一种增加不锈钢激光打孔深度的新方法

文档序号:8930792阅读:833来源:国知局
一种增加不锈钢激光打孔深度的新方法
【技术领域】
[0001]本发明属于激光加工技术领域,尤其是涉及一种增加不锈钢激光打孔深度的新方法。
【背景技术】
[0002]激光打孔是早在19世纪初就达到实用化的激光加工技术,同时也是激光加工的主要应用领域之一。由于工业和科学技术的飞速发展,硬度大、熔点高的材料应用越来越广泛,对此类材料的精细加工也迫在眉睫。然而这类材料的加工用传统的机械加工方法很难甚至不可能实现,而采用激光打孔技术则可以解决。激光打孔是利用功率密度很高的高能激光束对材料进行瞬时作用,脉冲时间极短,打孔速度非常快。将高效能激光器与高精度的机床及控制系统配合,通过微处理机进行程序控制,显著提高了激光打孔的效率,这样的科技结合实现了巨大的经济利益,推动了社会的发展。
[0003]然而,人类文明进步的同时消耗着地球巨额的能源。石油,煤炭等传统能源的枯竭,无疑敲响了节能环保的警钟。目前绝大多数激光器都是由电力驱动,光电转换效率不高,激光加工效率较低,由此大规模的激光加工材料意味着要消耗巨额的电力,使能源消耗增大。因此,节省激光加工过程中的能源消耗,提高激光加工效率是摆在面前的一个重要问题。

【发明内容】

[0004]针对现有技术中存在不足,本发明提供了一种增加不锈钢激光打孔深度的新方法,通过在不锈钢表面利用氨基硅烷化技术自组装一层金纳米颗粒,增加打孔深度。
[0005]本发明是通过以下技术手段实现上述技术目的的。
[0006]一种增加不锈钢激光打孔深度的新方法,包含以下步骤:
[0007](I)不锈钢前处理;(2)制备金纳米颗粒溶液;(3)金纳米颗粒在不锈钢表面的自组装:将3-氨基丙基三甲氧基硅烷(APTMS)溶液溶解于甲醇中,配置成APTMS-甲醇溶液;将步骤(I)中经过处理的不锈钢浸泡在APTMS-甲醇溶液中,取出经去离子水冲洗后,再次将其浸泡在步骤(2)中制备好的金纳米颗粒溶液中,取出干燥后得到自组装不锈钢;(4)激光打孔:在步骤(3)中所述自组装不锈钢的表面激光打孔,所述激光的波长与金纳米颗粒的吸收波长相同;(5)不锈钢后处理。
[0008]进一步的,步骤(I)中所述不锈钢前处理的过程为:对不锈钢的表面依次进行打磨、抛光、超声清洗和干燥处理。
[0009]进一步的,所述不锈钢为304不锈钢。
[0010]进一步的,步骤(2)中所述制备金纳米颗粒溶液的制备如下:将1.7ml浓度为
0.01g/ml的氯金酸溶液加入50ml水中,采用油浴法加热至沸腾后保持lOmin,随后加入38.8mmol/L的梓檬酸钠2.25ml,在10r/s的速度下加热搅拌15min,得所述金纳米颗粒溶液。
[0011]进一步的,步骤(3)中所述3-氨基丙基三甲氧基硅烷(APTMS)溶液和甲醇溶液的体积比为1:25。
[0012]进一步的,步骤(3)所述经过处理的不锈钢浸泡在APTMS-甲醇溶液中的时间为12h0
[0013]进一步的,步骤(3)所述经过处理的不锈钢浸泡在金纳米颗粒溶液中的时间为12h0
[0014]进一步的,步骤(3)中所述自组装不锈钢的表面组装了一层金纳米颗粒阵列。
[0015]进一步的,步骤⑷中所述激光参数为:激光器频率ΙΚΗζ,波长532nm,脉宽500ms,激光能量80-120uJ,脉冲个数1_5个。
[0016]进一步的,步骤(5)所述不锈钢后处理过程为:对经步骤(4)处理的不锈钢表面用酒精和丙酮在超声清洗仪中交替清洗两次、烘干后即得所述带孔不锈钢。
[0017]本发明的有益效果:
[0018]本发明所述增加不锈钢激光打孔深度的新方法,通过在处理后的不锈钢表面利用氨基硅烷化技术自组装一层金纳米金属颗粒层,随后采用激光进行打孔,激光照射激发金纳米颗粒表面产生等离子体,与发出的激光耦合共振,增强金颗粒表面电磁场强度,使得不锈钢表面吸收光子速度加快,不锈钢材料迅速熔解,汽化局域电场强度,从而使打孔位置温度急剧增高,进而增加打孔深度。本发明所述方法具有步骤操作简单、能源消耗少、加工效率尚、重复性能尚等优点。
【附图说明】
[0019]图1为本发明实施例1所述激光冲击得到的孔的形貌扫描电镜图。
[0020]图2为本发明实施例1所述激光冲击得到的孔的深度数据图。
[0021]图3为本发明对比例I所述激光冲击得到的孔的形貌扫描电镜图。
[0022]图4为本发明对比例I所述激光冲击得到的孔的深度数据图。
[0023]图5为本发明实施例2所述激光冲击得到的孔的形貌扫描电镜图。
[0024]图6为本发明实施例2所述激光冲击得到的孔的深度数据图。
[0025]图7为本发明对比例2所述激光冲击得到的孔的形貌扫描电镜图。
[0026]图8为本发明对比例2所述激光冲击得到的孔的深度数据图。
[0027]图9为本发明实施例3所述激光冲击得到的孔的形貌扫描电镜图。
[0028]图10为本发明实施例3所述激光冲击得到的孔的深度数据图。
[0029]图11为本发明对比例3所述激光冲击得到的孔的形貌扫描电镜图。
[0030]图12为本发明对比例3所述激光冲击得到的孔的深度数据图。
[0031]图13为本发明实施例4所述激光冲击得到的孔的形貌扫描电镜图。
[0032]图14为本发明实施例4所述激光冲击得到的孔的深度数据图。
[0033]图15为本发明对比例4所述激光冲击得到的孔的形貌扫描电镜图。
[0034]图16为本发明对比例4所述激光冲击得到的孔的深度数据图。
【具体实施方式】
[0035]下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
[0036]实施例1:
[0037]一种增加不锈钢激光打孔深度的新方法,包含以下步骤:
[0038](I)不锈钢前处理:对304不锈钢表面进行打磨、抛光、超声清洗和干燥处理;
[0039](2)制备金纳米颗粒:将1.7ml浓度为0.01g/ml氯金酸水溶液加入50ml水中,采用油浴法加热至沸腾后保持lOmin,随后加入38.8mmol/L的柠檬酸钠2.25ml,在10r/s的速度下加热搅拌15min,得到颗粒直径为40nm、吸收波长为532nm的所述金纳米颗粒溶液。
[0040](3)金纳米颗粒在不锈钢表面的自组装:用移液管取2.0ml的浓度为97%的3-氨基丙基三甲氧基硅烷(APTMS)溶液溶解在50ml的甲醇中,配置成APTMS-甲醇溶液;将步骤
(I)中经过处理的不锈钢浸泡在APTMS-甲醇溶液中12h后取出,用大量去离子水冲洗。然后再浸泡在步骤(2)中制备好的金纳米颗粒水溶液中,静置12h后取出,干燥后得到自组装的不锈钢。
[0041](4)激光打孔:在步骤(3)中所述自组装的不锈钢的表面进行激光打孔,所述激光的波长参数与金纳米颗粒的吸收波长相同;设置激光参数如下:激光器频率ΙΚΗζ,波长532nm,脉宽500ms,激光能量80uJ,脉冲个数I个。
[0042](5)不锈钢后处理:对经过步骤(4)的不锈钢表面经酒精和丙酮在超声清洗仪中交替清洗两次、烘干后即得所述带孔的不锈钢。
[0043]我们对实施例1所得孔的形貌和深度进行分析,如图1所示,凹坑呈锥形分布,且在孔的边缘有重铸层及飞溅的残渣。我们进一步测量了孔深,如图2所示,孔的深度为
1.36 μ m0
[0044]对比例1:除不进行步骤(2)制备金纳米颗粒和步骤(3)金纳米颗粒在不锈钢表面的自组装外其他步骤与实施例1相同。
[0045]我们对对比例I所得孔的形貌和深度进行分析,如图3所示,除了重铸层及飞溅残渣外,孔呈不完全锥形结构。我们进一步测量了孔深,如图4所示,孔的深度为1.2 μπι。
[0046]通过对实施例1和对比例I的比较,经过本发明方法制得的孔的深度与原有激光打孔相比,增加了 12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1