孔构型的压延粘合法不同,与本发明复合纤维的不卷曲和解卷曲特性相联系的通气粘合法允许被粘合的非织造织物在非织造织物的孔径和构型方面不发生明显不均匀的变化。
本发明过滤介质的另一个优点是不仅可用传统的已知方法,例如改变过滤介质的基量(basis weight)和改变复合纤维的厚度来控制过滤介质的孔隙率和密度,而且也可在粘合过程中控制。本发明的聚合物选择标准,特别是熔点标准提供了可方便地用于控制过滤介质的孔隙率和密度的另一种方法。如上所述,由于复合纤维的低熔点和高熔点组分聚合物间的熔点差,所以由该纤维生产的非织造织物可以暴露于不仅高到足以熔化低熔点组分聚合物的温度,而且温度允许足够高,使熔化聚合物的熔体粘度这样的低,以至于熔化的聚合物可伸展,同时保持高熔点组分聚合物和非织造织物的物理完整性。一般来说,可测量地高于低熔点聚烯烃组分完全熔化温度的粘合温度,便于并导致熔化的聚烯烃伸展,由此降低非织造织物的孔隙率,和提高非织造织物的密度。还应当指出,本发明的高密度过滤介质,有低的厚度和高的耐磨性,它非常适宜于加工成高度打褶的过滤介质。
就象本发明的另一个实施方案描述的那样,非织造织物过滤介质的孔隙率和密度也可以通过改变复合纤维的低熔点聚烯烃含量来控制。通常,低熔点聚烯烃含量较高的复合纤维生成有低孔隙率、高密度和高耐磨性的非织造织物过滤纤维。此外,在粘合过程期间,通过调节加热空气的流速,可以控制非织造织物过滤介质的孔隙率和厚度。通常,加热空气的流速越高,生产的粘合过滤介质的厚度和孔隙率就越低。
到此为止,是用单层介质说明本发明的过滤介质。但是,过滤介质可为一层以上。例如,有不同纤维厚度和/或密度的本发明的复合纤维过滤介质可以层压,或顺序地沉积,然后粘合生成有孔隙率梯度的过滤介质。再者,复合纤维过滤介质可以层压成微纤维过滤介质。
虽然过滤介质是以与液体过滤应用相联系来说明,但是该过滤介质也非常适合用于气体过滤应用。但是,对气体过滤应用来说,为了提高过滤介质的效率,过滤介质的密度可以更高。即使高密度过滤介质的流通能力低,但是如上所述,由于过滤介质是高度热成形的,因此过滤介质的物料通过量可以通过三维成形或打褶过滤介质来调节。打褶的过滤介质提高了有效过滤表面积,因此提高了物料通过速率。因而用于气体过滤的过滤介质的密度最高约0.5g/cm3,优选为约0.1g/cm3和约0.5g/cm3之间,更优选为约0.11g/cm3和约0.45g/cm3之间,最优选约0.12g/cm3和约0.4g/cm3之间。
本发明的非织造织物的过滤介质可以容易地热成形成三维形状,而介质的孔隙率和物理性质不发生可测地改变。用于本发明过滤介质的复合纤维非织造织物在织物通气粘合后,但在织物冷却前,可以立即热成形,这是因为排出通气粘合器的粘合织物非常柔韧的缘故。因此,未冷却(硬化)织物在其冷却即保持所施加的形状前,可以处理成所希望的形状。例如,未冷却的织物可以使用已知的打褶方法打褶。图4示出了适宜打褶方法的实例。织物52可以通过一组相互啮合的打褶板,或压在两个相互啮合的打褶板54与56之间,打褶板54和56之间有等间隔、垂直连接的等长度隔片58;然后冷却固化低熔点聚烯烃聚合物,同时织物保持在打褶板中,使打褶构型永久地留在非织造织物上。
复合纤维过滤介质是有高过滤效率和所希望的强度特性的自支撑的高耐磨性过滤介质。因此,本发明的过滤介质非常适合于大量液体过滤的应用。该过滤介质可以用作连续地供给过滤装置如平板过滤器的滚筒式过滤介质、或用作片状过滤介质。过滤介质也可安装在过滤器的框上。
过滤介质也可以方便地进行静电处理,生成驻极(电解)体过滤介质,可高度地热成形,而不牺牲介质的物理和驻极体特征。因此,非织造织物的过滤介质非常适宜在传统的热成形设备中形成三维的过滤介质,并适用于形成高打褶密度的过滤介质。坚固而自支撑的三维热成形过滤介质易于安装在外壳中。过滤介质非常适合于各种过滤应用。更具体地说,过滤介质对气体和液体的过滤应用,包括水过滤、油过滤、各种气体过滤等都非常有用;而且静电处理的过滤介质特别适用于气体过滤的应用,包括工业空气净化器过滤、HVAC过滤、汽车空气过滤、真空净化器过滤等。
所提供的下述实例是用于说明的目的,而不是限制本发明。实施例利用下述的测试方法,测定过滤介质的各种性质。
过滤效率试验过滤介质试样的效率和使用寿命测试如下。过滤测试装置是有90mm直径的过滤容器组件,它有一个入口和出口,流入的流体从入口进入,通过样品过滤介质、齿轮泵和流量计/调节装置、和压力表,泵和流量计/调节装置将流入的流体输送到过滤容器组件中并保持2加仑/分/英寸2的流速(1.2升/分/cm2),压力表设置在过滤容器组件的入口侧。通过切割过滤织物制备过滤介质样品,使之适合安装在90mm过滤容器组件中。含40ml QP24皂/油乳液和1200ml脱离子水的试验流体置入一烧杯中,然后将1g AC粉末试验颗粒加入测试流体。试验颗粒有下述粒径分布尺寸(小于) V%5.5μm3811μm 5422μm 7144μm 89176μm100
试验流体用磁力搅拌器连续搅拌,并维持在38℃。泵的入口置于烧杯中,而试验流体泵送通过样品过滤介质后,返回烧杯,形成连续的回路,其流率为800ml/分。记录开始的压力和时间。流量调节器经常地调节,当试验颗粒在受试过滤介质上积累和入口压力增加时保持恒定的流速。以5分钟的间隔,将1g测试颗粒加入烧杯,直到入口压力达30psi(2.1kg/cm2),在此时,认为过滤介质堵塞。
记录堵塞时间,并除去过滤介质。除去的过滤介质在180°F的炉内完全干燥后称重,测定捕集的测试颗粒量。捕获的测试颗粒的重量除以加入烧杯的总测试颗粒的重量来确定过滤介质的效率。这种效率试验测定的是在它的全部使用寿命内过滤介质的总效率。
初始的过滤效率初始的过滤效率测量测试颗粒在过滤介质上积累显著的量前,受试过滤介质样品的过滤效率,由此测量过滤介质固有的过滤效率。对这种效率试验来说,是重复上述的效率试验步骤,只是试验装置改成一开路系统。含40ml QP24皂/油乳液、1200ml脱离子水和1g AC细粉末受试颗粒的1240ml上述试验流体通过受试过滤介质后,测量过滤效率。
Frazier渗透性Frazier渗透性表示纤维渗透性,用英尺3空气/分/英尺2介质为单位表示,是在压降为0.5英寸(1.27cm)水柱时,用Frazier空气渗透性测试仪,按照Frazier测试方法5450,标准号191A测量的,Frazier空气渗透性测试仪购于Frazier精密公司。
密度每种过滤介质的密度从基重和厚度计算,用Starret型松密度测试仪在0.5psi压力(35g/cm2)下测量。
Mullen Burst这个试验测量介质抗多维拉伸力的强度。该试验是按ASTM D3786-87进行。实施例1使用两个单螺杆挤出机和套-芯纺丝头组件,从低密度线型聚乙烯套-聚丙烯芯纺粘型双组分复合纤维,生产低回弹力的非织造织物。双组分纤维含20wt%低密度线型聚乙烯(LLDPE)和80wt%聚丙烯。LLDPE、Aspun 6811A(购于Dow化学公司)与2%(wt)Tio2浓缩物(含50%(wt)Tio2和50%(wt)聚丙烯)掺合,该混合物加入第一单螺杆挤出机。聚丙烯PD3443(购于Exxon公司)与2%(wt)上述Tio2浓缩物掺合,该混合物加入第二单螺杆挤出机。利用0.6mm纺丝孔径和6∶1 L/D比的双组分纺丝板,将挤出的聚合物纺成有同心套-芯构型的圆形双组分纤维。加入纺丝板的熔融聚合物的温度保持在450°F(232℃)纺丝孔的物料通过速率为0.5g/孔/分。排出纺丝板的双组分纤维通过流速为45英尺3/分/英寸喷丝板宽度(0.5m3/分/cm)和65°F(18℃)的空气流骤冷。进入吸丝器的纤维用。
流速为约19英尺3/分/英寸宽度(0.21m3/分/cm)的加入空气进行拉伸。拉伸纤维每单位长度的重量测量为约2.5旦/长丝。然后,将拉伸纤维借助于真空流沉积在有小孔的形成表面上,形成第一层未粘合的纤维织物。设置在第一纤维纺丝装置附近的相同的两组分纤维纺丝装置连续不断地纺丝并将拉伸纤维沉积在第一层未粘合的纤维织物的上面,形成整体的非织造织物。
使在有小孔的支持表面上的未粘合的纤维织物通过施加温度为280°F(138℃)和速度为500英尺/分(152m/分)的加热空气流的通气粘合器,使未粘合的纤维织物粘合。在粘合器中的停留时间为约2秒。得到的非织造织物基重3OSY(102g/m2)并且有均匀粘合的片状构型。测试的非织造织物过滤介质的各种性质示于表1。实施例2除了LLDPE聚丙烯的重量比为50∶50外,按实施例1从LLDPE套-聚丙烯芯纺粘双组分复合纤维生产低回弹力的非织造织物。试验结果示于表1。实施例3从重量比为50∶50的LLDPE和聚丙烯的并排双组分复合纤维生产低回弹力的非织造织物。重复实施例1中概述的生产步骤,只是使用并排纺丝板,生产并排构型的复合纤维。为防止纤维卷曲和有隐藏的卷曲性,提高加入空气的流速,其值为约0.22m3/分/cm宽度。试验结果示于表1。实施例4除了粘合空气温度为149℃外,其它均按实施例1概述的步骤生产聚丙烯套-尼龙-6芯的低回弹力非织造织物。聚丙烯与尼龙-6间的重量比为90∶10。尼龙从Custow树脂制备,和硫酸粘度为2.2。结果示于表1。实施例5除了LLDPE与尼龙-6的重量比为80∶20外,其它均按实施例4制备LLDPE-套/尼龙-6芯纺粘型纤维的高密度过滤介质。实施例5是用于说明本发明片状过滤介质的比较例,但是该过滤介质非常适宜用于打褶的过滤应用。结果示于表1。实施例6按照实施例3制备80%(wt)LLDPE/20%(wt)聚丙烯套/芯纺粘型纤维的高密度过滤介质。实施例6是用于说明本发明片状过滤介质目的的比较例,但是该过滤介质非常适用于打褶的过滤应用。结果示用表1。比较例1(C1)通过重复实施例3的生产步骤制备卷曲的并排纺粘型复合纤维织物,只是使用的吸气定纤空气加热到约350°F,且其流速为23英尺3/分/英寸宽度。通过将未粘合的纤维织物通过施加温度为272°F,速度为200英尺/分的空气的通气粘合器使未粘合纤维织物粘合。结果示于表1。比较例2(C2)购于Kimberly-Clark(商标AccordTM)的点粘合聚丙烯纺粘型纤维织物,粘合面积为约25%,测试它的初始过滤效率,结果示于表1。比较例3-6(C3-C6)比较例3和4是ReemayTM过滤介质,型号分别为2033和2440,ReemayTM过滤介质是聚对苯二甲酸乙二酯聚酯纺粘纤维和共聚酯纺粘型纤维的压延粘合织物。
比较例5是TyparTM3301,是聚丙烯纺粘型非织造织物。ReemayTM和TyparTM购于Reemay有限公司,Olol Hickory,Tenn。
比较例6是购于德国的Auchenbach的工业流体过滤介质。该过滤介质是用丙烯酸粘合剂点粘合的压延的聚酯纺粘型非织造织物。结果示于表1。比较例7(C7)测试Koemay 2011的未粘合的三层层压织物的初始过滤效率。由于Keemay 2011的密度在本发明过滤介质的范围内,所以选用Reemay2011。结果示于表1。
表1Frazier 效率 Mullen实施例 聚合物 重量比B.Wt密度旦Perm 总 初始 寿命 Burst(wt%)(g/m2) (g/cc) (%) (%) (min)实施例1LLDPEPP20∶80 102 0.082.161 361924.7 6.6实施例2LLDPEPP50∶50 102 0.112.554 312312.8 5.4实施例3LLDPEPP50∶50 102 0.122.561 371913.9 4.8实施例4PPN6 90∶10 108 0.192.519 38322.3-实施例5LLDPEN680∶20 102 0.372.513 24490.8-实施例6LLDPEPP80∶20 98 0.292.522 34281.5-C1 LLDPEPP50∶50 102 0.052.597 331490 2.7C2 PP -102 0.15- 21 - 20- 7.0C3 聚酯 -98 0.264 76 23125.95.9C4 聚酯 -98 0.184 107 285 41.8 2.7C5 PP -102 0.3310 46 202 38.5 6.5C6 聚酯 -85 0.37- 44 19101.111.2C7 聚酯 -78 0.144 - - 5 - -注B.Wt=基重(g/m2)Frazier prem=Frazier渗透性(m3/分/m2)Mullen Burst in Kg/cm2
结果清楚地表明,本发明的过滤介质显示了优良过滤效率、过滤介质寿命和强度特性的非常希望的组合,特别是用于液体过滤时更是如此,当现有技术的聚酯和聚丙烯纺粘型过滤介质相比,本发明的复合纤维过滤介质具有显著地改进了总的和初始过滤效率介质寿命的组合,并提供高强度特性。
此外,本发明过滤介质的一些实施例也证实了过滤介质的物理性质,例如密度、渗透性和强度可通过改变过滤介质制备过程中的各个因素容易地改进。例如,通过改变组分聚合物的重量比,改变组分聚合物和/或改变粘合条件,就可以生产有不同物理性质和过滤性质的过滤介质。
为了更清楚地证实本发明过滤介质的效率和寿命的非常有用的组合,将实施例1-6和比较例3-5的过滤数据和过滤介质寿命数据用图表表示标绘出,由于这些实施例有相似的基重,因此可以直接地进行比较。图5示出了实施例过滤介质的过滤效率与密度的关系;图6示出了过滤介质寿命与过滤介质密度的的关系;和图7描述了实施例过滤介质的起始过滤效率。
图5说明,本发明的过滤介质的过滤效率明显优于工业的聚酯过滤介质;图6表明本发明过滤介质的长的使用寿命;和图7表明本发明的过滤介质高度地改进初始过滤效率。应当注意的是,虽然工业聚酯过滤介质的过滤寿命从图6看似乎有益,但是图5和图7清楚地证实,这些过滤介质延长寿命是差的过滤效率的结果。另外,这些工业过滤介质使污染颗粒的大部分通过过滤介质,因此在过滤介质表面上形成的污染物的滤并便减少,在延长寿命的同时就提供了差的过滤效率。
从图5和6可以看出,对液体过滤应用,本发明的过滤介质当密度为约0.07g/cm3和约0.2g/cm3之间时,提供了过滤效率和寿命特别希望的组合。
如上所看到的,本发明的通气粘合的复合纤维过滤介质非常希望的过滤特性,例如过滤效率、强度、寿命等。因此,这种过滤介质对要求包括自支撑、高效率、长的过滤寿命和强度的过滤特性的各种过滤应用是非常有用的。
权利要求
1.一种包括自动粘合的不卷曲复合纤维的片状过滤介质,所述介质的密度在约0.07g/cm3和约0.2g/cm3之间,Frazier渗透性至少为15m3/分/m2,所述复合纤维包括聚烯烃和熔点高于所述聚烯烃的第二热塑性聚合物,其中所述介质的Mullen Burst强度至少为约3.5kg/cm2。
2.按权利要求1的片状过滤介质,其中所述第二热塑性聚合物比上述聚烯烃有更高的温度差示扫描量热法熔化曲线,以致当暴露于熔化约50%的所述聚烯烃的温度时,熔化10%或小于约10%的所述热塑性聚合物。
3.按权利要求2的片状过滤介质,其中所述的聚烯烃和第二热塑性聚合物有完全分开的差示扫描量热法熔化曲线。
4.按权利要求1的片状过滤介质,其中所述的聚烯烃选自聚乙烯、聚丙烯、聚丁烯、聚戊烯和它们的掺合物及共聚物。
5.按权利要求1的片状过滤介质,其中所述第二热塑性聚合物选自聚烯烃、聚碳酸酯、聚酰胺、聚酯、丙烯酸共聚物、和它们的掺合物及共聚物。
6.按权利要求1的片状过滤介质,其中所述的聚烯烃是低密度线型聚乙烯,而所述的第二热塑性聚合物是聚丙烯。
7.按权利要求1的片状过滤介质,其中所述聚烯烃是低密度线型聚乙烯,而所述热塑性聚合物是尼龙-6。
8.按权利要求1的片状过滤介质,其中所述的聚烯烃是低密度线型聚乙烯,而所述第二热塑性聚合物是聚对苯二甲酸乙二酯。
9.按权利要求1的片状过滤介质,其中所述介质是通气粘合且没有机械压实区域。
10.按权利要求1的片状过滤介质,其中所述介质的密度在约0.08g/cm3和0.19g/cm3之间。
11.按权利要求1的片状过滤介质,其中所述介质的Mullen Burst强度至少为约4kg/cm2。
12.按权利要求1的片状过滤介质,其中所述的复合纤维是纺粘型复合纤维。
13.按权利要求1的片状过滤介质,其中所述介质是三维成形的。
14.按权利要求1的片状过滤介质,其中所述复合纤维是纺粘型纤维,所述聚烯烃和所述第二热塑性聚合物有不同的差示扫描量热法熔化曲线,以致暴露于熔化约50%所述聚烯烃的温度时,熔化等于或小于约10%的所述第二热塑性聚合物。
15.一种包括自动粘合不卷曲的复合纤维的过滤介质,所述过滤介质的密度在约0.07g/cm3和约0.5g/cm3之间,三维热成形,所述复合纤维包括由扫描量热法熔化曲线定义的低熔点聚烯烃和高熔点聚合物,其中当暴露于熔化约50%低熔点聚烯烃的温度时,熔化等于或小于约10%的所述高熔点聚合物。
16.按权利要求15的片状过滤介质,其中所述聚烯烃选自聚乙烯、聚丙烯、聚丁烯、聚戊烯和它们的掺合物及共聚物。
17.按权利要求15的片状过滤介质,其中所述高熔点聚合物选自聚烯烃、聚碳酸酯、聚酰胺、聚酯、丙烯酸共聚物、和它们的掺合物及共聚物。
18.按权利要求15的片状过滤介质,其中所述聚烯烃是低密度线型聚乙烯,而所述高熔点聚合物是聚丙烯。
19.按权利要求15的片状过滤介质,其中所述介质的密度在约0.1g/cm3和约0.5g/cm3间。
20.按权利要求15的片状过滤介质,其中所述复合纤维是纺粘型纤维。
全文摘要
本发明提供了一种含有自动粘合不卷曲复合纤维的片状过滤介质,所述纤维包含聚烯烃和有不同熔点的另一种热塑性聚合物。过滤介质的密度在约0.07g/cm
文档编号D04H13/00GK1171060SQ95197083
公开日1998年1月21日 申请日期1995年10月4日 优先权日1994年10月31日
发明者R·D·派克, K·L·布朗, 小P·W·希普 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1