用于密码术的方法和装置与流程

文档序号:11161238阅读:848来源:国知局
用于密码术的方法和装置与制造工艺

技术领域

本发明一般涉及密码术和隐写术领域,更具体地说,涉及用于将彩色或灰度图形图像转换成多维加密密钥的系统、方法和装置以及用于加密、存储和安全地传送隐藏文本和图形消息的容器。



背景技术:

单维加密是一种公认手段,通过其数据被系统地转换并随后,经由解密过程,被反向转换成其原始有意义的形式。在该两个方向上的这种转换是通过仅对通信的所有者、发送者和接收者可用的共享加密密钥的创建和使用来实现。

到目前为止,没有密码或隐写系统使用多维加密密钥-容器来转换数据以启动、保护和包含隐藏文本和图形通信。多维度增加了通信的容量、类型和安全性。因此,本文的方法和装置不是使用一维加密密钥来启动和独立地保护可检测的单维数据,而是提供多维加密密钥-容器来启动和保护多个维度的不可检测的数据通信。使用本文的方法和装置,作为发送者和接收者的所有者能够启动、加密、解密、存储和传送彼此之间的通信,其是不具有相关共享加密密钥-容器的任何人或机器无法理解并且不可检测的。

没有当今的密码系统在启动、加密、解密、存储和传送电子数据通信中提供实用的完美保密。完美保密,该状态使得加密在没有相关密钥的情况下是绝对不可逆的,只有当来自加密系统的加密消息不包含关于未加密消息的信息时才可达到。称为一次一密(OTP)或Vernam密码的历史密码系统实现了加密和解密的完美保密,但从未达到在参与者之间的任何物理距离上安全启动的要求。这里得到的方法和装置越过现有限制将一维OTP的完美保密输出延伸并转换到多维加密系统,实现在不受限距离上的现代完美保密。



技术实现要素:

本发明的主要要素是用于启动、加密、解密、存储和传送跨公共和私用网络的在发送者和接收者“通信者”之间的不可检测的电子数据通信的多维加密密钥-容器及方法,其中这类网络可能免受非授权访问的窃听或可能无法免受非授权访问的窃听。

包括图形图像,其是用于创建多维加密密钥-容器的源图像,的信息或数据是诸如.bmp文件的位映射(bit-mapped)图像,但是也可以包括其他位映射图像文件格式,例如JPEG、TIFF、PNG等。

包括这种数据通信的信息或数据通过表示属性的矢量被包含在多维加密密钥-容器内,所述矢量是描述视觉特征(诸如存在于可查看文件格式中的几何形状对象的大小、形状、颜色和xy-轴坐标位置)的一组机器可读指令的可见结果。

加密密钥-容器开始为变化的灰度细节的图片图像,其被转换为点矢量的阵列或系列,其中每个经转换点以及所述点周围白色空间表示起始图片的底层灰度图像细节的覆盖图等效。在观察由白色空间围绕的给定点时,观察者将在视觉上理解、或“看到”并且在内心计算由所述点呈现的起始图片的底层图像细节。

尽管多维加密密钥-容器的维数被表示为关于点矢量的特定量,例如三(3)或四(4),但是本发明不限于此。由本发明规定的加密密钥-容器的维数直接关系到加密密钥-容器及方法所采用的所选几何形状矢量对象的特定可识别和可测量属性。因此,任何特定的“几何形状矢量”在描述和理解本发明中应当具有与“点矢量”相同的含义,并且同样任何量化的维数或属性在描述和理解本发明中应当也被认为具有与“多维度”或“多属性”相同的含义。

尽管传达安全和隐藏信息的活动被表示为由一方或两方或通信者(例如所有者或发送者和接收者)之间进行的交换,但是本发明不限于此。到安全通信的通信者的数量可以是任何数量,从仅与他们自己通信的单个个体到一组不受限数量的个体(其作为一组或个别地与该组的所有其他成员通信)。因此,任何特定量或数量的个体在描述和理解本发明中应当具有与“不受限量的个体”相同的含义。

发送者或接收者存储、发送和接收安全且不可检测的通信的能力确保私人信息没有通过对通信的未授权访问而被泄露。这里描述的装置和方法的安全性保护对通信者的通信的访问及通信者的通信的隐私性相对于彼此隔离,包括在外部方通过其他方式知道通信并且具有对通信访问权的情况下。不可检测的通信形式消除了通信的所有证据及衍生物,其中衍生物可能由任何怀疑而产生,该证据可能提供这种怀疑至任何可能获得通信的所有权的未授权或无意的第三方。

更具体地,在一个实施方式中,本发明提供一种导致通信者的系统进行下列行为的方法和装置:从诸如jpeg等图形格式化文件中提取所选数据;计算相应的私用加密密钥;从那些私钥计算相应的公共加密密钥;经由通信者的公钥和私钥的数学交换和组合来计算共享加密密钥-容器;在共享加密密钥-容器内加密多个且不可检测的文本和图形通信;在适当位置存储经加密文件;在不同物理位置的通信者之间电子地或物理地传送经加密文件;使用共享加密密钥-容器;以及解密存储在共享加密密钥-容器文件的多个维度内的文本和图形通信,以便理解由通信的通信者表达的真实含义。

本文描述的实施方式,通过使用在单个图像矢量文件内的多个维度来提供共享加密密钥在远处以及跨公共和私用网络的启动和多个数据通信在单个共享加密密钥-容器的多个维度上的容纳,使得所存储的数据通信是安全的并且是不具有特定相关共享加密密钥-容器的任何人所不可检测的,而背离了已知的方法、装置和系统。

因为包含数据通信的共享加密密钥-容器的启动和存储是多步骤过程,将启动和容纳功能性一起实现在多维加密文件中是本发明相对于现有技术的显著改进,其中现有技术使用单独的单维文件和单维文件类型,用于启动加密过程并单独包含、加密和解密目标数据通信。另外,以未授权的人或机器评估不可检测的方式实现该双重功能性也是对启动和存储装置及方法(其中启动、加密、解密、存储和传送的转换活动是可见的并且可由人或机器辨别,部分地或全部地),以及甚至在它们是安全的之时引发怀疑的一种显著改进。

参考图1,一维公共加密方法和装置(诸如利用Diffie-Hellman密钥交换(DHKX)协议的那些)传统上单独执行启动和存储功能。启动活动(所有者或发送者凭此来选择源100,接收者选择源140,以及发送者计算私钥110并且由其计算公钥120,接收者计算私钥150并且由其计算公钥160,并且各自将它们相应的公钥发送给另一个,其中发送者的公钥120在数学上与接收者的私钥150组合,并且其中接收者的公钥160在数学上与发送者的私钥110组合)产生相同的共享密钥130和170,使得参与者、发送者和接收者能够使用他们相应的共享密钥来脱离启动而单独地创建、发送和接收以及存储在公共/私用网络180等内及跨公共/私用网络180等的可检测的电子通信。

附图说明

图1是描述根据现有技术的跨公共/私用网络的公钥加密交换的示意图;

图2是描述根据本发明用于包含隐写和密码数据并且可用于创建、存储和传送安全和不可检测的数据通信的一维阵列和多维阵列之间的差异的示意图;

图3是描述用于表示加密密钥-容器并且同时保持隐匿所述矢量图的显著差异的外观和结构的像素位映射图像和矢量图像(点画绘图)之间的差异的示意图。

图4是描述用于具有隐藏的图形消息的共享加密密钥-容器的说明目的的、加密和解密的信息的两(2)个状态和一(1)个中间状态的示意图;

图5是描述将Diffie-Hellman密钥交换协议的数学结构应用于图像矢量阵列从而产生用于安全和隐藏通信的共享加密密钥容器的步骤的示意图;

图6是描述矢量文件(点画)的属性和用于转换到用于促进安全通信的共享加密密钥-容器的某些属性的扩展的示意图;

图7是描述点矢量的维度,包括属性、角色和功能,以及用于转换某些点矢量属性以安全地存储和隐藏通信的公式的示意图;

图8是描述加密密钥-容器的点矢量位置,以及特别是表示ASCII文本字符“D”的两个点矢量A和B之间的示例偏移的示意图。

图9是描述ASCII偏移网格在沃罗诺伊单元内的应用以示出表示ASCII文本字符“D”的ASCII值的两个点矢量位置之间的偏移值的计算的示意图。

定义

如本文所使用的,以下术语应理解为具有以下含义。

算法:一种有效的方法,表示为用于计算函数的定义明确的指令的有限列表。从初始状态和初始输入(可能为空)开始,这些指令描述一种计算,其当被执行时将通过有限数量的定义明确的连续状态来进行,最终产生“输出”并终止于最终结束状态。从一个状态到下一个状态的转变不一定是确定性的;一些算法,称为随机化算法,并入随机输入。

阵列:阵列为对象(数据)的系统排列,通常成行和成列。

ASCII表:表示最初基于英语字母表的字符编码方案的表。ASCII代码表示计算机、通信设备和使用文本的其他设备中的文本。

攻击通道:一位置,其免受未经授权入侵的安全性是不确定的。

属性:对象或其他种类实体的因素。

质心:将X、平面图或二维几何形状划分为关于线的相等力矩的两个部分的所有直线的交叉点。

密码(密码):用于执行加密或解密的算法——一系列明确定义的步骤,这些步骤可作为程序发生。

通道:可用于隐写修改和消息信号传送的隐写维度。

密文:使用称为密码的算法对明文进行加密的结果。密文也被称为加密或编码信息,因为它包含原始明文的形式,其不能被人或计算机在没有正确的密码来解密它的情况下读取。

掩饰文本(Covertext):至隐写系统的输入或源容器文件,其被修改以表示/包含隐藏信息。

密码术:用于在第三方(称为对手)的存在下的安全通信的技术的实践和研究。

解密:对其含义不明显的消息进行解码的过程。

Diffie-Hellman密钥交换(DHKX):交换密码密钥的一种具体方法,其允许不具有彼此的先验知识的一方或多方通过非安全通信通道共同建立共享密钥。然后,该密钥可以用于使用对称密钥密码来加密后续通信。

哈希代码:由哈希函数返回的值。

哈希函数:将可变长度的大数据集(称为密钥)映射到固定长度的较小数据集的任何算法或子程序。

隐藏信息:隐藏信息仅是相关数字密钥文件的拥有方才能读取的。

密钥交换协议:一种协议,其中两方或多方可以以均影响输出这样的方式就密钥达成一致。如果妥当地完成,这就阻止了非期望的第三方对协议方强加一个密钥选择。在实践中有用的协议也不会向任何窃听方泄露已经商定的密钥。

劳埃德算法:用于以点画的式样生成点绘图的计算程序。在本申请中,可以基于参考图像对质心进行加权以产生与输入图像匹配的点画示图。

一次一密(OTP,Vernam Cipher):一种已被证明如果使用正确则无法破解的加密类型。来自明文的每个位或字符通过模数与来自与明文相同长度的秘密随机密钥(或密码)的位或字符相加而来加密,从而产生密文。如果密钥是真正随机的,与明文一样大或大于明文,整体或部分从不重复使用,并保密,则在不知道密钥的情况下,密文将不可能被解密或破解。适当使用的一次一密在这个意义上是安全的,甚至对抗具有无限计算能力的对手。

完美保密:由Paul Shannon(美国数学家、电子工程师和密码学家)杜撰的一个术语,其中由一次一密生成的密文绝对没有提供关于明文的附加信息。完美保密是密码分析困难的一个强大概念。

隐写术:以这样一种方式编写隐藏消息的技术和科学,即,除了发送者和预期接收者之外,没有人怀疑消息(安全到含糊的形式)的存在。

隐秘文本(Stegotext):以某种方式修改以便包含密文的无害图像,表示从视图隐匿的加密和隐藏文本、文档、绘图等。

点画渲染引擎(SRE):Dotwerx LLC的专利(受版权保护的)软件(编程指令),其接受照片、绘图等形式的可视输入,并且呈现由点矢量等组成的表现性点画绘图。

矢量(图形):使用几何图元,如点、线、曲线和形状或多边形,它们都是基于数学表达式来表示采用计算机图形的图像。在本上下文中,“矢量”意味着多于一条直线。

沃罗诺伊图(也称为加权重心沃罗诺伊图):一种将空间划分为多个区域的方法。预先指定一组点(称为种子、位点或生成器),并且对于每个种子,将存在与接近任何其它种子相比、更接近该种子的所有点组成的对应区域。这些区域称为沃罗诺伊单元。

具体实施方式

本发明使用不可破解的密码-隐写密钥-容器文件来保护和隐藏通信,使得通信方能够启动、加密、解密、存储和传送跨非安全网络的通信,其对不具有相关的共享加密密钥-容器的任何人是不可检测且不可访问的。

参考图2,本发明的启动活动提供跨因特网和其他公共和私用网络的连续和离散通信两者。在本发明之前,跨电子网络创建和交换一维加密密钥阵列200,以单独及分别充当加密和解密过程的输入,其可以将采用离散或连续方式的文件转换成可检测的文件。利用本发明,加密密钥-容器的多维加密密钥阵列205、210和220的启动包含沿着维度230的加密数据。加密密钥-容器230的第一属性是“c”,描述可视的图像或隐秘图像。加密密钥-容器230的第二属性是“t”,描述隐秘文本或隐藏文本消息。加密密钥-容器230的第三属性是“x”,描述隐藏图形的隐藏X-轴坐标位置。加密密钥-容器的第四个属性是“y”,描述隐藏图形的隐藏Y-轴坐标位置。

可见的加密吸引了不必要的怀疑。利用本发明,多维加密密钥-容器的双重功能在启动期间,由此加密密钥的安全创建和交换跨非安全网络而发生,以及在加密密钥容器(其中具有隐藏文本和图形消息)的存储和传送期间,被隐藏而不可查看和怀疑。

到目前为止,加密密钥不能充当密钥或容器,其中密钥数据或消息数据结果仍保持隐藏。在世界上许多司法管辖区,仅拥有加密材料就是违法的,并且可能对持有人带来严重的刑事处罚。本发明没有提供加密的证据。在任何系统分析下,可查看的加密密钥-容器看起来在功能上等同于由相同源创建的任何其他加密密钥-容器。参考图3,通过本发明,安全通信的通信者通过选择无害源图形300(例如jpeg 400等)来启动该过程,本发明将源图形呈现为矢量图像绘图305。私用加密密钥310由矢量图像绘图305计算,并呈现为点画绘图410,视觉上近似于jpeg 400。私用加密密钥310反过来经由Diffie-Hellman密钥交换(DHKX)协议的模块化数学函数被计算成公钥320。通过DHKX协议的进一步应用,公钥320经由多个不同的安全或不安全的路径置于接受方。每一方,在接收到另一通信方的公钥320时,继续进一步应用DHKX协议,将每个公钥320与另一方的私钥310组合以生成共享加密密钥-容器330。不具有消息330、或共享加密密钥-容器隐藏消息340的共享加密密钥-容器,与始发私用加密密钥310或始发公共加密密钥310在分析上不可区分。可查看的矢量图像405、410、420、430和440也是彼此不可区分的。

存在至少两种方式来表示文本通信,文本-作为-文本和图形-作为-文本(图像作为文本)。利用本发明,图像可以被存储,其隐藏在另一图像内时可视地转换为文本。点矢量的属性可以包含不同点矢量的位置的隐藏数据。一旦揭示,先前隐藏的数据指示在不同位置的点的呈现,从而揭示隐藏的图像。

参考图4,在本发明之前,隐藏在矢量图像内的隐写数据未被加密,因此遭受仅采用嵌入数据方法的理解的检测。成功的密码分析取决于找到和利用某些弱点,并且视觉上暴露的加密可以为某些类型的密码攻击提供这个。利用本发明,完全加密的共享密钥-容器500中的隐藏数据的存在被加密且不可检测,并仅在拥有和应用共享密钥-容器330的情况下,被揭示为部分解密的共享密钥505(作为说明)和完全解密的共享密钥-容器510中的非隐藏数据,而不管是否知道嵌入或加密数据的方法。

存储和交换在非安全网络内和跨非安全网络的安全数据通信需要特定协议。参考图5,本发明经由Diffie-Hellman密钥交换(DHKX)协议在由参与者单独执行的八个步骤中的应用,并且导致共享加密密钥-容器的由一个或两个参与者的拥有,而满足数据的安全存储和交换的要求。为了仅存储,每个通信者执行过程一680的步骤和过程二690的步骤。为了存储和交换,通信者完成过程一680的步骤,而第二通信者完成过程二690的步骤。在步骤一600中,所有通信者选择相互同意的素数p和模数基础g。

在步骤二610中,通信者选择个体源文件300(例如jpeg)以计算点矢量的阵列,其中每个矢量具有关联随机数,其从加权重心沃罗诺伊图和劳埃德算法对源文件的应用而生成。过程一680在步骤二610处产生第一矢量图像。过程二690在步骤二610处产生第三矢量图像。

在步骤三620中,通信者从第一矢量图像计算“私用”随机数整数的阵列,产生第一随机数阵列an,并且从第三矢量图像产生第三随机数阵列bn。过程一680在步骤三610处产生第一私钥,并且过程二690在步骤三610产生第三私钥。

在步骤四630中,通信者使用方程对从an导出的第二随机数阵列An,以及使用方程对从bn导出的第四随机数阵列Bn,计算“公共”随机数的阵列。过程一680在步骤四630处产生第二公钥,并且过程二在步骤四630处产生第四公钥。

在步骤五640中,通信者将每个参与者的公共随机数阵列传送到攻击信道内或跨攻击信道的另一个参与者。过程一在步骤五640处存储并传送第二公钥到执行过程二690的通信者。过程二690在步骤五640处存储并传送第四公钥到执行过程一680的通信者。

在步骤六650中,执行过程一680的通信者从执行过程二690的另一通信者的第四矢量图像接收公共随机数阵列。在步骤六650中,执行过程二690的通信者从执行过程一680的另一通信者的第二矢量图像接收公共随机数阵列。过程一680在步骤六650处接收第四公钥,而过程二690在步骤六650处接收第二公钥。

在步骤七660中,每个通信者调用其私用随机数阵列。执行过程一680的通信者调用第一图像矢量。执行过程一690的通信者调用第三图像矢量。过程一680在步骤七650处调用第一私钥,并且过程二690在步骤七650处接收第三私钥。

在步骤八670中,通信者计算共享随机数的阵列,使得用于通信者执行过程一680的Sn为,并且用于通信者执行过程二690的Sn为,由此两个Sn结果彼此相等并且充当用于加密和解密隐藏通信的共享密钥。

参考现有技术的图3,绘图305的属性在私钥310、公钥320、共享密钥(无消息)330和共享密钥(隐藏消息)340中转换。参考图6,圆点矢量的属性提供在启动、加密、解密、存储和传送不可检测的数据通信中的角色和功能。根据本发明,具体地,将某些点矢量属性的角色和功能从绘图角色750和绘图功能760修改为共享密钥角色770和共享密钥功能780。这种角色和功能的修改是多种改进,其提供隐藏和加密文本和图形通信的转换能力和存储容量。角色和功能从绘图到共享密钥来改进的点矢量属性是微位置710、半径720、阴影(1)730和阴影(2)740。

具体针对微位置710,将绘图掩饰文本752转换为共享密钥-容器密文772。

具体针对半径720,将绘图掩饰文本754转换为共享密钥-容器密码位置X 774,并且将绘图半径764转换​​为共享密钥-容器X坐标784。

具体针对阴影(1)730,将绘图掩饰文本756转换为共享密钥-容器密码位置Y 776,并且将绘图灰度766转换为共享密钥-容器Y坐标786。

具体针对阴影(2)740,将绘图掩饰文本758转换为共享密钥-容器密码位置Y 778,并且将绘图颜色768转换为共享密钥-容器Y坐标788。

参考图7,除了宏位置805之外,每个属性800经由相关的函数等式850转换,函数等式850重新分配属性800以同时表示源图像并且包含表示隐藏消息的数据。对于被转换的每个属性800,点矢量的属性被系统地修改,使得当与点矢量的非修改状态进行比较时,该修改产生隐藏消息的组分。点矢量的属性的系统修改没有单独地或总计地包含提供隐藏消息的任何知晓或任何消息存在于其中的证据的信息,从而提供“完美和隐藏的保密”的改进。

属性Micro XYLocation 810应用等式860,由此ASCII_Val = f(Old_VoronoiXY, New_VoronoiXY, voffset_val)。为了加密消息,ASCII_Val和Old_VoronoiXY是输入,产生New_VoronoiXY和voffset_val。为了解密消息,Old_VoronoiXY和New_VoronoiXY是输入,产生voffset_val和ASCII_Val。ASCII_Val对应于ASCII表中的文本字符。隐藏消息将等于对应于全体ASCII_Val结果的文本的聚合。

属性半径 820应用等式870,由此X = f(Old_Radius, New_Radius, roffset_val)。为了加密消息,X坐标和Old_Radius是输入,产生New_Radius和roffset_val。为了解密消息,Old_Radius和New_Radius是输入,产生roffset_val和X坐标。X坐标表示可查看文件的X-轴上的位置。隐藏图像的点矢量的x-轴将对应于X坐标中的每一个。

属性阴影(1)830应用等式Y = f(Old_Shade, New_Shade, soffset_val)。为了加密消息,Y坐标和Old_Shade是输入,产生New_Shade和soffset_val。为了解密消息,Old_Shade和New_Shade是输入,产生soffset_val和Y坐标。Y坐标表示可查看文件的Y轴上的位置。隐藏图像的点矢量的y-轴将对应于Y坐标的每一个。参考现有技术的图3时,当源图像和相关矢量图像305、310、320、330和340是灰度时,使用属性阴影(1)。

参考现有技术的图7,属性阴影(2)840应用等式Y = f(Old_Shade, New_Shade; soffset_val)。为了加密消息,Y坐标和Old_Shade是输入,产生New_Shade。为了解密消息,Old_Shade和New_Shade是输入,产生soffset_val和Y坐标。Y坐标表示可查看文件的Y轴上的位置。隐藏图像的点矢量的y轴将对应于Y坐标的每一个。参考现有技术的图3时,当源图像和相关矢量图像305、310、320、330和340是彩色时,使用属性阴影(2)。

参考图8,本发明利用宏x、y坐标系统900来在整个可查看区域内定位点矢量阵列,使得聚合点矢量呈现源文件的矢量图像。共享密钥的每个沃罗诺伊单元910利用ASCII网格920来修改点矢量位置以表示作为隐藏消息的组成部分的文本字符。ASCII网格920的圆形设计,针对任何voffset_val值的集合,服务于最小化Old_VoronoiXY和New_VoronoiXY之间的物理距离和视觉失真,同时为ASCII表的文本字符提供容量。ASCII网格920上的例示性的质心“A”和“B”呈现所计算ASCII值68的ASCII偏移930示例,其表示ASCII文本字符“D”。

参考现有技术的图6和图7,共享密钥-容器(x, y)位置782点矢量属性包含隐藏的ASCII文本消息的Micro_XYLocation 810。参考图9,通过对齐ASCII网格920的中心(参考现有技术的图8)与点矢量的Old_VoronoiXY 1000的中心(跟随有ASCII网格的68个单个分阶段圆形导线1040)(参考现有技术的图9),计算voffset_val 1020值68和文本字符“D”,直到达到ASCII值,从而建立New_VoronoiXY 1010的坐标和新定位的点矢量的中心。以这种方式,表示源的点矢量阵列的点被系统地重新定位,如由voffset_val 1020所反映,参考现有技术的图8,利用ASCII网格920,在它们的沃罗诺伊单元910内实现ASCII偏移930以总体上包含隐藏消息。

根据本发明的实施方式,除了保护和隐藏通信的能力之外,多维加密的优点包括使得发送者和接收者能够控制以下各项:

•一种能力,即,选择各种图形文件来表示启动加密过程的源、或者简单地表示精细艺术兴趣的运用,从而建立掩饰图形图像的几乎无限制的供给,其中掩饰图形图像能够无害地充当加密密钥来包含安全数据通信。

·一种能力,即,使用具有哈希码的哈希函数来启动、加密、解密、存储和传送未加密文档的安全认证数字签名,以用于认证发送者、时间、考虑中的未加密文档的未改变的状态。

•一种能力,即,重新使用多维共享加密密钥容器,而没有降低其中包含的数据通信的安全性或不可检测性质。

对于本领域的那些技术人员将显而易见的是,在现有技术的示例性属性示意图6中未示出加密密钥-容器的属性的所有可能的功能和角色。所示的点700-740的属性的示例性维度提供对本发明的理解以及维度的细节、使用根据实施方式的本发明的角色和功能。

本领域技术人员将容易地理解,本文公开的本发明是相对于示例性的具体实施方式来描述。然而,这不应被认为是对本发明的范围的限制。具体来说,可设想所公开的发明的其它实施方式,因此本发明不应被认为限于上文讨论的具体实施方式。

实施方式可以在其他非计算和具有计算能力的系统和处理器或上述的组合上实现。实施方式还可以实现为存储器模块中的软件程序,其中软件程序将要在嵌入式、独立或分布式处理器或处理系统上运行。实施方式还可以在处理器、集成软件和硬件的组合上运行,或者作为仿真在服务器、台式机或移动计算设备上的硬件上运行。本发明不应被认为受限于基于具体实现细节的范围中,而是应当基于当前和未来预想的实现能力来考虑。

尽管本文中参考优选的实施方案描述本发明,但是本领域技术人员可以容易地理解,在不背离本发明的精神和范围的情况下,其他应用可以替代本文所阐述的那些。因此,本发明应当仅由下面包括的权利要求来限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1