折射率可调的薄膜干涉涂层的制作方法

文档序号:2761274阅读:1514来源:国知局
专利名称:折射率可调的薄膜干涉涂层的制作方法
背景技术
下面的背景部分讨论三个普通的技术领域, 包括薄膜干涉涂层,薄膜滤光片和半导体的热光特性及其在光子器件中的应用。
薄膜干涉涂层薄膜干涉涂层代表光学技术最成熟和应用最广泛的一个方面。一般地,TFIC依赖于一层或多层(多至上百层)薄膜的依次沉积,它具有变化的折射率和其它特性以便在指定的谱段上获得光谱反射和透射、相移或偏振的理想特性。例如,抗反射涂层被用到透镜上已经快有一个世纪了。TFIC的其它应用包括窄带通滤光片、偏振片、彩色滤光片及其它等。现有技术知道,可以把一个极宽范围的光学特性设计成TFIC,给出一个具有不同折射率的起始材料阵列。有许多计算机模拟设计工具,例如通过光谱学的ThinGilm Calc。广泛利用的TFIC的沉积过程包括物理气相沉积法,如溅射或电子束蒸发。虽然TFIC用于整个光学领域,但适应于如波分复用(WDM)光线通讯业需求的TFIC的现代应用已变得非常复杂。现在可以得到利用多谐振器(多至七个或更多)的谐振器设计和具有极为精细的平顶、陡侧特性的上百层的滤光片,能够有很小的WDM通道间距(50GHz或25GHz)。其它的这种滤光片的设计不是为了它们的透射滤光特性,而是为了它们在一个波段范围上的相位延迟特性的光谱分布,提供与高比特率网络有关的精确脉冲弥散或群延迟特性。用作各类窄带滤光片的TFIC将被表示薄膜干涉滤光片、TFIF。
在下列参考文献以及众多期刊中可以发现一般的TFIC领域以及尤其是TFIF的现代研究。
A.Thelen,Design of Optical Interference Coatings,McGraw-Hill,1989.
J.D.Rancourt,Optical Thin FilmUsers’Handbook,Macmillan,1996.
H.A.MacLeod,Thin Film Optical Filters,SecondEdn.Macmillan,1986.
J.A.Dobrowolski,Coatings and Filters,Sect.8,Handbook ofOptics,Second Edn.McGraw-Hill,1995.
Proceedings of the 2001 OSA Topical Conference on OpticalInterference Coatings,July,2001,Banff.Optical Soc.America.
因为TFIC的性质强烈地依赖于组成膜的折射率,因此很希望开发出用于TFIC的具有可控或可调折射率的“有源”薄膜材料。但是,对这些材料的要求是多方面的并且是严格的。作为有源薄膜的可用候选者,应该在感性趣的波长(例如,接近1.5μm的光线网络通讯波段)处具有极低的吸收损耗和极低的散射,可以通过一些兼容的沉积过程依次直接进行薄膜沉积、与其它具有对比的折射率的钝化膜组合,并且具备一种可以在简单的可制造的物理结构内进行的折射率变化的直接或间接的电学机理。绝对折射率变化范围必须处于百分之几的量级;已知在TFIC的设计中,TFIC设计趋于“谐振”之处在于它包含法布里-珀罗型单谐振腔或多谐振器结构,将各个层中较小的折射率变化(在1%左右)平衡为在某一给定波长处净光学特性(如光透射率)的较大的百分比变化。
毋庸置疑,已经证明以适当的特性确认薄膜材料是难以捉摸的,并且在此之前对于可调TFIC还没有成功的技术。要在具有良好光学质量的材料中获得足够大的折射率调节是薄膜领域存在的一个长期难题。较少已知可行的折射率控制材料可以分类为两组。具有较小折射率调幅(在Δn/n=10-5的量级)的高速材料包括电光材料、压电材料或利用电荷注入的晶体半导体。迄今对可调谐薄膜滤光片的大部分尝试都是基于这种材料。较大但较慢的折射率调幅(Δn/n=10-2)可以由液晶或热光效应实现。在2001年7月的Parmentier,Lemarchand等人的“Towards Tunable OpticalFilter”,Paper WBI,Technical Digest,OSA Topical Mtg.OpticalInterference Coating,July 15-20,2001,Banff,Alberta,Canada,在对薄膜干涉涂层的可调谐折射率材料与电光薄膜、压电薄膜以及氧化物热光薄膜比较的回顾中没有发现合适的办法。这些作者提到但尤其否决了热光效应的可能性,引证了主要用在TFIC中的介电薄膜,如五氧化二钽和二氧化硅,它们的热光系数较小。
可调谐滤光片可调谐窄带滤光片是上述技术的一个重要的市场分支。因此,对这些滤光片领域进行了大量的研究。对于滤光片在通讯业中的一个典型的需求是在所谓的具有3dB宽度的C带(1528-1561nm)上以10GHz或0.08nm的量级和较低的插入损耗进行调谐。
WDM光纤网络的增长提高了对多种网络管理功能的各种波长可调谐光学组件和色散补偿器的要求,其中多种网络管理功能的范围从光源和接收器到动态增益均衡器。需要可调谐光纤扮演几种各异的网络角色,每种都有各异的性能要求。例如,处于网络路径中的可调谐增/减滤光片必须拥有极低的插入损耗和“平顶”通带形状。另一方面,对于滤光片作用于从网络从抽出的光的光学通带监测,通带形状和插入损耗不如迅速调谐、低成本、袖珍器件足印以及集成地可兼容封装成系统模块、如光学放大器重要。甚至两个具有相同的光学和电学特性的滤光片,如果它们的物理尺寸和形状以及制造成本非常不同,也可以找到非常不同的应用。
上面已经描述了很多不同的可调谐滤光片,并且如同光学技术中的一般情形,已经提出了各种操作原理。已经知道了具有可比较通带或覆盖较大物理尺寸、形状因子、功耗、复杂性和成本的调谐范围的可调谐滤光片。
主要一类可调谐滤光片包括基于光纤或波导的器件。为了特定的目的尤其是在打算将滤光片与模块中的其它组件集成时或在必须非常紧凑时特别希望用第二类扩展束或垂直腔形式的可调谐滤光片。如表I所示,微电机(MEMS)法布里-珀罗是此类开发最广泛的技术,带有半打的商业资源。

表I.扩展束可调谐滤光技术。来自公共资源的性能数据结晶扩展束滤光片的不太常用的方式包括液晶显示器和机械扫描光栅或干涉仪。MEMS法布里-珀罗器件作为一类,趋于拥有较宽的调谐范围,但具有一个重要的限制它们在结构上严格地限制为最简单的单腔标准具(Lorentzian通带)设计。这意味着不能制造更复杂设计的MEMS滤光片,不能为改进的相邻通带抑制或特定群延迟色散或其它要求提供大锥度的裙边。因而它们主要用于光学监视或可调谐激光器的应用,但对于在光路中的网络功能如增/减多分复用这类需要更复杂、平顶、窄裙边带通等只有通过多腔谐振腔才可达到的方面作用很小。
在此调查中,造成触动的是广泛使用的静态WDM滤光片技术、薄膜干涉滤光片TFIF,除了机械旋转滤光片的有限应用外没有实际的可调谐对应物。在薄膜技术中,结合多腔的复杂的固定通带TFIF设计是已知的,最希望的是对薄膜涂层的多种设计选择增加可调谐性。
半导体的热光用途已知改变光学材料折射率率的一个方法是通过改变它们的温度。热光原理是很有用的,因为虽然在所有的光学材料中都有一定程度的存在,但较显著的效果、如到达或超过1%的效果只在极低光学损耗的光通信波段为1300-1700nm的材料中发现。
表II比较了一些光电材料在近红外光谱中应用的热光特性。

表II.热光材料包括丙烯酸酯或聚酰亚胺的热光聚合物具有较大的(负)热光系数,但一般只可以用于波导形式, 因为它们不适合于用于多层TFIF的沉积过程。晶体半导体晶片拥有较大的系数,但对于0~5μm写入装置厚度的目的自然不能认为是薄膜。通过特殊的蚀刻或抛光技术,晶片可以制备成25-50μm,但此过程很昂贵并且难以控制和处理。一般地,生长为晶片的晶体材料比起直接沉积非晶薄膜或外延晶体薄膜非常难以精确地确定厚度,并且不能很容易地合并到复杂的多个薄膜叠层中。因此,不能建立复杂的横向滤光片结构,如具有多个腔体层的结构。Cocorullo及其它人已经证实了利用薄硅晶片的热光特性的波导成分Cocorullo et al.Amorphous Silicon-Based Guide Wave Passiveand Active Devices for Silicon Integrated Optoelectronics,IEEEJ.Selected Topics Q.E.,v.4,,p.997,Nov/Dec 1998.
Cocorullo,Della Corte,Rendina,Rubino,Terzini,Thermo-OpticModulation at 1.5micron in anα-SiC α-Siα-Si Planar Guided WaveStructure,IEEE Phot.Tech.Ltrs.8,p.900,1996.
Coeollo,Iodice,et al,Silicon Thermo-Optical Micromodulatorwith700kHZ-3dB Bandwidth,IEEE Phot.Tech.Ltrs.7,P363,1995Della Corte,et al,Study of the thermo-optic effect in α-Si:H andα-SiC:at 1,55micron,Appl.Phys.Lett.,79,p.168,2001Cocorullo et al,Fast infrared light modulation inα-Si micro-devices for fiber to the home,J.Non-crys.Soids,266,0.1247,2000.
其它的著作也已经描述了基于硅晶片的扩展束滤光片。
Niemi,Uusimaa,et al.,Tunable Silicon Etalon for SimultaneousSpectral Filtering and Wavelength Monitoring of WDM,IEEEPhot.Tech.Ltrs.13,p.58,2001.
Iodice,Cocorullo et al.,Simple and Low Cost Technique forWavelength Division Multiplexing Channel Monitoring,Opt.Eng.39,p.1704,2000没有关于薄膜半导体(无论是非晶还是外延)以复杂的多层TFIC或TFIF为基础利用其热光特性的系统应用的报道。事实上,前面关于TFIF的内容远离实际,因为TFIF技术已经回避了温度敏感材料,以便建立与环境敏感性无关的涂层。因而过去一般的薄膜涂层业以及尤其是WDM TFIF业回避了滤光片中任何类型的半导体材料,因为它们的热光特性较强,并且因此由这些材料制成的涂层将具有较强的温度变化性。

发明内容
根据本发明的不同实施例和各个方面,提供了一种动态可调谐薄膜干涉涂层,包括具有热光可调谐折射率的一层或多层。薄膜干涉涂层内的可调谐层能够使新的薄膜有源器件系列滤光、控制和调制光。有源薄膜结构可以直接或集成到各种光子子系统中,从而制备可调谐激光器、用于光纤通讯的可调谐增-减滤光片、可调谐偏振片、可调谐色散补偿滤光片和其它器件。


在下列附图中相同的标号表示同样的元件,其中图1是由透射、光热偏转光谱仪(PDS)通过恒定光电流法(CPM)在对应于0.8eV的1500nm波长处测得的晶体硅和低通非晶硅的吸收曲线;图2是通过PDS和CPM测得的低通α-Si:H的吸收曲线;图3是非晶硅(下曲线)和硅-锗合金(上曲线)的折射率-温度曲线;图4是包括一个ZnO或多晶硅加热膜、非晶硅和氮化硅四分之一波片交替的反射镜和整数个非晶硅半波片的间隔物的基本薄膜可调谐滤光片简图;图5是由PECVD沉积的法布里-珀罗滤光片的实施例的SEM,其中亮层是非晶Si,暗层是SiNx,一条线代表一个间隔物膜,厚度为431nm;图6是单腔高精细度滤光片的理论与实验比较的滤光片传递而使滤光片传递曲线在调谐范围上的曲线;图7代表滤光片结构中利用不同热光层的可调谐度差异;图8是通过加热而使滤光片传递曲线在调谐范围上移动的曲线;图9是通过加热而使滤光片传递曲线在调谐范围上移动的另一曲线;
图10是通过加热而使滤光片传递曲线在调谐范围上移动的另一曲线;图11是本发明另一实施例的侧视图;图12是本发明另一实施例的侧视图;图13是本发明另一实施例的侧视图;图14是本发明另一实施例的侧视图;图15是本发明采用多谐振腔的另一实施例的侧视图;图16是发明作为增/减滤光片的另一实施例侧视图;图17是可变光学衰减滤光片响应曲线;图18是偏振控制滤光片响应曲线;图19是一个电阻加热器轮廓的平面图;图20是图19所示轮廓沿20-20的截面图;图21是另一电阻加热器轮廓的平面图;图22图21所示轮廓沿22-22的截面图;图23是另一电阻加热器轮廓的平面图;图24是图23所示轮廓沿24-24的截面图;图25是另一电阻加热器轮廓的平面图;图26是图25所示轮廓沿25-25的截面图;图27是另一电阻加热器轮廓的平面图;图28是图27所示轮廓沿27-27的截面图;图29是另一电阻加热器轮廓的平面图;和图30是图29所示轮廓沿29-29的截面图。
具体实施例方式
通过下面几个实施例举例说明本发明的各个方面及其应用。
我们已经通过利用层中的半导体薄膜选择最大化、而非最小化TFIC中特定层的热光特性。这些层可以通过PECVD或CVD或PVD的其它改型来沉积。为了较低光损耗而注入氢的热光半导体如α-Si:H或合金用作高折射率层(1500nm处n=3.66),并且通过已经优化的方法沉积,在接近1500nm的主要光通讯波长处高度透明(消光系数k=10-6)。然后可以通过在25-45℃范围上的温度变化造成高达4%的折射率调制Δn/n。这些较大的温度变化最好由光学透明的导电加热膜造成,导电加热膜例如是与其它光学层相邻或与其它光学层交替的n型多晶硅。典型的应用是可调谐薄膜法布里-珀罗滤光片,通过与低折射率层α-SiHx交替地沉积四分之一波长厚度的α-Si:H而形成在一个衬底如熔融硅上,其中α-SiHx和α-Si:H均通过改变PEVCD反应皿中的气体混合物而制备。然后可以通过透过加热膜一个电流而光学调谐所得TFIF的中心透射峰。同样,可以通过类似方法的延续而制造更复杂设计的多谐振腔TFIF。在我们的实验中已经演示了单谐振腔和双谐振腔滤光片,其调谐范围高达42nm。
非晶硅是一种从平板显示器和太阳能电池业中高度开发出的一种可靠的材料。通过将这种材料和有关的PECVD薄膜沉积引入到光学干涉涂层,可以得到不同寻常的大热光系数,从而调制选取的薄膜折射率多达4%。这样需要内膜温度超过400℃,只有在实现极坚固的薄膜粘合剂时才是可行的。在此演示的早期应用是单谐振腔可调谐法布里-珀罗带通滤光片,FWHM小至0.085nm(10GHz),在1500nm处的可调谐性超过40nm。这种可调谐的滤光片也是极其袖珍的,可以以晶片尺度制作,并且能够以常规静态WDM滤光片所能获得的多个现成的组件封装。可调谐的滤光片适于各种包括光学监视器、可调谐激光器、可调谐探测器和增/减多路复用器的WDM网络应用。而且这类可调谐薄膜干涉涂层能够有更为一般的设计,包括多谐振腔平顶滤光片、可调谐边缘滤光片、动态增益均衡器和可调谐色散补偿器。折射率控制是光子器件的基本预制构件。不仅在波导器件中可行,而且在干涉涂层中也可行的可调谐程度较高的热光薄膜开辟了新一类的袖珍、低成本器件和用途。
本发明的实施例包括横向光学透射器件。即,实施例包括理想波长的光可以透过的器件,但不可用作波导。例如,衬底上光基本上垂直穿过其表面的材料薄膜是一种横向光学透射器件。本发明实施例的特点在于一个或多个薄膜层具有随温度和内部可控热源变化的折射率。一般地,薄膜层是那些厚度小于大约5μm的膜层,而目前通常可利用半导体晶片抛光技术实现的最薄层处于50μm的量级。在此应用中,薄膜层通常描绘成直接沉积,当然也可以是其它的制备薄膜的方法。
本发明的实施例可以组合到或包括有多个薄膜层的可调谐薄膜干涉滤光片。一个或多个层可以具有响应于能量激发源、如控制波长处的热或光而变化的折射率。另外,如果具有可变折射率的层对热作出反应,则一个或多个层可以是热源以改变热可变层的折射率。热可变层本身是一种电阻加热层。
下面详细描述举例说明这些一般原理的几个实施例。
在此描述的实施例利用半导体薄膜、如非晶硅层(此处“α-Si”或“α-Si:H”表示氢化)的热光特性。这些实施例通过产生热响应的激发膜控制膜的温度,该膜是结构或叠层的不可缺少的部分,并且可以是折射率受控制的同样的膜,或者可以是叠层中尤其包含作为薄膜加热器的其它膜。激发可以是通过薄膜的电流,或者可以是指向薄膜的光束,也可以是其它的形式。组成结构整体的薄膜提供用于调谐的热量,并且还与其加热角色一起扮演光学角色,因而有“双重责任”。每当使用该结构时的波长也是使用薄膜的透明窗时,都可以采用该方法。一种重要的但非限定性的情况是光纤通信波长窗为1300-1650nm,在该波长处特定的半导体膜高度透明。
半导体具有较大的热光系数,Si的约为4×10-4/℃,是Ge的两倍之大,既可以是晶体,也可以是非晶体。可以以各种形式获得,如晶体、微晶或非晶,可以生长为单晶或直接沉积或取向延伸。直接沉积法包括物理气相沉积技术,如蒸发或溅射,或利用气体的化学气相沉积技术。
要取代避免光学结构的温度敏感特性,如常规实践所建议的那样,我们打算使用半导体材料。
我们主要使用非晶半导体类材料作为优选实施例,以便使薄膜干涉结构中的热光调谐性最大,当然,其它类型的薄膜半导体、如微晶或取向延伸的晶体膜也可以使用。多年来主要由平板显示器或太阳能电池业开发的非晶半导体未被光子及光纤器件界开发。它们可以通过各种物理气相沉积技术、如溅射或化学气相沉积技术如等离子增强的化学气相沉积(PECVD)沉积为薄膜。PECVD是一个特别灵活的同性薄膜处理过程,控制基本的沉积参数,如等离子功率、总气压、氢局部压强、气体比例、流速,并且衬底温度可以用于显著地调节膜密度和化学计量法,在该计量法中依次影响折射率、光吸收性和热光系数。Si膜的氢化通过抑制悬摆键联减少了缺陷密度,减小了红外吸收性。图1表示通过恒定光电流法(CPM)和光热偏转频谱术(PDS)测得的晶体-非晶体吸收性,图2表示用在1500nm处(对应于0.8eV)WDM带中优化的低损耗α-Si:H。1500nm的吸收值0.1cm-1对应于消光系数k=1×10-6,可与通常用在常规薄膜WDM滤光片中的低损耗介质材料相比。除PECVD外,也可以使用其它的CVD法,如低温CVD或热CVD,或者可以通过溅射沉积非晶膜。
氢化的非晶硅(α-Si:H),尽管其在1500nm处有高的折射率(3.6)和低吸收性,但一般不被认为是薄膜干涉滤光片中理想的高折射率层。原因有二。首先,PECVD只是近期才被引入到光学薄膜技术当中,其次,非晶半导体因为它的温度敏感性而已经为常规的WDM滤光片所回避。非晶半导体薄膜的热光系数趋于比它的晶体对应物更高。在我们的实验室中,通过优化PECVD条件,已经实现了1500nm处热光系数Δn/n=3.6×10-4/°K、消光比k=10-6的α-Si:H膜,它们显示出比文献中报道的任何其它值都高。通过采用内膜温度>400℃,已经观察到了硅折射调幅Δn0.14或Δn/n=0.04。除了液晶之外,在其它任何类型的材料中都难以获得大的折射率调幅。
虽然认为热光机理很慢,但我们发现这不是问题。依据有源期间的体积,对于很宽的应用范围都可以有足够快的折射率调制时间。根据α-Si的具体热量、折射率和导热性所做的简单物理估算建议,5μm厚、100μm长的方形热块可以在短至10-50μs的时间里进行3%的折射率调幅。在具有有限功耗的实际操作系统中,我们的器件一般在大约5ms的时间里有40nm以上的调谐。
为了在总厚度只有几个微米的薄膜结构中实现这种大的温度漂移,极坚固的薄膜粘合剂是我们首先需要的。作为移向基于等离子的技术,PECVD具有过程可变性以产生密实的柔性的几种光学特性各异但过程可兼容的材料,如非晶硅和非晶氮化硅或二氧化硅,具有宽泛的不同折射率。这些材料之间的变迁通过控制气体混合比、无需破坏真空地完成。在此报道的研究中,基于非晶硅和氮化硅的薄膜结构在我们实验室中已被证实在200μm的厚度下经历的重复温度梯度超过500℃,没有分层剥离或损毁。Martinu等人已经展示了PECVD对于介电薄膜的物理特性的益处,包括应力减小[L.Martinu,“Plasma deposition of optical films and coatings:a review,”J.Vac.Sci.Technol.A18(6),P.2629,2000]。
在这类新型器件的探索中,我们已经尝试了将薄膜热光可调谐性最大化,与以往的常规固定滤光片的目标-使其薄膜热光可调谐性最小化不同。但是,器件的设计必须考虑到半导体中热光系数不是恒量,从室温到700℃大约变化30%。Ghosh[Handbook of Thermo-Optic Coefficients of Optical Materials and Applications,G.Ghosh,Academic Press,New York,1998]已经表明,半导体中的热光效应主要是由于激发带边缘随时间的变化;单振荡器模型提供了对晶体和非晶半导体二者的热折射率变化很好的拟合。非晶硅和硅锗合金的折射率随温度的变化示于图3。通过对1500nm系统较大的吸收性而实现SiGe较大的dn/dT。在我们的实验室中,在此所述的过程已经认为α-Si具有大于以前报道的dn/dt。
因而,沉积一层或多层薄膜半导体,与主要是热光薄膜的可兼容层通过各种置换进行混合和合并,以便进行复杂的设计。成功的关键在于高质量的光学膜、严密地控制层厚度、内部发热以达到足够高的温度,实现Δn/n高至0.04,只在较小的热块上进行温度调制以及极为强烈的薄膜粘合剂以耐受最终的热应力。
利用诸如PECVD技术直接沉积薄膜允许通过控制薄膜的化学剂量法调节层的折射率。可以连续地沉积多个层,导致器件产量的提高。另外,沉积的持续时间决定层厚度。层的厚度可以薄于1μm。关于这些材料的任务前景是沉积低光吸收的高质量光学层。下面描述这些任务。
薄膜也可以外延取向沉积。这样可以导致低散射损耗和可能的低吸收的高阶材料。根据使用的材料。但外延取向生长是一个慢过程。
单或多层多晶硅材料可以通过首先沉积非晶硅层、再利用如高温回火、快速热回火的过程在高温下重结晶或准分子激光重结晶而制备。
非晶材料具有一些优于其它两类材料的优点。例如,通过化学剂量法对折射率的控制,非晶层可以比外延层快很多的沉积。因为薄膜是非晶,所以与排序良好的晶体结构相比,任何光学偏轴的依赖性将很少。另外,在非晶层中不会发生在多晶材料中发生的从晶粒边界的散射。无需赘述,对于非晶材料主要由于缺陷吸收而发生光损耗。
为了减少被位于光/迁移缝隙的缺陷光吸收,可以采用几种技术。第一种技术是沉积期间氢化薄膜以便钝化悬摆键。另一种技术是通过前面介绍的方法重结晶非晶膜层。虽然这样可以急剧地降低物体中的缺陷吸收效应,但这是用增大的缺陷吸收和在晶粒边界的散射换来的。
本发明前面公开的实施例拥有很多超过常规光学器件的优点。
新的器件可以利用常规的半导体工艺制作在衬底的表面,如前所述,导致有可能在每个衬底上制作很多器件,允许在衬底上测试和低成本地制造。下面讨论其它的优点和对前面的改型。
根据本发明的原理制造的新器件包括还具有较低封装成本的广泛推广的无源器件的可调谐改型。热光调谐产生简单的器件设计和高度的可调谐性。通过利用无机半导体材料,人们可以获得高的热光系数和操作时较大的温度范围。有很多兼容的沉积技术,包括直接沉积。直接沉积至少对于利用自动连续的工艺高产量地制造薄膜有利。就折射率的范围和可以制造的厚度而言也非常灵活。利用非晶半导体材料产生光滑的表面。材料的选择非常灵活。可以在PECVD过程中直接加入氢气来处理材料中的悬摆键。在另一过程中,可以重结晶非晶材料,达到具有低于非晶前体的低吸收和比直接沉积的多晶材料更光滑的表面的多晶形式。氢气回火可以降低晶体界面的效应。
如上所述,通过将一个或多个加热层集成为叠层,可以获得非常快的响应速度、低功耗和较高的温度均匀性。电阻加热允许传输较高的功率密度和精确控制功率传输,并且还潜在地允许加热层用作温度监视器。
如上所述,可以将多晶半导体层沉积为非晶层并重结晶到各种衬底的顶部。它们可以集成在光学薄膜叠层的各个点,并且可以光学的以及电学地仔细调谐。
然后,必须提供一种在较宽的温度范围、如室温到大约500℃内控制热光层的温度的方法,因为利用非晶半导体材料的热光特性的能力依赖于改变薄膜温度的有效、快捷以及控制良好的方法。局部的内加热,即在薄膜叠层本身的内部(并非其整个环境内)必须以聚合物的情形进行,强烈地优选高效、快捷的方法,尽管其它的方法、如近似的加热器法也可以采用。优选的方法包括在薄膜叠层中、或包括在衬底和TFIC之间、或在TFIC的最后一层之上的一个加热膜中,该膜集成到光学设计(即,具有特定厚度和折射率)中,但在使用的波长处基本上是光学透明且导电的,除非特别假定出于1300-1800nm的波长范围内。我们已经发现,n型多晶硅-通过首先非晶沉积、再通过在炉中加热重结晶而形成,是一种极好的选择,尽管其它的薄膜如导体ZnO或有关的材料也可以采用。
其它加热薄膜的可能方法包括非电学的方法,如在强烈吸收的波长处的光直接吸收,这在α-Si:H的情形中可以是500-950nm。这可以导致一种光学控制的可调谐光学滤光片,只要提供诸如几mW的光功率照明即可,其中光功率可以由多模光线传输。或者,因为如前面的Aegis专利申请所公开的那样,可以形成薄膜PIN传感器,通过较低强度的入射光源调节P-或N-掺杂薄膜。或者,也可以利用外部热源,如衬底温度的控制,或利用与滤光片相邻的热电阻条,无需与半导体间隔膜直接电学或光学连结。在优选的材料中光学效应、光导效应、电子效应和热效应的结合提供了几种加热薄膜的方式,但通过集成到TFIC中的导体膜已经获得了我们主要的结果。
这些方法可以用于制造各种TFIC,其中TFIC的光学特性可以通过加热改变热光层的折射率而得到电学控制。因为一些薄膜的折射率作为温度的函数而变化,总的来说TFIC的光学行为特征也依赖于温度,或多或少地依赖于设计和对各个薄膜折射率的具体敏感性。这意味着结合各种热光及非热光层的TFIC将作为温度的函数在给定的光谱段内显示透射、反射或相移各种光学状态。
作为本发明的一个分支的TFIC对特定膜的折射率的依赖性特别强,即包含谐振腔。薄膜叠层中光学谐振腔的总的结构是一个夹在反射镜(通过四分之一波长厚度的高和低折射率材料的交迭而形成)之间的一个腔体(其光学厚度是半波光学厚度的倍数)。这些四分之一波长和半波长以谐振波长来定义。此种TFIC最简单且最重要的例子是可调谐薄膜光学滤光片TFIF的制备,其中可调谐薄膜光学滤光片TFIF组合了一个单腔和两个反射镜结构。由于谐振效应,单独的谐振腔折射率的很小的热光改变(4%的量级)也会导致在接近谐振波长处的透射率接近100%的有效改变。
图4表示热光可调谐单腔法布里-珀罗薄膜滤光片的基本结构。在1500nm处光学透明的导电加热膜-在很宽的温度范围上能够精确控制厚度和坚固的粘结性-集成为光学干涉设计中。然后只由两种材料α-Si:H(n=3.67)和非理想配比的SiNx(n=1.77)制成适当的滤光片叠层用于反射镜层和腔体,其中两种材料由光谱椭圆光度法测定。众所周知,薄膜反射镜设计成高低折射率薄膜的成对四分之一波片交替,并且谐振腔由整数个半波长组成,一般为两个至四个。因为α-Si和SiHx之间较大的折射率反差,需要较少数量的反射镜对。在设计波长处即使4对反射镜也产生R=98.5%的反射率,并且5对反射镜产生R=99.6%的反射率。相比较而言,利用常规的介质如五氧化二钽(n=2.05)和二氧化硅(n=1.44),需要10个四分之一薄膜对达到R=99.5%的反射率。图5表示沉积的实际薄膜叠层的扫描电子显微图。
图6表示一种单腔滤光片热测量,举例说明了可用这些材料实现的策略。利用6个反射镜循环和第四级间隔(4个半波长),-3dB的宽度对于388nm和(finesse)大约F=4500的自由光谱范围为0.085nm。
衬底|HLHLHLHLHLHL 8H LHLHLHLHLHLH|空气在此标注中,字母H和L代表薄膜四分之一波长的厚度。H,高折射率层,是α-Si:H(此处H意味着氢气),L,低折射率层,是α-SiNx。腔体8H为8个四分之一波长或折射率×厚度=2全波长,此处的全波长约为1550nm。
热光可调谐范围依赖于滤光片中均层是热光活性的。法布里-珀罗腔中的谐振条件为nt-λ/2π=1/2mλ此处,n=间隔折射率,t=腔厚度,m=级,=在反射镜处的相移反射,λ=谐振波长。此式表明可以通过允许反射镜中的高折射层为热光性而将滤光片调谐到某种程度。图7表示制作高折射层、间隔物或所有的高折射层的预定热光效应。
图8表示在25℃~229℃的加热炉中加热的非晶硅间隔物和电介反射镜(五氧化二钽高折射和二氧化硅低折射层)的滤光片的热调谐。调谐约为15nm或dλ/dT=0.08nm/K。
图9表示不仅对于间隔物、而且对于反射镜的高折射层,利用非晶硅制备具有全部PECVD膜的滤光片的热光调谐性。此滤光片有4个周期反射镜,还组合了一个导电ZnO层用于内部加热薄膜叠层。内部加热能够达到更高的局部膜温度;在本例中调谐范围为37nm。虽然薄膜中的温度难以精确地测量,但ZnO膜中的电流为0-100mA,对应于估计超过400℃的温度。
通过利用各种间隔物合金和滤光片设计,我们观察到的调谐系数为0.08-0.15nm/°K,并且总的调谐范围超过40nm。比较而言,常规的静态薄膜滤光片技术目的在于对于窄带WDM滤光片实现中心波长的热变化<0.0005nm/°K,部分地利用高CTE衬底补偿少量的热光调谐而完成。因而利用非晶半导体膜、优化的PECVD沉积、热优化的衬底和内加热膜最大化地热控制导致大于一般固定WDM滤光片的大致300X的热光可调谐性。这种方法为我们首次提供了可在整个WDM波带1528-1561nm上没有移动部件地可调谐的薄膜法布里-珀罗滤光片。
到目前为止所得结果的概括如下。
在单腔热光滤光片中实现的特征范围可以概括如下FWHM的范围 0.85nm~2nmFinesse范围1500~4500可调谐带宽 >40nm插入损耗范围根据设计为0.2-4dB调谐速度整个范围上为5ms这表明了可调谐单腔TFIF曾经获得的最好结果。但是,通过所述方法的热光可调谐TFIF也允许有多腔设计,这样大大地扩展了可能的性能特征范围。我们已经验证了按照下列格式的简单的两腔设计衬底|HLHLHL 4H LHLHLH L HLHLHL 4H LHLHLH|空气此处,两腔为4H,中心L层是双法布里-珀罗结构之间的耦接层。此滤光片的热调谐结果如图10所示,该图表示在25~213℃温度范围上平顶特征和大约15nm的调谐。就我们所知,折射至今证实了的第一宽的可调谐多腔TFIF。显而易见,还可以有更精细的结构,包括各种非带通设计,如动态增益均衡器、可调谐色散补偿器等。
合适的加热膜的一个例子是N型掺杂多晶硅,如图11中201所示,其在近似1500nm的光通信波长处具有很小的光吸收性。或者,可以在衬底中形成一个整体的加热层,如图12中所示的301;例如,加热层可以通过对晶体硅衬底选择掺杂来限定。调谐层403或加热层404都可以处于叠层中的任何位置,与衬底等相邻。现有技术中已知具有多达200层或更多层的TFIC,虽然它们不是可热光调谐的。在现有技术中对于极低的波长变化、如小于0.01nm,在预期的温度操作范围上通常设计在通带的中心波长处。
下面描述通过温度控制滤光片中心频率的一些其它方法。控制可以通过多种方式实现,包括但不限于下列方法。
可以加热光学层位于的整个衬底。这种方法用于不需要快速调谐温度的应用。但是,较多热聚集的衬底限制了温度的变化速度,包括加热和冷却。这在快速调谐、即需要温度快速变化的应用中是不理想的。在这些应用中,需要更精确和有效的加热策略。
例如,可以采用放置得非常接近但不处于光路中的单个加热元件。加热元件例如可以是围绕光路的电阻环。下面描述这些实施例。热量可以经衬底或其它的结构层输送到热光层(TOL)。
或者,加热元件是处于光学叠层中并置于光路中的层。这样允许在加热层和TOL之间有密切的接触,由此提供极为有效的加热模式。不需要极快地供给热量。利用此种结构,可以在不小于100ms的时间里实现摄氏几百度的温度摆动。
可以采用几种方法产生热量。包括但不限于光学加热、横向焦耳发热、即采用来自结构侧面的热量以及Z轴焦耳发热、即沿结构的透射方向或Z轴施加热量。在光学加热中,光源、如在除器件采用的信号发射频率以外的频率下工作的激光可以指向或接近TOL。此光功率被TOL或一个或多个相邻层的吸收导致发热,并且因而增大了TOL以及中间区域的温度。
焦耳发热法因为易于实施而极具诱惑力。例如,电流(I)可以垂直或横向流经电阻(R)材料片。热形式的功率(P)通过电阻元件(P=I2R)消散在连结区域中。例如,可调谐的光学层可以直接位于此加热层之上,有可能导致迅速的温度变化。利用此方法已经表明,利用横向电流制备的器件在短至10ms的时间有摄氏几百度的温度变化。
电阻材料例如可以是金属、本征的或掺杂的半导体,或导体氧化物。该材料可以有足够的导电性以传输所需的功率。对于位于光路中的集成加热器,加热器材料必须还具有适当的光学特性,即折射率、厚度、吸收率等。另外,加热层必须能经受得住其产生的热量而不剥离或脆裂。
这些热光器件的衬底材料应该选择成处理所需的热和光特性。合适的材料包括硅晶片、熔融硅和蓝宝石,但不限于这些材料。产生并输送到可调谐光学层中的热量一般也传输到其它体积内、尤其是衬底中。因此衬底可以起吸热层的作用。例如,如果衬底具有高热导性,则必定比衬底具有低热导性产生更多的热量以升高TOL的温度。因为衬底影响受热层的热损耗,所以也将影响横过热光层的热轮廓。这反过来会影响器件的光学性能,如可调谐薄膜滤光片的带宽。如果希望对TOL有最大的热量传输,则可以使用良好的绝热体,如熔融硅。如果需要快速的温度变化,则具有较高导热性的衬底、如硅晶片可能是理想的。
这种可调谐涂层的设计依赖于所期望的目的。在设计计算中,例如利用工业标准,利用一个或多个折射率可调谐薄膜的各个值建立薄膜设计软件,如薄膜石灰质(Software Spectra,Inc制造)。在操作中,通过电流透过一个或多个加热层而在这些设计状态之间调谐或扫描器件。
如现有技术中所知,薄膜叠层的沉积方法可以根据使用的材料以及期望的特性而不同。合适的方法包括等离子气相沉积(PVD)法,如电子束沉积或离子辅助溅射,化学气相沉积(CVD)法,如热CVD或等离子辅助CVD(PACVD),低温CVD(LRCVD)和其它现有已知的技术,但不限于这些方法。在总结一种设计之后,下面进一步讨论制备器件的方法,包括几种额外的选择。
利用等离子增强的化学气相沉积(PCVD)和α-Si:H、聚Si和SiN,已经在实验室中观察到我们的器件经历很大的温度偏移、如室温变化400℃时没有故障。这种观察结果,即器件在较大的热冲击下功能良好,是一个惊喜,并没有完全弄清楚,但表明了在层之间极强的粘结性和较低的热感应力。这些非常大的温度变化集中在小体积的薄膜中与上述α-Si的大dn/dT相结合,意味着对于α-Si薄膜的部分折射率调制高达Δn/n=0.04。这种折射率变化的幅度主要用在谐振结构中,如法布里-珀罗设计,可以导致薄膜光学特性的巨大改变。但甚至在非谐振设计中也可以获得滤光片特性显著的变化。这个发现的一个结果是可以实现非常快的调谐速度,因为薄膜结构的较小的热量和包含的较大的温度范围;另外,这可以无需外部冷却地实现,并且可以通过利用一个集成的加热层在整个器件上以较高的均匀性控制温度。
本发明前述的实施例拥有很多超过现有技术的优点。
新器件可以利用常规的半导体工艺制作在衬底的表面上,如上所述,导致有可能在每个衬底上制作更多的器件,允许在衬底上测试和很低的制造成本。下面讨论其它的优点和对前面的改型。
根据本发明的原理制造的新器件包括还具有较低封装成本的广泛推广的无源器件的可调谐改型。热光调谐产生简单的器件设计和高度的可调谐性。通过利用无机半导体材料,人们可以获得高的热光系数和操作时较大的温度范围。有很多兼容的沉积技术,包括直接沉积。直接沉积至少对于利用自动连续的工艺高产量地制造薄膜有利。就折射率的范围和可以制造的厚度而言也非常灵活。利用非晶半导体材料产生光滑的表面。材料的选择非常灵活。可以在PECVD过程中直接加入氢气来处理材料中的悬摆键。在另一过程中,可以重结晶非晶材料,达到具有低于非晶前体的低吸收和比直接沉积的多晶材料更光滑的表面的多晶形式。氢气回火可以降低晶体界面的效应。
如上所述,通过将一个或多个加热层集成为叠层,可以获得非常快的响应速度、低功耗和较高的温度均匀性。电阻加热允许传输较高的功率密度和精确控制功率传输,并且还潜在地允许加热层用作温度监视器。
如上所述,可以将多晶半导体层沉积为非晶层并重结晶到各种衬底的顶部。它们可以集成在光学薄膜叠层的各个点,并且可以光学的以及电学地仔细调谐。
最后,熔融硅或石英衬底具有较少的光损耗,可以经受用于重结晶光学层或加热层的高温并具有较低的导热性,这样就减少了器件的功耗。
实施本发明上述某些方面的可调谐TFIC可以组合到产品、系统及正在描述的应用中。下面描述的每个产品、系统或应用的TFIC元件可以通过热光改变一个或多个内膜的折射率来调谐。首先一些代表性的器件包括●可调谐窄带滤光片,具有单腔法布里-珀罗设计和间隔的可调谐膜。窄带滤光片的中心波长可以调谐。
●可调谐窄带滤光片,具有多腔法布里-珀罗设计和一些或所有的间隔的可调谐膜。具有光谱形状的可调谐滤光片适于特定的密集WDM功能。
●可调谐增/减滤光片。“增/减滤光片”是成套的电信光纤中的一个窄带滤波器,在允许其它信道通过的同时增加或减少一个WDM信道。可调谐的增/减意味着增大或减小波长是可调谐的。
●可调谐偏振滤光片。偏振滤光片是TFIC,通常放置成与入射光成一角度,根据波长透射/反射光。调谐意味着既可以以最大偏振的波长调谐,也可以以固定的波长调谐双折射。
●可调谐激光器(与VCSELS或边缘发射型激光器或外谐振腔激光器集成)。通过这种装置可以无需移动部件地调谐激光器的波长。在VCSEL的情况下,可调谐滤光片可以集成在晶片尺度上。
●动态增益均衡器。动态增益均衡器用在光纤电信网络中,通过独立调节波段(如C带)上的光谱衰减来平衡WDM系统中不同波长处的光功率。可调谐性意味着可以通过一个或多个热光可调谐滤光片、通常是一系列的滤光片独立地改变各个衰减腔。
●可调谐色散补偿器。色散补偿是一个出现在光纤网络中的问题,尤其出现在40Gb/s的数据速率下,在速率下脉冲扩展很长的距离。补偿器的引入以相反符号的色散平衡了这些影响。可调谐补偿器是色散斜率可调的TFIC,用于调节可变网络条件。
●可调谐偏振色散补偿器。偏振色散是指改变光纤环境条件,造成光纤中的双折射变化并由此引发脉冲加宽。可调谐TFIC补偿器的设计用于调节补偿量。
●可变衰减器。可调谐TFIC可以构造成提供特定波长范围的可变衰减。这种器件通常用在光通信网络和其它应用中。
下面详细说明包括一个或多个上述特征的多种结构。
可调谐带通滤波器图13表示滤波器1300的结构,该滤波器具有透明导体电极膜1301、1302、上下镜叠层1304和在Si晶片1306上自加热的热光谐振腔材料1305的图案。通过端子1307、1308、透明导电层1309、1310和腔体层1305的电流I造成层1305的电阻加热,并且因而调谐层1305的折射率。每个反射镜叠层1304中高低折射层的数量以及其它设计参数的选择根据任何适当的设计方法决定,但得考虑到设计调谐范围。图14表示结构1400,其中没有使用透明导体电极,并且电流I在薄膜1401的平面上穿行。在此实施例中,反射镜叠层1304可以构造成具有任意合适的薄膜结构,包括现有技术中已知的结构。腔体材料1401的折射率通过热量调谐。下面讨论的另外的调谐能源是光能的一种控制波长。
现有技术中已知,采用多腔法布里-珀罗设计可以产生光学带通特性,具有比单腔的罗伦兹形状更平的顶和更陡的侧边,其中多腔法布里-珀罗设计中在薄膜叠层中组合了不止一个的谐振腔。图15表示一个薄膜叠层1500,每个叠层包括多个间隔1501、1502和电连结1503、1504、1505。这种设计引导电流I在可调谐间隔1501、1502的平面中,导致电阻自发热。
通过适当注意所有层的导热性并避免脱层或畸变,可以实现在环境工作点附近高达大约400℃的最大温度变化并提供合适的折射率变化。一般地,希望高导热性的衬底如Si或蓝宝石提供一种吸热层;器件和封装的热工艺对于稳定的操作很重要。通过外部控制使整个结构在升高的环境温度(例如80℃)下工作也是很有利的,以便消除将结构冷却到室温的要求。
取代电阻加热,或者额外的通过激光束、或通过光纤、或通过局部设置安装以照明薄膜的LED直接传输用于调谐滤光片的控制光。
图16表示在一种应用中稍做改进的滤光片1600、用于WDM光学网络的可调谐增/减多分复用器。滤光片1600设计成用在非零入射角θ、例如5-10°处,通过减小所有膜的物理厚度一个co(θ)因子而保持如前规定的光学厚度。该角度必须小到足以引入实质上没有偏振依赖性,额定为<0.2dB规格.在入射口1601进入的透射波长下降,并且通到下降口1602。其余的波长反射到通口1603。如果需要,也可以通过增加四个口1604来增加波长,如图所示。本发明的优点在于用于现有厚膜增/减滤光片设计的常规封装及构造法可以通过微小的修改后使用,不需要对通常固定的滤光片替换可调谐元件。
如上所述的线性或矩形增/减滤光片阵列可以制作在晶片尺度上并组装成一个单元,在单个集成器件中提供例如16×16θ256个独立的可调谐下降口。
可变光学衰减器(VOA)给定一个处于固定波长λ的激光信号,可以设计一个如图17所示的滤光片特性,其在波长λ处的透射率可以通过调谐滤光片而在动态范围上变化17dB。在一个温度下,滤光片以一种传递特性1701工作,而在第二温度下,以第二传递特性1702工作。这样构成一个在感兴趣的波长处如1550nm处工作的VOA。对于VOA应用,可以改进窄带滤光片的设计以提供一个准线性响应。用于产生如图17所示可变特性的设计如下
(HL)^4H(4HL)^4H此处,H是α-Si高折射层,L是SiN低折射层。此类VOA将一个可变衰减施加到大约30nm的波段中的任意给定通道,但不是一次平均地给到所有的通道。
可调谐探测器、光谱仪或通到监视器被用作间隔层并通过作为热光折射率调制源的电流和照明控制的光电导体或PIN光电二极管仍然保持其作为探测器的功能。
在谐振波长处光的敏感性强烈地提高,因为该波长在PIN薄膜中产生很大的电场强度,而其它波长则不会。因而可以设计器件的形式,用作波长可调谐光电探测器,即光谱仪,其中所有的关键功能都保留在几微米的薄膜内。这种器件的一个重要应用是通过用窄带滤光片扫描、例如扫描C波段1535-1565nm来监视WDM光纤网络的各个波长通道中的通道光功率水平。
反向偏压的PIN探测器将用于使光敏感性最大化。光谱仪的优选实施例利用外加热调谐滤光片,以便分开与探测相关的光电流和热光控制机构。假设由于探测的光电流小到不足以显著导致其本身的热调谐。
或者,可以使用内电流温度控制,只要这种可调谐探测器的设计和操作能够区分由例如1525-1565nm的信号光导致的较小的光电流响应和用于调谐热光滤光片的较大电流或光电流即可。一种区分的办法是调节信号光到一个“载波”频率,该频率处于传感器的电子带宽内,但高于用于热光调谐的各种电流或光电流的任何频率。通过在调节频率“锁定放大”处放大光电流信号,可以分开较小的高频光电流与较大的低频电流或光电流。
可调谐VCSEL或其它激光器上述的可调谐滤光元件可以与各类激光器一起使用,以制备一种集成的可调节波长的激光器。
VCSEL激光器阵列以法布里-珀罗结构制造在晶片上,具有通过分子束外延或其它工艺制备的反射镜叠层、增益区和第二反射镜叠层。如果认为第二反射镜叠层是上述热光滤光片的后续沉积的第一反射镜,则对于自由的静置滤光片,薄膜半导体可以直接沉积在晶片上的间隔层处,之后是最后的(第三)薄膜(HL)反射镜叠层。然后激光器件将由两个耦合腔组成,其中一个激光器是这样的,另一个的是可热调谐输出反射镜。整个器件可以在输出波长调谐。
利用各种类型的非VCSEL激光器,可以通过将一个激光器与一个腔反射镜耦合成膜可调谐滤光片而构成,其也只有输出反射镜。激光器系统实质上由反射镜-增益介质-可调谐间隔层-反射镜组成,并且通过间隔层的热控制而可调谐波长。
偏振控制为了补偿偏振模式色散,在WDM网络中需要有偏振传感和控制。薄膜偏振器由放置成与入射光呈一个角度的薄膜滤光片构成,使得S偏振光主要被透射、而P偏振光被反射,反之依然。
图18表示在两种状态1801、1802下以56.5°被照明的滤光片的P透射率。滤光片由43层两种材料组成,其中21层表示为H=CDS,22层表示为L=SiO2。两条曲线1801、1802表示H层折射率改变2%的效果,对所有21个H层模拟热光效果。这种效果可以通过外部、而非层中的电流加热造成。通过这种折射率调制,P偏振光在1550nm处的透射率从1801特性曲线的99%变化到特性曲线1802的50%。
图19表示可调谐薄膜法布里-珀罗滤光片的一种可能轮廓。金属垫901允许外部电连结到薄膜金属环形电阻1902,电阻1902加热滤光片1903。环形电阻1902可以是大约300-500μm的直径,或是任何其它合适的大小。图20表示图19所示的滤光片沿线条20-20的截面图。该结构包括电介质薄膜反射镜叠层2001、法布里-珀罗腔体层2002和电阻环1902,腔体层的材料在此情况下是可热调谐的。
通过利用接触垫1901使电流在电阻加热器1902中运行,将改变腔体层的光学特性,并且因而调谐滤光片。光穿过位于电阻加热器1902中心的孔,该孔是有效滤光区。此类加热器可以由任何能够载运足够大的电流以产生必需热量的材料组成。例如,由100nm厚的铬膜制成的直径为300μm、宽度为50μm的环形加热器将有近似10Ohm的电阻。电阻耗散的功率由p=I2R给出。假设需要1mW的功率将滤光片充分加热到所需的调谐范围,在加热元件截面上3.2V的电压将产生0.32mA的电流和1mW的功率。整个这些器件以及下面将要讨论的带有电阻加热元件的器件结构都可以安置在一个连结到保持在恒定低温的T/E冷却器的吸热层,其中T/E冷却器将提供冷却。
此种加热的方法比上述的外部加热器更有效,因为加热元件与有源层更接近。这将导致更快的加热和调谐以及较少的功耗。另外,此类加热元件没有基本的温度限制,除非元件本身的材料随温度不稳定。但是,在滤光片区域的截面上温度均匀性较差,因为热量必须从加热器的内部边缘传递到有效滤光区的中心。这种非均匀的温度分布将导致很宽的透射峰,因为光束将在不同的腔体特性范围内分布。
或者,如图21和22所示,可以使用对感兴趣的波长透明的薄膜电阻加热器2101。在此情况下,加热器可以位于光路中,提供更均匀的加热。图21表示具有此类加热元件的可调谐薄膜法布里-珀罗滤光片,其中加热元件集成在衬底和滤光片叠层之间。这种结构还包括金属衬垫1901,用于与加热元件2101和滤光片叠层2201电连结。用在电信领域的此类加热元件2101可以由几种透明导体中的一种制成,如氧化锌、氧化铟锡、掺杂的非晶薄膜、微晶或多晶半导体等。因为这些透明导体具有比大多数纯金属高的电阻,所以加热元件2101可以制作的非常小,例如大约500μm×500μm或其它任意尺寸,从而使电阻功率密度最大。
半透明电阻加热器的另一种可能的材料是掺杂的晶体硅或其它一些半导体晶体。在此情况下,滤光片衬底将是晶体半导体晶片,滤光片将制作在掺杂区的顶部。当然,本征的或掺杂的半导体必须对穿过法布里-珀罗滤光片的波长透明。因此对光信号没有不必要的损耗或改变。
其它的加热器配置示于图23-30。这些元件已经结合附图19-22做了解释。
例如,图23和24所示的结构类似于图21和22所示的结构,但在叠层的顶部而非底部有电阻层2101。图25和26表示作为衬底2601的掺杂区的电阻层2501。图27和28表示图21-24所示结构的结合,带有顶部和底部加热器2101。最后,图29-30表示用作自加热器的间隔层2901。注意,上镜3002的尺寸被减小,从而允许端子1901邻接间隔层2901与其连结。
以上结合一些具体的实施例对本发明进行了描述。但还有很多落在本发明范围之内的改型对于本领域的技术人员也是显而易见的。因此,本发明的范围只由所附的权利要求书限定。
权利要求
1.一种动态可调谐薄膜干涉涂层,包括一个或多个具有可热光调谐折射率的层。
2.如权利要求1所述的动态可调谐薄膜干涉涂层,其中所述的一个或多个热光层是半导体材料。
3.如权利要求2所述的动态可调谐薄膜干涉涂层,其中半导体材料是直接沉积的材料。
4.如权利要求3所述的动态可调谐薄膜干涉涂层,其中直接沉积的半导体材料是外延生长的单晶层。
5.如权利要求3所述的动态可调谐薄膜干涉涂层,其中直接沉积的材料是非晶半导体。
6.如权利要求5所述的动态可调谐薄膜干涉涂层,其中非晶半导体处于非晶态。
7.如权利要求6所述的动态可调谐薄膜干涉涂层,其中非晶半导体是非晶硅或非晶硅锗。
8.如权利要求7所述的动态可调谐薄膜干涉涂层,其中非晶硅或非晶硅锗利用等离子增强的化学气相沉积技术沉积。
9.如权利要求5所述的动态可调谐薄膜干涉涂层,其中非晶硅半导体是微晶材料。
10.如权利要求5所述的动态可调谐薄膜干涉涂层,其中非晶半导体是多晶材料。
11.如权利要求10所述的动态可调谐薄膜干涉涂层,其中多晶半导体材料直接沉积为非晶或微晶材料,并再重结晶成多晶态。
12.如权利要求1所述的动态可调谐薄膜干涉涂层,其中加热元件与可调谐薄膜集成一体。
13.如权利要求12所述的动态可调谐薄膜干涉涂层,其中加热元件包括一个或多个光学吸收层,并且加热通过光信号实现。
14.如权利要求12所述的动态可调谐薄膜干涉涂层,其中加热元件是一个电阻加热器。
15.如权利要求14所述的动态可调谐薄膜干涉涂层,其中加热元件集成为光学薄膜结构中的层。
16.如权利要求15所述的动态可调谐薄膜干涉涂层,其中加热元件是晶体半导体衬底中的一个掺杂区。
17.如权利要求15所述的动态可调谐薄膜干涉涂层,其中加热元件是一个直接沉积的透明金属氧化物。
18.如权利要求15所述的动态可调谐薄膜干涉涂层,其中加热元件是一个直接沉积的掺杂薄膜半导体。
19.如权利要求15所述的动态可调谐薄膜干涉涂层,其中加热元件是一个重结晶的体掺杂多晶半导体。
20.如权利要求1所述的动态可调谐薄膜干涉涂层,其中所述的涂层用于动态改变作为光波长函数的光功率的透射、反射或吸收。
21.如权利要求20所述的动态可调谐薄膜干涉涂层,其中所述涂层用作动态可调谐光学带通滤光器。
22.如权利要求21所述的动态可调谐薄膜干涉涂层,其中所述涂层包含一个单个热光可调谐光学腔,该热光可调谐光学腔决定透射波长的法布里-珀罗滤光器。
23.如权利要求21所述的动态可调谐薄膜干涉涂层,其中涂层包含多个热光可调谐光学腔,该热光可调谐光学腔决定透射波长。
24.如权利要求21所述的动态可调谐薄膜干涉涂层,其中所述涂层用作波长可调谐光学探测器的一部分。
25.如权利要求24所述的动态可调谐薄膜干涉涂层,其中所述涂层用作扫描光学光谱仪。
26.如权利要求21所述的动态可调谐薄膜干涉涂层,其中所述涂层用作光通信的可调谐的增/减滤光器。
27.如权利要求20所述的动态可调谐薄膜干涉涂层,其中所述涂层用于改变在波长范围上每个波长的相对透射或反射。
28.如权利要求27所述的动态可调谐薄膜干涉涂层,其中所述涂层用作可在波长范围上调谐的光谱均衡器或光谱滤光器的一部分。
29.如权利要求20所述的动态可调谐薄膜干涉涂层,其中所述涂层用于在波长范围上改变总的透射或反射。
30.如权利要求29所述的动态可调谐薄膜干涉涂层,其中所述涂层用作可在波长范围上调谐损耗的可变光学衰减器的一部分。
31.如权利要求1所述的动态可调谐薄膜干涉涂层,其中所述涂层用于在反射或透射中动态改变作为波长函数的光学相位。
32.如权利要求31所述的动态可调谐薄膜干涉涂层,其中所述涂层用于动态控制光通信系统中的色散。
全文摘要
根据本发明的各个实施例及其各方面,提供了一种包括一个或多个热光可调谐折射率层的动态可调谐薄膜干涉涂层。薄膜干涉涂层中的可调谐层能够成为一种新的薄膜有源器件,用于滤光、光的控制和调制。该有源薄膜结构可以直接用到或集成到各种光子子系统中以制作调谐激光器、用于光纤通信的可调谐增/减滤光片、可调谐偏振器、可调谐色散补偿滤光片和很多其它的器件。
文档编号G02F1/21GK1516821SQ02812224
公开日2004年7月28日 申请日期2002年6月18日 优先权日2001年6月18日
发明者劳伦斯·多麦施, 尤金·马, 罗伯特·穆拉诺, 尼库雷·尼穆楚克, 亚当·佩恩, 史蒂文·谢尔曼, 马逖尔斯·瓦格纳, 吴明, 尼穆楚克, 穆拉诺, 谢尔曼, 佩恩, 劳伦斯 多麦施, 斯 瓦格纳, 马 申请人:伊吉斯半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1