一种显示基板及显示装置的制作方法

文档序号:12062471阅读:197来源:国知局
一种显示基板及显示装置的制作方法

本发明涉及显示技术领域,尤其涉及一种显示基板及显示装置。



背景技术:

液晶显示器(TFT-LCD,全称为Thin Film Transistor-Liquid Crystal Display)是一种被动发光式平板显示设备,由于液晶分子本身不能发光,必须搭配背光源才能正常工作。背光源发出的白光,依次经过第一基板(如阵列基板)、液晶层和第二基板(如彩色滤光片)后,最终可呈现出全彩色显示和灰阶亮度。

目前应用于TFT-LCD的白光LED背光源发出的白光主要通过以下方式实现:如图1所示,以蓝光芯片(Blue Chip)作为激发源,其表面涂覆有一层YAG(即钇铝石榴石的简称,化学式为Y3Al5O12)荧光粉。蓝光芯片在电场激发下发射蓝光,激发表面涂覆的YAG荧光粉发出黄光,蓝光与黄光经过混色后形成光谱范围覆盖380~780nm的白色背光光谱。如图2所示,白光LED发出的白光依次经阵列基板、液晶层,并经彩膜基板表面的红/绿/蓝子像素的滤色后,最终呈现出亮度可控、色彩丰富的画面。

白光LED的发光光谱示意图如图3所示,其中,发光波段在440~450nm的尖锐、较窄的发射峰和发光波段在500~650nm宽发射峰分别对应于蓝色芯片发射出的蓝光的发射峰以及YAG荧光粉发射出的黄光的发射峰,蓝光的利用率仅为50%左右。

如图4所示,为了进一步提高LCD显示色彩的细腻效果,目前在传统红/绿/蓝三原色子像素的基础上增加一个黄色的子像素,形成RGBY四色子像素,作为新一代技术,显示色域更广,如图5所示,尤其在显示金色和黄色上,画质提升明显。

然而,白光LED发出的光谱范围覆盖为380nm~780nm的白光中只有与彩膜基板中色阻透过波长对应的部分才能被利用,其他波长部分均被过滤,利用率较低。

对于蓝色子像素而言,白光LED发出的白光本身就是由蓝光芯片激发YAG荧光粉复合而成,又经蓝色色阻过滤后成蓝色,步骤重复且发光效率明显逐渐降低。如图6所示,从背光源发出的白光到蓝色子像素显示的蓝光,背光透过率依次为:复合白光(约50%)→下偏光片(约42%)→液晶层(约70%)→彩膜基板蓝色色阻(约10%)→上偏光片(约42%),最终从显示的蓝光透过率仅为0.6%左右。

而对于黄色子像素而言,黄色色阻只能利用白光中波段范围为550~610nm黄光波段,其他波段均被过滤。白光LED发出的白光本身就是由蓝光芯片激发YAG荧光粉复合而成,又经黄色色阻过滤后成黄色,步骤重复且发光效率明显逐渐降低。如图7所示,从背光源发出的白光到黄色子像素显示的黄光,背光透过率依次为:复合白光(约50%)→下偏光片(约42%)→液晶层(约70%)→彩膜基板黄色色阻(约40%)→上偏光片(约42%),最终从显示的黄光透过率仅为2.5%左右。



技术实现要素:

鉴于此,为解决现有技术的问题,本发明的实施例提供一种显示基板及显示装置,可提高显示基板对背光的利用率和光效。

为达到上述目的,本发明的实施例采用如下技术方案:

一方面、本发明实施例提供了一种显示基板,包括多个像素单元,所述像素单元包括,蓝色子像素;所述蓝色子像素内设置有透明色阻层,用于透过射向所述显示基板的蓝光;红色子像素;所述红色子像素内设置有红色荧光粉层,用于在所述蓝光的激发下发红光;绿色子像素;所述绿色子像素内设置有绿色荧光粉层,用于在所述蓝光的激发下发绿光;黄色子像素;所述黄色子像素内设置有黄色荧光粉层,用于在所述蓝光的激发下发黄光。

可选的,所述红色子像素内还设置有与所述红色荧光粉层层叠设置的透明色阻层;或者,所述红色荧光粉层主要由掺杂有红色荧光粉的透明色阻层构成。

优选的,所述红色荧光粉层或所述红色荧光粉的材料为Ru掺杂的Y2O3

可选的,所述绿色子像素内还设置有与所述绿色荧光粉层层叠设置的透明色阻层;或者,所述绿色荧光粉层主要由掺杂有绿色荧光粉的透明色阻层构成。

优选的,所述绿色荧光粉层或所述绿色荧光粉的材料为Ru掺杂的SrGa2S4

可选的,所述黄色子像素内还设置有与所述黄色荧光粉层层叠设置的透明色阻层;或者,所述黄色荧光粉层主要由掺杂有黄色荧光粉的透明色阻层构成。

可选的,所述显示基板还包括,覆盖所述像素单元的保护层;设置在所述蓝色子像素内的所述透明色阻层与所述保护层为一体结构。

可选的,所述透明色阻层由透明树脂、或聚甲基丙烯酸甲酯、或聚碳酸酯材料构成。

可选的,所述显示基板为彩膜基板或COA基板。

另一方面、本发明实施例还提供了一种显示装置,包括上述所述的显示基板与位于所述显示基板入光侧的蓝光背光源。

可选的,所述蓝光背光源为蓝光LED芯片。

可选的,所述蓝光背光源发出的蓝光波长为(440±30)nm。

优选的,所述红色子像素在所述蓝光的激发下发出的红光波长为(700±30)nm;和/或,所述绿色子像素在所述蓝光的激发下发出的绿光波长为(530±30)nm;和/或,所述黄色子像素在所述蓝光的激发下发出的黄光波长为(580±30)nm。

基于此,通过本发明实施例提供的上述显示基板,以蓝光光源(如蓝光芯片)作为背光源,蓝光芯片表面无需涂覆YAG荧光粉,采用蓝光(蓝光芯片)→蓝光灰阶(液晶层)→红色荧光粉层/绿色荧光粉层/蓝色子像素内的透明色阻层/黄色荧光粉层的直接激发步骤,简化了现有技术中的蓝光(蓝光芯片)→黄光(YAG荧光粉)→白光(蓝光+黄光)→白光灰阶(液晶层)→红/绿/蓝/黄色阻的多步滤色发光步骤,对背光的光效和利用率大大提升。尤其针对蓝色子像素,背光源发出的蓝光直接穿透透明色阻层,不需要再经过额外的蓝色滤色步骤,蓝色子像素发出的蓝光透过率几乎可达到100%,即完全透过,从而发出高亮的蓝光。针对黄色子像素,背光源发出的蓝光经过液晶层的灰阶调控后,直接激发黄色子像素中的黄色荧光粉层发射出黄光,优化了发光步骤,背光损失率大大降低,光效和利用率明显提升。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为现有技术中常规白光LED(蓝光芯片+YAG荧光粉)的封装图;

图2为现有技术中常规R/G/B型液晶显示装置的发光示意图;

图3为现有技术中常规白光LED背光源的发光光谱示意图;

图4为现有技术中R/G/B/Y型液晶显示装置的发光示意图;

图5为现有技术中R/G/B三色和R/G/B/Y四色技术显示色域效果对比示意图;

图6为现有技术中蓝色子像素光效利用示意图;

图7为现有技术中黄色子像素光效利用示意图;

图8为本发明实施例提供的一种显示基板的发光示意图;

图9为本发明实施例1中蓝光和黄光的光效利用率示意图;

图10为本发明实施例2提供的一种显示基板的发光示意图;

图11为本发明实施例提供的一种纯蓝光LED背光源的发光示意图。

附图标记:

01-显示基板;10-蓝色子像素;11-透明色阻层;20-红色子像素;21-红色荧光粉层;30-绿色子像素;31-绿色荧光粉层;40-黄色子像素;41-黄色荧光粉层;02-玻璃盖板;03-液晶层。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要指出的是,除非另有定义,本发明实施例中所使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。

例如,本发明专利申请说明书以及权利要求书中所使用的术语“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。并且,由于本发明实施例所涉及的彩膜基板中的各像素单元实际尺寸非常微小,为了清楚起见,本发明实施例附图中的各结构尺寸均被放大,不代表实际尺寸比例。

如图8所示,本发明实施例提供了一种显示基板01,包括多个像素单元,该像素单元包括,蓝色子像素10;该蓝色子像素10内设置有透明色阻层11,用于透过射向该显示基板01的蓝光;红色子像素20;该红色子像素20内设置有红色荧光粉层21,用于在蓝光的激发下发红光;绿色子像素30;该绿色子像素30内设置有绿色荧光粉层31,用于在蓝光的激发下发绿光;黄色子像素40;该黄色子像素40内设置有黄色荧光粉层41,用于在蓝光的激发下发黄光。

需要说明的是,由于蓝光波长较小(430~470nm),具有的能量较大,因此能够激发红色荧光粉层21、绿色荧光粉层31以及黄色荧光粉层41分别发出波长较大的红光(620~780nm)、绿光(500~560nm)以及黄光(560~590nm);但反之,能量较小的红光、或绿光、或黄光不能激发出具有较大能量的蓝光,故上述显示基板01具体应用于的背光光源为蓝光。

这里,本发明实施例对上述显示基板01中,R/G/B/Y子像素的排列方式不作限定,可沿用现有技术中的如条形、马赛克形、Delta形等多种排列方式。

上述显示基板01具体可以为彩膜基板或COA基板(color filter on array,彩膜集成在阵列基板上的结构)。

基于此,通过本发明实施例提供的上述显示基板01,以蓝光光源(如蓝光芯片)作为背光源,蓝光芯片表面无需涂覆YAG荧光粉,采用蓝光(蓝光芯片)→蓝光灰阶(液晶层)→红色荧光粉层/绿色荧光粉层/蓝色子像素内的透明色阻层/黄色荧光粉层的直接激发步骤,简化了现有技术中的蓝光(蓝光芯片)→黄光(YAG荧光粉)→白光(蓝光+黄光)→白光灰阶(液晶层)→红/绿/蓝/黄色阻的多步滤色发光步骤,对背光的光效和利用率大大提升。尤其针对蓝色子像素,背光源发出的蓝光直接穿透透明色阻层,不需要再经过额外的蓝色滤色步骤,蓝色子像素发出的蓝光透过率几乎可达到100%,即完全透过,从而发出高亮的蓝光。针对黄色子像素,背光源发出的蓝光经过液晶层的灰阶调控后,直接激发黄色子像素中的黄色荧光粉层发射出黄光,优化了发光步骤,背光损失率大大降低,光效和利用率明显提升。

在上述基础上进一步优选的,红色子像素20内还设置有与红色荧光粉层21层叠设置的透明色阻层;或者,红色子像素20内的红色荧光粉层21可以主要由掺杂有红色荧光粉的透明色阻层构成,即将红色荧光粉材料掺杂到透明色阻(如树脂光阻胶)中,然后依次通过曝光、显影的工艺沉积制备在上述显示基板的衬底基板上。其中,红色荧光材料例如可以为Ru掺杂的Y2O3,即Y2O3:Ru。

与上述红色子像素20结构类似,绿色子像素30内也可以还设置有与绿色荧光粉层31层叠设置的透明色阻层;或者,绿色荧光粉层31主要由掺杂有绿色荧光粉的透明色阻层构成,即将绿色荧光粉材料掺杂到透明色阻(如树脂光阻胶)中,然后依次通过曝光、显影的工艺沉积制备在上述显示基板的衬底基板上。其中,绿色荧光粉的材料例如可以为Ru掺杂的SrGa2S4,即SrGa2S4:Ru。

与上述红色子像素20、绿色子像素30结构类似,黄色子像素40内也可以还设置有与黄色荧光粉层41层叠设置的透明色阻层;或者,黄色荧光粉层41主要由掺杂有黄色荧光粉的透明色阻层构成,即将黄色荧光粉材料掺杂到透明色阻(如树脂光阻胶)中,然后依次通过曝光、显影的工艺沉积制备在上述显示基板的衬底基板上。其中,黄色荧光粉的材料例如可以为Ce掺杂的(Y1-aGda)3(Al1-bGab)O12,即(Y1-aGda)3(Al1-bGab)O12:Ce3+

进一步的,设置在上述各子像素内的透明色阻层例如可以由透明树脂、或有机树脂如聚甲基丙烯酸甲酯(polymethyl methacrylate,缩写为PMMA)、或聚碳酸酯(Polycarbonate,缩写为PC)材料构成。

进一步的,上述显示基板01还包括,覆盖上述像素单元的保护层;其中,设置在蓝色子像素10内的透明色阻层11可以与保护层为一体结构。即,在先形成红色子像素、绿色子像素以及黄色子像素,蓝色子像素对应于的区域是空白区域,之后再形成覆盖的保护层,保护层填充在蓝色子像素对应于的区域内的部分即形成了设置在蓝色子像素10内的透明色阻层11。

下面提供2个具体实施例,用于详细描述上述的显示基板01。

实施例1

参见图8所示,本实施例提供了一种显示基板01,该显示基板01具体为彩膜基板。包括多个像素单元,该像素单元包括,蓝色子像素10;该蓝色子像素10内设置有透明色阻层11,用于透过射向该显示基板01的蓝光;红色子像素20;该红色子像素20内设置有红色荧光粉层21,用于在蓝光的激发下发红光;绿色子像素30;该绿色子像素30内设置有绿色荧光粉层31,用于在蓝光的激发下发绿光;黄色子像素40;该黄色子像素40内设置有黄色荧光粉层41,用于在蓝光的激发下发黄光。

蓝色子像素10内设置的透明色阻层11为无色透明平坦层(Over Coat,缩写为OC)树脂。

红色子像素20、绿色子像素30、蓝色子像素10以及黄色子像素40可以采用将相应颜色的荧光粉材料掺杂到白色透明树脂光阻胶中,然后依次通过曝光、显影的工艺沉积制备在彩膜基板的衬底上。但需要说明的是,这四层的沉积顺序并无先后,相应膜层厚度可根据具体的色域和白点坐标规格进行调整,本发明实施例对此均不作限定。

本实施例还提供了与上述彩膜基板对合的阵列基板、位于二者之间的液晶层、位于阵列基板远离液晶层一侧的背光模组(其发出的蓝光例如可以通过蓝光LED芯片来实现)以及上下偏光片等结构。

背光模组中的发光源为纯蓝色芯片(发光波长为440±30nm),表面不涂覆常规YAG荧光粉。当蓝光经过红色子像素和绿色子像素时,激发各子像素内的红色荧光粉材料和绿色荧光粉材料发出红光、绿光。

如图9所示,当蓝光经过蓝色子像素10内的透明色阻层11时,透过率约为100%,穿透而发出高亮蓝光;当蓝光经过黄色子像素40内时,直接激发黄色荧光粉材料发出黄光,背光源中的蓝光的发光效率大大提升,实现了蓝光(蓝光芯片)→蓝光灰阶(液晶层)→黄光(如YAG荧光粉)的直接激发步骤,背光源整体的光效和利用率明显提升,其中蓝光光效和利用率最高。

实施例2

如图10所示,本实施例提供了一种显示基板01,该显示基板01具体为COA基板。该COA基板包括阵列基板,其上集成有多个像素单元,该像素单元包括,蓝色子像素10;该蓝色子像素10内设置有透明色阻层11,用于透过射向该显示基板01的蓝光;红色子像素20;该红色子像素20内设置有红色荧光粉层21,用于在蓝光的激发下发红光;绿色子像素30;该绿色子像素30内设置有绿色荧光粉层31,用于在蓝光的激发下发绿光;黄色子像素40;该黄色子像素40内设置有黄色荧光粉层41,用于在蓝光的激发下发黄光。

蓝色子像素10内设置的透明色阻层11为无色透明平坦层(Over Coat,缩写为OC)树脂。

红色子像素20、绿色子像素30、蓝色子像素10以及黄色子像素40可以采用将相应颜色的荧光粉材料掺杂到白色透明树脂光阻胶中,然后依次通过曝光、显影的工艺沉积制备在彩膜基板的衬底上。但需要说明的是,这四层的沉积顺序并无先后,相应膜层厚度可根据具体的色域和白点坐标规格进行调整,本发明实施例对此均不作限定。

本实施例还提供了与上述COA基板对合的玻璃盖板02(Cover Glass)、位于二者之间的液晶层03、位于阵列基板远离液晶层一侧的背光模组(其发出的蓝光例如可以通过蓝光LED芯片来实现)以及上下偏光片等结构。

背光模组中的发光源为纯蓝色芯片(发光波长为440±30nm),表面不涂覆常规YAG荧光粉。当蓝光经过红色子像素和绿色子像素时,激发各子像素内的红色荧光粉材料和绿色荧光粉材料发出红光、绿光。

参考图10所示,当蓝光经过蓝色子像素10内的透明色阻层11时,透过率约为100%,穿透而发出高亮蓝光;当蓝光经过黄色子像素40内时,直接激发黄色荧光粉材料发出黄光,背光源中的蓝光的发光效率大大提升,实现了蓝光(蓝光芯片)→蓝光灰阶(液晶层)→黄光(如YAG荧光粉)的直接激发步骤,背光源整体的光效和利用率明显提升,其中蓝光光效和利用率最高,约为12%(较现有技术的0.6%有显著提升),黄光利用率约为6.0%(较现有技术的2.5%也有明显提升)。

在上述基础上、本发明实施例还提供了一种显示装置,包括上述的显示基板与位于显示基板入光侧的蓝光背光源。该显示装置具体可以是液晶显示装置,可以为液晶显示器、液晶电视、数码相框、手机、平板电脑以及导航仪等具有任何显示功能的产品或者部件。

进一步的,蓝光背光源为蓝光LED芯片。蓝光背光源发出的蓝光波长为(440±30)nm。本发明实施例选用的(440±30)nm波长纯蓝光LED背光源的发光示意图如图11所示,该波段的蓝光发光峰尖锐、半峰宽较窄,色纯度高,可以实现高色域的显示。

进一步的,上述红色子像素在蓝光的激发下发出的红光波长为(700±30)nm;和/或,上述绿色子像素在蓝光的激发下发出的绿光波长为(530±30)nm;和/或,上述黄色子像素在蓝光的激发下发出的黄光波长为(580±30)nm,以最大程度地实现R/G/B/Y四原色型液晶显示装置全彩高色域显示的效果。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1