用作贱金属电极多层陶瓷电容器电极的镍粉的制作方法

文档序号:2411656阅读:311来源:国知局
专利名称:用作贱金属电极多层陶瓷电容器电极的镍粉的制作方法
背景技术
本发明提供新的并且是有用的镍粉,该镍粉特别适于用作例如贱金属电极多层陶瓷电容器(BME-MLCC)中的电极材料。
在BME-MLCC的制造中,通常是交替层压合适的金属粉末浆料和介电陶瓷粉末浆料形成金属粉末层和陶瓷粉末层交替的多层结构,其中,烧结后,金属粉末层与每两个电极之间的电介质形成内电极。
当钯或钯银合金粉末用作金属粉末时,传统上将这样的电容器结构称为贵金属电极多层电容器(PME-MLCC)。
根据最近的发展,试图用较不贵重的金属,例如铜和镍替代贵金属钯和银。
已经有许多与使用这些较不贵重的金属有关的问题,主要是在提供层压性能的浆料中存在有机材料的情况下,在烧结过程中抗氧化能力不够,以及由于与上述贵金属或贵金属合金相比它们较低的软化温度造成在烧结过程中金属粉末收缩。特别是金属粉末材料的收缩和多结晶度(multicrystallinity)导致多层结构在烧结过程中脱层,并且在电介质和电极层中出现裂缝。除非在保护气氛,例如含诸如氢气这样的还原性气体的氩气中进行烧结,金属粉末不充分的抗氧化能力会导致诸如碳这样的杂质的包裹体对氧的无控制吸收。
目前试图克服或减少这些缺陷的目标是减少杂质量并增加镍和铜粉末的结晶度,特别是使粉末的晶粒尺寸增加到接近于粉末颗粒尺寸。然而,尽管这些努力与贵金属电极相比仍就不足,但吸氧、收缩和由此带来的脱层和裂缝形成。特别是在烧结时已知镍粉的收缩与粉末的颗粒大小成反比。因此,不可能使用直径小于约0.2μm的粉末而不产生大量具有分层和裂缝缺陷的电容器。因此,考虑到最小电极层厚度约是平均粉末颗粒直径的2到3倍,目前已知的镍粉给BME-MLCC技术小型化的趋势带来了严重的局限性。
本发明的另一个目的是提供一种烧结时收缩降低的镍粉。本发明的一个特别的目的是提供一种镍粉,如果形成生坯(green body)并加热至1000℃,其收缩小于依赖于平均粒径d的体积收缩的百分数(%中的“VS”),d由下式确定VS(%)<24-d(nm)/30本发明的另一个目的是提供平均粒径为0.05μm到1.5μm的镍粉,该镍粉加热到1000℃时收缩小于上面给出的VS。
本发明的另一个目的是提供基本是球状颗粒形状的镍粉。
本发明的另一个目的是提供粒度分布范围窄的镍粉。
本发明的另一个目的是提供杂质量低、结晶度高且晶体尺寸接近于颗粒大小的镍粉。
通过在超过1000℃的温度和随后的表面氧化下,从在还原/惰性载气中形成的镍蒸气相中获得的镍粉能够达到本发明的这些及其它目的。
优选地,本发明的镍粉基本具有球形的形状,0.05μm到1.5μm,优选的是0.07到1.0μm(基于表面积)的平均粒径,几何标准偏差<2.5的窄粒度分布范围。
虽然不希望束缚在任何理论上,但是人们还是认为通过本发明镍粉的氧化物表面层能够增加粉末表面的软化温度,从而在烧结过程中,减少了接触点处的球状颗粒的变形,因此能降低烧结过程中的收缩。粉末粒径越小,此效果就越明显。
优选地,本发明镍粉的表面氧总计为每平方米粉末表面约0.5毫克到5毫克氧。特别地,表面氧含量优选的是每平方米表面大于1毫克,特别优选的是小于每平方米4毫克。按照BET法确定表面积。
镍粉的表面氧优选的是以微晶或无定形NiO的形式存在。优选地,表面氧的量相当于约2到20个NiO分子表面层,特别优选的是4个或更多个分子表面层。特别优选的是小于8个分子的NiO表面层。
不考虑表面氧,本发明的镍粉的杂质含量小于1b.wt.%,优选的是小于0.3b.wt.%。
本发明粉末的总氧含量强烈依赖于颗粒大小,并相应地依赖于比表面。对于平均直径为50纳米的微细粉末来说,总氧含量应该至少为1.3b.wt.%,甚至可以达到10b.wt.%而不会带来不利并与现有技术的目的相悖,从而提供最大可能纯度的镍粉。平均粒径为0.1μm的粉末总氧含量最小是0.5b.wt.%,可以达到5b.wt.%。平均粒径为0.3μm的粉末的总氧含量可以为0.2到2b.wt.%。
当颗粒仍然在载气中输送时,优选的是在从镍蒸气中新鲜形成的颗粒上形成氧表面层。人们认为粉末先进的适用性也是由新鲜凝结的镍的特定形成条件造成的,而这时可能仍存在镍蒸气。
本发明的粉末的优选制造方法是根据共同待审的1998年8月18日申请的US专利申请系列No.09/136,043或相应的国际性专利申请PCT/CA99/00759中公开的方法,本文引用它们作为参考。
按照此优选的制造方法,用传递电弧等离子系统制造镍的细粉,该方法包括以下步骤(a)向传递电弧等离子体反应堆中连续供给待气化的金属;(b)引发金属和处于直线极性构型(straight polarity configuration)的非消耗电极之间的电弧以生成具有足以气化金属并形成其蒸气的高温等离子体;(c)向等离子体反应堆中注入至少加热到1000K的稀释气体;(d)用等离子体气体和稀释气体(二者都称为载气)将蒸气输送到热稳定的试管中,其中将温度控制在1000到1500℃以控制在载气通过试管的过程中颗粒生长和结晶;(e)向淬火试管中引入携带镍颗粒的载气,同时将冷却的流体直接注入到载气中,优选的是按淬火试管冷却流体入口的顺序;(f)将作为添加剂的足以使所携带镍粉表面氧化的量的氧气引入至少是在第一个冷却流体入口处供给的骤冷流体中;和(g)从载气和冷却液中分离粉末颗粒。
优选地,等离子体气体、稀释气体和冷却流体是氩气、氮气或其它惰性气体或惰性气体混合物。氩气是优选的气体。
优选地,等离子体气体通过含约10到40体积%氢气而提供还原气氛。
发明详述用以下实施例更详细地描述本发明在1998年8月18日申请的名称为“用于制造细和超细粉末的方法和传递电弧等离子系统”的共同待审US申请系列No.09/136,043和相应的国际专利申请PCT/CA99/00759中公开的反应器中,通过使用99.999%氩气作为等离子体气体和稀释气体,引发含超纯镍金属的坩埚上的等离子电弧以在载气中产生如下表第I列中所示的镍蒸气压。热稳定试管的壁温和在该试管中载气的停留时间分别在表1的第II列和第III列中给出。第IV列给出了冷却流体(氩气,通过第4阶段引入淬火试管中)与载气的体积比。第V列给出了冷却流体的氧百分比。第VI列代表淬火试管下游分离的镍粉的平均粒径,第VII列代表粉末的总氧含量。
已经根据气化了的镍和供给气体的量计算了镍蒸气含量。根据热稳定试管的内部体积和标准状态下气体流量计算了停留时间。反应器中的压力稍高于标准压力。
表1
对于每个粉末样品都是通过使用糖溶液制备浆料。浆料的糖含量为2b.wt.%。将浆料填入模具中,并干燥以形成生坯。此后,慢慢地将生坯加热至400℃,然后以5K/分钟的速度加热至1000℃,然后冷却至室温。测量生坯与烧结体体积上的差异作为收缩。
当形成生坯并以5K/分钟的速度加热时,本发明的粉末优选的是在超过T10的温度下有10%的收缩,根据下式,T10取决于颗粒大小T10(℃)>660+800×d(μm),特别优选的是T10(℃)>680+800×d(μm)以5K/分钟的速度将每个粉末的另一个样品加热至420℃。空气进入时确定增重。
权利要求
1.一种镍粉,其中粉末颗粒在其表面氧化。
2.一种镍粉,其表面氧含量为每平方米粉末颗粒表面0.5到5毫克氧。
3.一种镍粉,其具有约2到20层近似NiO成分的分子层的表面层。
4.根据权利要求1到3中的一项的镍粉,其基本上为球形颗粒形状,且球体的平均直径为0.05到1.5μm。
5.根据权利要求4的镍粉,其具有0.07到1μm的平均粒径。
6.根据权利要求1到3中的一项的镍粉,不考虑表面氧,由至少99b.wt%.的镍组成。
7.根据权利要求1到3中的一项的镍粉,通过形成生坯并加热至1000℃,该镍粉有小于(24-d/30)的体积收缩VS,其中d是平均粒径,单位为纳米。
8.根据权利要求1到3中的一项的镍粉,通过形成生坯并加热,该镍粉在超过T10(℃)>660+800×d(μm)的温度下有10%的收缩。
9.根据权利要求1到3中的一项的镍粉,在空气中加热至420℃时,该镍粉每m2/g比表面的增重小于2b.wt.%。
全文摘要
本发明涉及新的有用的镍粉,特别是用作电极材料的粉末。
文档编号B32B15/04GK1404424SQ01805236
公开日2003年3月19日 申请日期2001年2月16日 优先权日2000年2月18日
发明者C·塞里克, T·阿多纳, G·陈 申请人:加拿大电子学粉末公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1