耐酸性陶瓷材料、应用该陶瓷材料的过滤器、以及它们的制备的制作方法

文档序号:1799989阅读:379来源:国知局
专利名称:耐酸性陶瓷材料、应用该陶瓷材料的过滤器、以及它们的制备的制作方法
技术领域
本发明涉及具有优越耐热、耐酸和耐碱性能的陶瓷材料、应用该陶瓷材料的过滤 器、以及用于制备它们的方法。作为用于在高温下操作的催化剂载体或过滤器系统(例如,用于净化汽车排放气 体的催化剂的载体、气体涡轮的热交换器、用于净化柴油汽车排放气体的过滤系统(DPF,柴 油机微粒过滤器)或类似)的材料,多铝红柱石(其具有2Si02-3Al203的组成)和堇青石 (其具有2Mg0-2Al203-5Si02的组成)因其优越的热性质(例如低热膨胀系数(1 5xl0_6/ K)、热传导性、介电常数或类似)和它们的化学稳定特征而被广泛地应用。但是,存在着一些问题多铝红柱石在自然界极少被发现,因此仅通过合成途径获 得;并且,因其狭窄的合成温度范围,堇青石难以制备成高纯度的精细粉末形式。另外,尽管 它们具有优越的热性质,但因其低机械强度,它们应用到结构材料受到限制。
背景技术
迄今,已经进行了多项研究以开发和容易地生产具有优越的热性质和化学性质的 陶瓷过滤器,并且它由作为主晶相的堇青石和多铝红柱石组成。Arthur等人在USP 3,954,672中描述了通过使用滑石、粘土、蓝晶石、氧化铝和水 合成堇青石,以及其作为不热变形的催化剂载体、涡轮机、热交换机或熔炉材料的应用。在 所述专利中,强调了 Na2O或K2O的含量应低于0. 14%。USP 3,940,225 (Roy 等人)描述了少量的 Mo、Ta、&、Nb、Ti、Li、As 等作为成核剂 以更好地形成堇青石晶体结构的应用。在所述专利中,金属氧化物(例如Mo、Ta、Zr、Nb、 Ti、Li、As等)不作为结构成分,而是作为添加成分,其以很少的量被添加,例如,0. 5-3%, 此时该合成的堇青石的热膨胀系数被限制为小于1. 54Χ10_6/Κ。USP 4,042,403 (Richard等人)描述了通过使用 3-5% 的 Li20、0. 25-2. 5% 的MgO、 15-20 %的Al203、68-75 %的SiO2和2-5. 5 %的TiO2合成堇青石结构。在所述专利中生产的 堇青石结构被证明是热稳定的,并且当在950°C操作2000小时后显示出长度上IOOppm或更 少的变化。USP4,528,275 (James等人)描述了 一种由50-95%多铝红柱石和5-50%的堇青石 组成的多晶体。作为一种用于降低热膨胀系数同时保持多铝红柱石性质的方法,所述专利 披露了一种材料的合成,该材料通过添加存在有TiO2的堇青石作为成核剂,其热膨胀系数 大致上低于纯多铝红柱石的膨胀系数。USP4, 921,616 (Louis等人)描述了一种多铝红柱石/ 二氧化锆复合物,其具有来 自于Si02、Al203、和&02的优越的耐热性,并显示出由该多铝红柱石/ 二氧化锆复合物生产的过滤器可耐受甚至1650°C的温度,因此可用作熔融金属的过滤器,而常规的单一堇青石 或堇青石/多铝红柱石复合物不能应用在温度高于150(TC的高温场合。USP 4,950,628 (Thomas等人)描述了一种堇青石的合成,其通过添加滑石、高岭 土、氧化铝、无定形二氧化硅或类似物到用于堇青石制备的前体混合物SiO2-Al2O3-MgO,而 具有非常低的热膨胀系数(7X10_6/K)。据报告,如上所述合成的堇青石在热冲击和热膨胀 系数方面为一种优越的材料。但是,因其MgO成分,具2Mg0-2Al203_5Si0di成的堇青石容易受酸和碱的影响。因 为MgO与Al2O3和SiO2共同形成晶体结构,它具有一些耐酸和耐碱性。但是,当长时间暴露 于包含在汽车排放气体的二氧化硫气体时,MgO转化为MgSO4,这会因MgSO4的弱强度而减 弱堇青石的总体结构。因此,在加热和冷却重复发生以及长时间暴露于二氧化硫气体的用 于净化汽车排放尾气的催化剂系统中,难以避免包括堇青石的催化剂载体在强度和结构上 被恶化。这样的问题不能被克服,除非组成堇青石陶瓷的一种或多种成分被改变或者被取 代。因此,在本技术领域中要求开发一种催化剂载体或过滤器材料,其具有强的耐酸 性和耐碱性,并且保持其优越的热性质。另外,所述催化剂载体或过滤器材料应当结构稳 定,以及可耐受包括有酸或碱的气体,并且它的结构甚至在长时间操作后仍不被减弱或破 坏。为生产该强耐酸和碱的陶瓷结构,组成该陶瓷结构的每种成分应当具有对酸和碱 的低活性或高耐性。这是因为,尽管每种成分的氧化物在高于其熔点的温度下被结晶化或 合成以形成诸如复合氧化物的材料,但每种氧化物的固有化学特性并未消失,其结果是,合 成物结构的总体结构的强度可能被减弱。

发明内容
技术问题本发明的目的在于合成具有热稳定性和化学稳定性的陶瓷材料,这一点可由总体 结构稳定性以及由每种成分的组合而实现,通过利用具有强耐酸和碱腐蚀的其它成分取代 构成合成陶瓷的成分例如多铝红柱石或堇青石或简单地通过添加此类其它成分而实现。本发明进一步的目的在于生产一种用于净化排放气体的多孔蜂窝体(porous honeycomb)或过滤器,其中,通过将根据本发明制备的具有高结构稳定性、热稳定性和化学 稳定性的陶瓷材料应用到多孔蜂窝体支持物以净化排放气体或者应用到过滤器以净化柴 油机排放气体(DPF,柴油机微粒过滤器),因运用堇青石材料作为结构支持而导致的因腐 蚀气体产生的任何结构破坏可被显著地防止或减少。技术方案本发明的一个方面提供了以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔 陶瓷材料,其主要由至少三种从二氧化硅、氧化铝和过渡金属的氧化物MxOy中选取的氧化 物组成,其中M代表Ce或者选自Ti、&、Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属, χ代表1到3的整数,y代表1到3的整数,其中该三种氧化物包括作为(第一成分)_(第 二成分)_(第三成分)的 Si02、Al2O3 和 M' x0y,重量比为(5-60) (5-60) (5-60),其 中M'代表Ce或者选自Ti、Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属,χ代表1到3的整数,y代表1到3的整数。根据本发明的一个实施方式,提供了多孔陶瓷材料,其中所述第一成分二氧化硅 (SiO2)和所述第二成分氧化铝(Al2O3)构成具有多铝红柱石结构(3Al203-2Si02)的复合氧 化物。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其中所述具有多铝红柱石 结构(3Al203-2Si02)的复合氧化物和所述第三成分M' x0y以(60-95) (5_40)的重量比存在。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其中所述第三成分M' x0y 为TiO2,且所述复合氧化物和所述第三成分以(80-95) (5-20)的重量比存在。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其进一步包括作为第四成 分的氧化物,它不同于所述第一成分、第二成分和第三成分,并从Ce或者选自Ti、&、Hf、V、 Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属的氧化物中选取。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其主要由作为(第一成 分)_ (第二成分)_ (第三成分)_ (第四成分)的SiO2-Al2O3-TiO2-ZrO2组成,并具有多铝红 柱石结构(3Al203-2Si02)以及二氧化钛-二氧化锆的复合氧化物(TiZrO4)的结构。本发明的另一个方面提供了以多相形式形成的具有优良耐热、耐酸和耐碱性的多 孔陶瓷材料,其主要由至少三种从二氧化硅、氧化铝和过渡金属的氧化物MxOy中选取的氧 化物组成,其中M代表Ce或者选自Ti、&、Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B-族过 渡金属,χ代表1到3的整数,y代表1到3的整数,其中该三种氧化物包括作为(第一成 分)_(第二成分)_(第三成分)的 TiO2-ZrO2-M" x0y,重量比为(5-60) (5-60) (5-60), 其中M"代表Si、Al、Ce或者选自Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属,χ 代表1到3的整数,y代表1到3的整数。根据本发明的一个实施方式,提供了多孔陶瓷材料,其包括作为(第一成分)_(第 二成分)_(第三成分)的复合氧化物 Ti02-&02-W03、TiO2-ZrO2-Al2O3 或 TiO2-ZrO2-SiO2。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其中所述重量比为 (10-50) (10-50) (10-50)。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其中所述第一成分二氧化 钛(TiO2)和所述第二成分二氧化锆(ZrO2)构成二氧化钛-二氧化锆的复合氧化物Ti&04。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其中所述复合氧化物二氧 化钛-二氧化锆TUrO4和所述第三成分M〃 x0y以(60-95) (5_40)的重量比存在。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其进一步包括作为第四成 分的氧化物,它不同于所述第一成分、第二成分和第三成分,并从Si、Al、Ce或者选自Hf、V、 Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属的氧化物中选取。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其主要由作为(第一成 分)_(第二成分)_(第三成分)_(第四成分)的TiO2-ZrO2-SiO2-M" ‘ x0y组成,重量比为 (5-60) (5-60) (5-60) (5-60),其中 M"‘代表 Al、Ce 或者选自 Hf、V、Nb、Ta、Cr、 Mo或W的4B、5B或6B-族过渡金属,χ代表1到3的整数,y代表1到3的整数。根据本发明的又一个实施方式,提供了多孔陶瓷材料,其主要由作为(第一成 分)_ (第二成分)“(第三成分)_ (第四成分)的TiO2-ZrO2-SiO2-Al2O3组成,并具有二氧化
5钛_ 二氧化锆的复合氧化物Ti&04的结构以及多铝红柱石结构(3Al203-2Si02)。本发明的另一个方面提供了一种多孔蜂窝体,其包括在根据本发明的实施方式中 限定的以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材料。本发明的另一个方面提供了用于净化柴油机排放气体的过滤器,其包括在在根据 本发明的实施方式中限定的以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材 料。本发明的另一个方面提供了一种用于净化排放气体的系统,其通过在在根据本发 明的实施方式中的以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材料上洗涂 包括催化剂材料例如钼、钯或铑的多孔载体粉末而制造。本发明的另一个方面提供了一种用于净化排放气体的系统,其通过在在根据本发 明的实施方式中限定的以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材料上 装载催化剂材料例如钼、钯或铑而制造。本发明的一个方面是提供具有良好的耐热、酸和碱性的多孔陶瓷材料,其包括三 种以上从硅氧化物、铝氧化物、过渡金属的氧化物MxOy,其中M代表4B、5B或6B-族过渡金 属,选自Ti、&、Hf、V、Nb、Ta、Cr、Mo、W或Ce,χ代表1到3的整数,y代表1到3的整数 选取的氧化物,其前提是不包括由硅氧化物、铝氧化物和锆氧化物组成的多孔陶瓷材料,以 及其制备方法。根据第一个优选的实施方式,本发明提供的多孔陶瓷材料包括作为(第一成 分)_(第二成分)_(第三成分)的 SiO2-Al2O3-MxOy,重量比为(5-60) (5-60) (5-60), 优选地为(10-50) (10-50) (10-50),其中M代表4B、5B或6B-族过渡金属,选自Ti、 Hf、V、Nb、Ta、Cr、Mo、W或Ce,x代表1到3的整数,y代表1到3的整数,以及其制备方法。根据第二个优选的实施方式,本发明提供了多孔陶瓷材料,包括作为(第一成 分)_(第二成分)_(第三成分)的TiO2-^O2-M' xOy,重量比为(5-60) (5-60) (5-60), 优选地为(10-50) (10-50) (10-50),其中M'代表Si、Al,或者4B、5B或6B-族过渡 金属,选自Hf、V、Nb、Ta、Cr、Mo、W或Ce,χ代表1到3的整数,y代表1到3的整数,以及其 制备方法。本发明的另一个目的是提供一种用于净化柴油机排放气体(DPF,柴油机微粒过滤 器)的多孔蜂窝体或过滤器,其通过使用上述具有优良的耐热、耐酸和耐碱性能的多孔陶 瓷材料生产。本发明的再一个目的是提供一种用于净化排放气体的系统,其通过在上述具有优 良的耐热、耐酸和耐碱性能的多孔陶瓷材料上洗涂(wash coating)包括催化剂材料(例如 钼、钯或铑)的多孔载体粉末而制造。本发明的再一个目的是提供一种用于净化排放气体的系统,其通过直接在上述具 有优良的耐热、耐酸和耐碱性能的多孔陶瓷材料上加载包括催化剂材料(例如钼、钯或铑) 的溶液而制造。以下将详细描述本发明,通过下述的详细描述,将会更清楚地理解本发明的上述 和其它目的。大致上,金属的硫酸盐形式较氧化物形式更加热稳定,对于碱金属和碱土金属该 现象尤为突出。例如,钙的氧化物或碳酸盐(CaO或Ca(CO3)2)可容易地与二氧化硫气体反应形成更加热稳定的硫酸钙(CaS04)。通过利用该特点,CaO或Ca(CO3)2用于作为从热电工 厂排放的SO2气体的净化剂。类似地,对于镁的情形,其硫酸盐形式(MgSO4)较其氧化物形 式(MgO)更加热稳定。因此,当含有MgO的堇青石作为催化剂载体应用于净化汽车排放气 体时,包含于该排放气体的二氧化硫(SO2)气体与MgO反应转化为MgSO4,这是堇青石的总 体结构被弱化或被破坏的主要原因。4B-.5B-和6B-族过渡金属氧化物比其他过渡金属氧化物具有强得多的耐酸和耐 碱性,并且极少与二氧化硫或硫酸根离子反应。即使4B-、5B-和6B-族过渡金属形成该金 属的硫酸盐形式,它具有金属-O-SO3的结构,在该结构中一个氧原子位于该金属原子和硫 酸根离子之间,因此可容易地被热或水分解并回复为金属氧化物。如果通过利用该4B-、5B_和6B-族过渡金属氧化物,并结合以二氧化硅(SiO2)和 氧化铝(Al2O3)作为结构成分生产陶瓷材料,当暴露于SO2气体并与硫酸根离子反应时,陶 瓷结构的表面可转化为硫酸盐。但是,因为与SO2气体具有低反应性的该金属氧化物形成 晶相,陶瓷结构的内部不会轻易地与SO2气体反应。因此,有可能生产出其结构甚至在存在 有SO2气体时仍然稳定的催化剂载体或过滤器。另外,4B-、5B_和6B-族过渡金属氧化物因其显著的高熔点而比其他过渡金属氧 化物更加热稳定,因此可提供具有更好耐热性的结构。因此,根据本发明的陶瓷材料包括4B-、5B_和6B-族过渡金属氧化物,其因强耐酸 和耐碱性展示出优越的化学稳定性;因此,具有优越热稳定性的陶瓷可被合成。在本发明的含义中,4B-、5B_和6B-族过渡金属意指在元素周期表中包含于4B-、 5B-和6B-族过渡金属的元素。特别地,可指Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W或Ce,作为非 局限性的示例。例如,铈(Ce)为镧系过渡金属,但在本发明中与4B-、5B-和6B-族过渡金 属相提并论。同样,其它没有包含入4B-、5B-和6B-族但具有强耐酸性和耐碱性的过渡金 属也可被运用于本发明。同时,如上所合成的陶瓷材料可被用作多孔过滤器的材料以收集和去除碳黑,或 者可被用作催化剂载体的材料以净化包括有大量腐蚀气体的汽油机或柴油机排放气体,此 时,该陶瓷材料可产生良好的效果,例如增强的耐久性。特别地,因为用于收集和处理包含于柴油机排放气体的碳黑的DPF(柴油机微粒 过滤器)系统以“壁流”的方式(其中该排放气体经过多孔壁,并且任何包含于该排放气体 的微粒被捕获)操作,所以DPF系统的陶瓷过滤器更为频繁地和更宽泛地暴露于二氧化硫 气体。基于该考虑,因为常规的陶瓷过滤器材料(例如堇青石)的结构可容易地被二氧化 硫气体破坏,所以可优选地使用具有高耐酸和耐碱性的根据本发明的陶瓷材料。因此,在生 产用于净化包含有大量二氧化硫气体的柴油机排放气体的过滤器中,本发明提出的新型陶 瓷材料是更加有效的。根据本发明的陶瓷材料可包括重量比为(5-60) (5-60) (5-60)的第一成分、 第二成分和第三成分,优选地重量比为(10-50) (10-50) (10-50)。根据本发明的第一个优选的实施方式,根据本发明的陶瓷材料包括作为(第一成 分)_(第二成分)_(第三成分)的 SiO2-Al2O3-MxOy,重量比为(5-60) (5-60) (5-60), 优选地为(10-50) (10-50) (10-50),其中M代表4B、5B或6B族过渡金属,选自Ti、 Hf、V、Nb、Ta、Cr、Mo、W或Ce,χ代表1到3的整数,y代表1到3的整数,其中该第一成分
7为二氧化硅,该第二成分为氧化铝,该第三成分为包含于4B-、5B_和6B-族的过渡金属(例 如 Ti、Hf、V、Nb、Ta、Cr、Mo、W)或 Ce 的氧化物。优选地,二氧化硅(第一成分)/氧化铝(第二成分)/过渡金属氧化物(第三成 分)可以10-30/30-60/5-60的重量比被包含。起始材料二氧化硅和氧化铝可构成多铝红柱石(3Al203_2Si02)的结构,在该情况 下,它们可以60-95/5-40的重量比与第三成分混合。根据本发明的第二个实施方式,根据本发明的陶瓷材料包括作为(第一成 分)_(第二成分)_(第三成分)的 TiO2-^O2-M' xOy,重量比为(5-60) (5-60) (5-60), 优选地为(10-50) (10-50) (10-50),其中M'代表Si、Al,或者4B、5B或6B族过渡金 属,选自Hf、V、Nb、Ta、Cr、Mo、W或Ce,χ代表1到3的整数,y代表1到3的整数,其中该第 一成分为二氧化钛,该第二成分为二氧化锆,并且该第三成分为4B-、5B-或6B-族过渡金属 氧化物,可从Hf、V、Nb、Ta、Cr、Mo、W或Ce中选取,或至少一种从二氧化硅或氧化铝中选取 的一种氧化物。优选地,前述的二氧化钛_ 二氧化锆可在原子级别组成同质混合物,从而形 成复合氧化物TWrO4。根据本发明另一个优选的实施例,本发明的多孔陶瓷材料包括Ti02-Zr02-Al203、 TiO2-^O2-WO3 或 TiO2-ZrO2-SiO2 的复合氧化物,其重量比为(5-60) (5-60) (5-60), 优选地为(10-50) (10-50) (10-50)。根据本发明的多孔陶瓷材料可包括第四成分,M" xOy,其中M"不同于该第 一成分、第二成分和第三成分,其代表4B-、5B-或6B-族过渡金属,可从Ti、Zr、Hf、V、 Nb、Ta、Cr、Mo、W或Ce中选取,或者Si、Al,χ代表1到3的整数,y代表1到3的整 数,并且重量比为(第一成分)(第二成分)(第三成分)(第四成分)= (5-60) (5-60) (5-60) (5-60),优选地为(10-50) (10-50) (10-50) (10-50)
ο例如,该根据本发明生产的包括TiO2-ZrO2-SiO2复合氧化物的多孔陶瓷材料可包 括作为第四成分按照以上重量比的4B-、5B-和6B-族的过渡金属(例如Hf、V、Nb、Ta、Cr、 Mo、W)或Ce的氧化物,或至少一种从由氧化铝组成的群中选取的氧化物。在本发明中,每种成分的含量不是关键的,并且不是特别严格要求,因为每种成分 的含量变化不显著影响该复合物的结构或性能,而仅仅改变陶瓷复合物的性质。因此,本发 明不意图生产每种成分均以单相形式稳定合成的复合物,而意在获得陶瓷复合物的总体结 构稳定性,因为两种或多种成分构成稳定的化合物(或多种化合物)以形成稳定形式,然后 该稳定形式彼此结合在一起形成所述总体陶瓷复合物。例如,当利用包括TiO2-ZrO2-SiO2-Al2O3的四种成分合成陶瓷复合物时, TiO2-ZrO2JiO2-Al2O3、多铝红柱石(3Al203_2Si02)、Al2Ti05或类似物的结构可以通过对陶瓷 复合物结构的XRD(X射线衍射)而找到。利用该方式,根据本发明制备的该陶瓷复合物的 成分不共同形成单相;但是两种或三种成分构成化学稳定相,并且这些稳定相彼此结合,构 成原子水平的微尺寸颗粒。然后,所述微尺寸颗粒复杂结合以构成更加复杂和多样的复合 物粒子,并且这些粒子逐渐构成热稳定、机械稳定和化学稳定的总体复合物。有益效果除了以上提及的优点之外,本发明还具有以下益处和优点
8
因为常规的堇青石或硅树脂形成大致上一种单相的稳定相,因此其形成热稳定和 结构稳定的陶瓷。但以单相形式形成的材料含量的微小变化可导致它的相和物理性质的突 然变化。相反,多种成分形成多样的相,然后该多样的相被结合以组成总体稳定相,作为根 据本发明的复合陶瓷材料的形式,它的益处在于,每种成分的含量变化可最大化任何期望 的或选定的性质,而不用考虑相变。概括地说,成分含量的改变可能导致物理性质(例如强度、热膨胀系数,等)的突 然波动,但不显著影响总体结构稳定性。因此,以多相形式形成的陶瓷复合物对于其成分含 量的限制很小。另外,如果期望的或选定的性质可被最大化,有可能增加一种成分的含量, 而不用考虑相变。当陶瓷复合物被合成时,其结构稳定性可被容易地获得,而不需要成分的多种组 合的工作例,因此,只要主旨符合本发明,该成分的内容物可视需要增加或减少,而不用考 虑相变。另外,本发明并不局限于上述成分(例如二氧化硅、氧化铝或过渡金属氧化物)以 及它们的组合比率。另外,金属氧化物的类型和组成不被特别限制,而只要它们耐酸和耐碱 即可被备选地选取,并用作合成陶瓷材料。制备根据本发明的陶瓷材料的方法不被特别限制,可运用任何常规的已知方法。 例如,可使用在 USP 3,954,672、USP 3,940,225、USP 4,042,403、USP 4,528,275、USP 4,921,616、以及USP 4,950,628中描述的方法。如必要,根据任何特定的反应方法和条件
制备堇青石或多铝红柱石不偏离本发明的范围。根据本发明,提供了一种多孔蜂窝体,其可良好地耐热、耐酸和耐碱,并可通过使 用根据前述方法制备的陶瓷材料生产。根据本发明的多孔蜂窝体可被优选地用作三路催化 剂系统的蜂窝体以用于净化汽油机排放气体,或用作催化剂系统的蜂窝体以用于净化柴油 机排放气体。特别地,它可被用作DPF(柴油机微粒过滤器),一种用于收集和去除包括于柴 油机排放气体内炭黑的系统。本发明中,用语“催化剂载体(或催化剂的载体)”指一种多孔材料,其中催化剂金 属或元素(例如Pt、Pd、Rh等)可被加载入或支持于该材料中。同时,在本发明中使用的大部分Si02、Al203、和第三成分(4B-、5B_和6B-族过渡金 属氧化物)或Ce也可被用作催化剂(Pt、Pd、Rh)的载体以用于净化汽油机排放气体,以及 被用作催化剂(Pt、Pd、Rh)载体以用于净化柴油机排放气体。本发明的其中一个优点在于,在将根据本发明的陶瓷材料制备成多孔陶瓷过滤器 (例如DPF)的形式之后,本发明可通过喷射或浸泡溶解状态的催化剂材料(例如Pt、Pd、 Rh)到过滤器上直接装载,由此生产一种催化剂系统,从而形成直接装载催化剂材料的过 滤器。在如上所生产的一种用于净化柴油机排放气体的过滤器系统中,不发生孔道堵塞或 过滤器材料与催化剂载体的粘结,因为装载在载体上的催化剂金属被洗涂于蜂窝体或DPF 上。因此,本发明可生产更为有效和经济的催化剂过滤器系统。
具体实施例方式以下将结合实施例更为具体地描述本发明,但是,本发明并不局限于以下实施例。实施例1
9
具有3Al203-2Si02_3Ti02组成比率的复合陶瓷结构被制备。起始原料为氧化铝 (Al2O3)、二氧化硅(SiO2)和二氧化钛(TiO2)。起始原料被称重,然后引入混合器并混合 30分钟或更长时间,并利用丙酮作为混合溶液。由此制备的混合粉末以毛坯(disk)的 形式被处理。所得的毛坯在1500°C被热处理2个小时。在XRD(X-射线散射)分析中, 多铝红柱石的结构(3Al203-2Si02)和晶体结构(TiO2-Al2O3)已被观察到。如上所合成的 3Al203"2Si02-3Ti02的复合陶瓷结构显示出在0 800°C下6. 2X 10_6/K的热膨胀系数。实施例2具有2A1203-Ti02-Zr02组成比率的复合陶瓷结构被制备。起始原料为氧化铝 (Al2O3)、二氧化锆(ZrO2)和二氧化钛(TiO2)。起始原料被称重,然后引入混合器并混合30 分钟或更长时间,并利用丙酮作为混合溶液。由此制备的混合粉末以毛坯的形式被处理。 所得的毛坯在1450°C被热处理2个小时。在XRD分析中,TWrO4的结构和Al2TiO5的晶 体结构被观察到。如上所合成的2Al203-Ti02-&02的复合陶瓷结构显示出在0 800°C下 7. 1X10_6/K的热膨胀系数。实施例3具有W03-3Ti02_3&02组成比率的复合陶瓷结构被制备。起始原料为氧化钨(WO3)、 二氧化锆(&02)和二氧化钛(TiO2)。起始原料被称重,然后引入混合器并混合30分钟或 更长时间,并利用丙酮作为混合溶液。由此制备的混合粉末以毛坯的形式被处理。所得的 毛坯在1100°C被热处理2个小时。在XRD分析中,TiZrO4的结构被观察到。如上所合成的 W03-3Ti02-3Zr02的复合陶瓷结构显示出在0 800°C下7. 5X 10_6/K的热膨胀系数。实施例4通过利用复合氧化物Ti&04作为基础材料以及利用过渡金属氧化物作为第三成 分,生产根据本发明的复合陶瓷结构。首先,打02和&02以1 1的比率(Ti和&的原子 比率)被称重,然后引入混合器并混合6个小时或更长,并利用乙醇作为混合溶液。所得 的混合粉末被干燥10个小时并在iioo°c经氧化处理以去除杂质。所得的粉末引入混合器 并混合6个小时,并利用乙醇作为混合溶液,并且加入5%的PVA(聚乙烯醇)作为结合剂。 由此制备出的混合粉末被引入模具、成形、并以毛坯的形式被处理。所得的毛坯在1300 1500°C下被热处理2个小时。在XRD分析中,TiO2-ZrO2的晶体结构被观察到。如上所合成的复合氧化物Ti&04被研磨成粉末,其可用作生产一种新的陶瓷复合 材料的基础材料。通过以5 20%的量添加第三金属氧化物(Al203、Mo02、Cr02、V02、Nb205、 SiO2和/或CeO2),并经上述处理混合一干燥一氧化一混合(添加结合剂)—成形一热处 理(在1100 1500°C的温度下,取决于金属氧化物的种类),从而生产出该陶瓷复合材料。 在该制备的陶瓷材料中的相形成可通过XRD分析被确认,并确定热膨胀系数、断裂强度、 热传导率等。该确定的结果如以下表1所示。如表1中所述,添加氧化铝(Al2O3)可同时加强强度和热膨胀系数,并且加入二氧 化硅(SiO2)、氧化铬(Cr2O3)或氧化钼(MoO2)中的任何一种可加强热膨胀系数。特别地,可 以确定二氧化硅的含量越高,断裂强度和热膨胀系数越好。实施例5利用TWr-Si(IO)(—种合成陶瓷,其中10 %重量比的二氧化硅含于TWrO4 中)作为基础材料实施相成形,并添加5%重量比和10%重量比的氧化铝(Al2O3)以增加TiZr-Si(IO)的强度。首先,根据在实施例4中描述的相成形程序制备TiZr-Si (10)。所得的 TiZr-Si(IO)粉末和氧化铝(Al2O3)粉末被称重,然后如实施例4经上述处理混合一 干燥一氧化一混合(添加结合剂)一成形一热处理,以合成TiZr-Si (10)-Al (5)( — 种合成陶瓷,其中10%重量比的二氧化硅和5%重量比的氧化铝含于Ti&04中)以及 TWr-Si(IO)-Al(IO)(—种合成陶瓷,其中10%重量比的二氧化硅和10%重量比的氧化铝 含于 TWrO4 中)。在 XRD 分析中,可确定 Ti02-Zr02、Ti02_Al203、多铝红柱石(3Al203_2Si02)、 和Al2TiO5的结构。如上所获得的合成陶瓷的物理性质也在以下的表1中显示。如表1所示,可知TiZr-Si (10)-Al (5)的断裂强度为5. 4Mpa,并且 TiZr-Si(IO)-Al(IO)的断裂强度为5. 8Mpa,相比于TiZr-Si(IO)的1. 4Mpa的断裂强度有 显著的提高,并且还提高了热传导率。[表 1] 在本发明中获得的物体不代表单晶相,而是代表带有多相的总体稳定相,其中具 有各自优点的单相彼此结合在一起。因此,可以用简单的方式预测通过添加任何其他成分 制备的新的复合氧化物的物理性质。因此,最终可以容易地改进或最大化陶瓷材料的任何 期望的或选择的性质。这是本发明的另一个目的。通过以上显示的实施例和表格,容易理解,如果通过从具有耐酸和耐碱性的金属 氧化物中选取成分制备复合陶瓷,所述复合陶瓷可用作多孔陶瓷材料,它具有比堇青石或 碳化硅(SiC)更高的结构稳定性、热稳定性和化学稳定性,并且具有优越的性质,可确保 它能够用作净化汽车排放气体的催化剂载体和用作净化柴油机排放气体的过滤器。从以上对本发明的详细描述可以清楚地显示,用于净化气体的新型过滤器可通过 改变物质成分的含量或添加从本发明所描述的金属氧化物中选取的金属氧化物或其结合 从而被充分地生产。另外,通过使用本发明的方法,可生产出一种物理学上、热学上和化学 上稳定的合成陶瓷。工业实用性根据本发明的陶瓷材料具有高结构稳定性、热稳定性和化学稳定性,可被用作净 化汽车排放气体的催化剂载体和用作净化柴油机排放气体的过滤器。
权利要求
以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材料,其主要由至少三种从二氧化硅、氧化铝和过渡金属的氧化物MxOy中选取的氧化物组成,其中M代表Ce或者选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B 族过渡金属,x代表1到3的整数,y代表1到3的整数,其中该三种氧化物包括作为(第一成分) (第二成分) (第三成分)的SiO2、Al2O3和M′xOy,重量比为(5 60)∶(5 60)∶(5 60),其中M′代表Ce或者选自Ti、Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B 族过渡金属,x代表1到3的整数,y代表1到3的整数。
2.根据权利要求1所述的多孔陶瓷材料,其中所述第一成分二氧化硅(SiO2)和所述第 二成分氧化铝(Al2O3)构成具有多铝红柱石结构(3Al203-2Si02)的复合氧化物。
3.根据权利要求2所述的多孔陶瓷材料,其中所述具有多铝红柱石结构 (3Al203-2Si02)的复合氧化物和所述第三成分M' x0y以(60-95) (5_40)的重量比存在。
4.根据权利要求3所述的多孔陶瓷材料,其中所述第三成分M'x0y为TiO2,且所述复 合氧化物和所述第三成分以(80-95) (5-20)的重量比存在。
5.根据权利要求1所述的多孔陶瓷材料,其进一步包括作为第四成分的氧化物,它不 同于所述第一成分、第二成分和第三成分,并从Ce或者选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或 W的4B、5B或6B-族过渡金属的氧化物中选取。
6.根据权利要求5所述的多孔陶瓷材料,其主要由作为(第一成分)_(第二成分)_(第 三成分)_ (第四成分)的SiO2-Al2O3-TiO2IrO2组成,并具有多铝红柱石结构(3Al203_2Si02) 以及二氧化钛-二氧化锆的复合氧化物(TiZrO4)的结构。
7.以多相形式形成的具有优良耐热、耐酸和耐碱性的多孔陶瓷材料,其主要由至少三 种从二氧化硅、氧化铝和过渡金属的氧化物MxOy中选取的氧化物组成,其中M代表Ce或者 选自11、&、肚、¥、恥33、0^0或1的48、58或68-族过渡金属,1代表1到3的整数,y 代表1到3的整数,其中该三种氧化物包括作为(第一成分)_(第二成分)_(第三成分)的 TiO2-ZrO2-M" x0y,重量比为(5-60) (5-60) (5-60),其中 M〃代表 Si、Al、Ce 或者选自 Hf、V、Nb、Ta、Cr、Mo或W的4B、5B或6B-族过渡金属,χ代表1到3的整数,y代表1到3 的整数。
8.根据权利要求7所述的多孔陶瓷材料,其包括作为(第一成分)_(第二成分)_(第 三成分)的复合氧化物 Ti02-&02-W03、TiO2-ZrO2-Al2O3 或 TiO2IrO2-SiO2。
9.根据权利要求7所述的多孔陶瓷材料,其中所述重量比为 (10-50) (10-50) (10-50)。
10.根据权利要求7所述的多孔陶瓷材料,其中所述第一成分二氧化钛(TiO2)和所述 第二成分二氧化锆(ZrO2)构成二氧化钛-二氧化锆的复合氧化物Ti&04。
全文摘要
本发明提供了具有优良耐热、耐酸和耐碱性的多孔陶瓷材料,其包括三种或更多从硅氧化物(SiO2)、铝氧化物(A12O3)、过渡金属氧化物MxOy选取的氧化物,[其中M代表4B、5B或6B-族过渡金属,可从Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W或Ce中选取,x代表1到3的整数,y代表1到3的整数],以及提供了该多孔陶瓷材料的制备。通过应用根据本发明制备的结构上、热学上和化学上稳定的陶瓷材料到多孔蜂窝支持物以净化排放气体,或者应用到过滤器上(DPF,柴油机微粒过滤器)以净化柴油机排放气体,它可以阻止或显著地降低当运用堇青石材料作为支持物时由腐蚀性气体导致的任何结构破坏。
文档编号C04B35/10GK101921133SQ201010248810
公开日2010年12月22日 申请日期2006年3月7日 优先权日2005年3月7日
发明者金永南 申请人:Kh化学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1