制备网状纳米阵列铁磁性薄膜的物理气相沉积方法

文档序号:3403923阅读:371来源:国知局
专利名称:制备网状纳米阵列铁磁性薄膜的物理气相沉积方法
技术领域
本发明提供一种制备网状纳米阵列锰锑铁磁性薄膜的物理气相沉积工艺,特别是指通过多孔硅基底的调制作用制备网状纳米阵列锰锑铁磁性薄膜的物理气相沉积工艺。
背景技术
磁性材料和半导体材料是信息技术领域中两类非常重要的材料,而磁学和半导体物理学是固体物理学的两大重要分支。使磁特性和半导体特性相结合,制造新型功能器件是磁电子学发展的一个非常重要的分支领域,无论从实际应用上还是从基础物理学上讲都是非常有意义的。迄今为止,已有大量的磁体/半导体异质结构以及磁体/半导体/磁体三层结构制备成功,磁体/半导体超晶格的研制也取得了进展。但是,一般的铁磁/半导体异质结材料都是在半导体单晶衬底材料上外延生长上一层磁性材料薄膜,这样就很难控制所生长的铁磁性薄膜的形貌。本发明利用多孔硅的特殊的表面形貌来调制沉积在其上面的铁磁性薄膜,使薄膜呈网状纳米阵列结构,同时在调制薄膜形貌的同时使之具有特殊的物理性能。

发明内容
本发明的目的在于,提供一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,是以多孔硅为基底,利用物理气相沉积的方式制备网状纳米阵列锰锑铁磁性薄膜,使生长出的铁磁性薄膜由许多直径范围在几百个纳米的磁环构成,由于磁环之间的耦合作用,使生长出的铁磁性锰锑薄膜的矫顽力大幅度下降。
本发明提供一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,包括如下步骤1)选择基底材料,选择锰金属和锑金属为源;2)将基底材料和锰、锑源材料送入生长炉;3)抽真空,控制锰源和锑源的温度和生长时间;4)退火;5)完成薄膜的制备工艺。
其中抽真空至真空度优于10-5mbar,控制锰源的温度在800℃-900℃;控制锑源的温度在400℃-500℃,生长时间控制在60min-180min。
其中基底选择的是多孔硅。
其中多孔硅为单晶Si经电化学腐蚀处理得到。
其中的退火是指氮气保护下的退火,退火温度范围200℃-400℃,退火时间为20-60min。


为进一步说明本发明的技术内容,以下结合实施例及附图详细说明如后,其中图1是网状纳米阵列锰锑铁磁性薄膜的XRD衍射谱图;图2是网状纳米阵列锰锑铁磁性薄膜的SEM图像;图3是网状纳米阵列锰锑铁磁性薄膜的磁滞回线图。
具体实施例方式
本发明的对象是一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法。锰锑是一种常用的磁光材料,广泛应用于各种磁光器件中,并且研究发现锰锑与半导体材料结合能产生一些特别的性质。锰锑是铁磁/半导体异质结材料中常用的铁磁性薄膜。一般是在半导体单晶衬底上生长锰锑铁磁性薄膜,而本发明是在多孔硅上通过物理气相沉积的方式生长锰锑铁磁性薄膜,通过衬底的调制作用使生长出的薄膜具网状纳米阵列结构,薄膜由许多直径范围在几百个纳米的磁环构成,磁环是由直径在几十到上百纳米不等的颗粒组成。这种特殊结构的锰锑铁磁性薄膜为以后的器件制造开创了一条新的思路,如可利用其实现信息的存储;利用非易失性逻辑门将磁场方向的改变通过电压方向的改变来输出和读取;利用自旋场效应晶体管,通过铁磁电极实现晶体管中载流子的自旋方向与外磁场一致;利用磁场感应器使磁场的改变通过电流的改变来输出和读取;利用自旋阀晶体管通过基底的磁状态来控制晶体管的接收端的电流;利用自旋共振隧道二极管将自旋与传统的共振隧道二极管结合起来,实现电子的能量和自旋的二维控制,等等。由于这种铁磁性薄膜的矫顽力比同种类的其它结构的薄膜小,更容易磁化,所以器件的灵敏度会得到提高。
本发明提供的一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,包括如下步骤1)选择基底材料,选择锰金属和锑金属为源,该基底选择的是多孔硅,该多孔硅为单晶Si经电化学腐蚀处理得到;2)将基底材料和锰、锑源材料送入生长炉;3)抽真空,控制锰源和锑源的温度和生长时间,其中抽真空至真空度优于10-5mbar,控制锰源的温度在800℃-900℃;控制锑源的温度在400℃-500℃,生长时间控制在60min-180min;4)退火,其中的退火是指氮气保护下的退火,退火温度范围200℃-400℃,退火时间为20-60min;5)完成薄膜的制备工艺。
实施例11、采用单晶硅经HF电解腐蚀的方法形成多孔硅,其中电解液采用经乙醇稀释的浓度为12%的HF溶液,电解时的电流密度为10mA/cm2,电解时间为30min。
2、采用高纯的锰金属和锑金属为源,步骤1中所述的多孔硅为基底,通过物理气相沉积在生长炉中制备锰锑铁磁性薄膜,抽真空抽真空至真空度优于10mbar,控制锰源的温度在800℃℃,锑源的温度在400℃,生长时间控制在60min;退火,所述的退火是氮气气氛保护下的退火,退火温度范围200℃,时间为20。
3、经X-ray衍射分析,衍射谱(图1)中只有锰锑相所对应的峰。
4、经扫描电子显微镜(SEM)观测,薄膜是由许多直径范围在几百个纳米的磁环构成,磁环是由直径在几十到上百纳米不等的颗粒组成(图2)。
5、经交变梯度磁强计(AGM)测量分析,这种网状纳米阵列锰锑薄膜显示室温铁磁性(图3),并且其矫顽力比在相同条件下生长在单晶硅上的薄膜有很大幅度的下降。
实施例21、采用单晶硅经HF电解腐蚀的方法形成多孔硅,其中电解液采用经乙醇稀释的浓度为12%的HF溶液,电解时的电流密度为10mA/cm2,电解时间为30min。
2、采用高纯的锰金属和锑金属为源,1中所述的多孔硅为基底,通过物理气相沉积在生长炉中制备锰锑铁磁性薄膜,抽真空抽真空至真空度优于7mbar,,控制锰源的温度在850℃,锑源的温度在450℃,生长时间控制在120min,退火,所述的退火是氮气气氛保护下的退火,退火温度范围300℃,时间为40min。
3、经X-ray衍射分析,衍射谱(图1)中只有锰锑相所对应的峰。
4、经扫描电子显微镜(SEM)观测,薄膜是由许多直径范围在几百个纳米的磁环构成,磁环是由直径在几十到上百纳米不等的颗粒组成(图2)。
5、经交变梯度磁强计(AGM)测量分析,这种网状纳米阵列锰锑薄膜显示室温铁磁性(图3),并且其矫顽力比在相同条件下生长在单晶硅上的薄膜有很大幅度的下降。
实施例31、采用单晶硅经HF电解腐蚀的方法形成多孔硅,其中电解液采用经乙醇稀释的浓度为12%的HF溶液,电解时的电流密度为10mA/cm2,电解时间为30min。
2、采用高纯的锰金属和锑金属为源,1中所述的多孔硅为基底,通过物理气相沉积在生长炉中制备锰锑铁磁性薄膜,抽真空抽真空至真空度优于5mbar,,控制锰源的温度在900℃,锑源的温度在500℃,生长时间控制在180min,退火,所述的退火是氮气气氛保护下的退火,退火温度范围400℃,时间为60min。
3、经X-ray衍射分析,衍射谱(图1)中只有锰锑相所对应的峰。
4、经扫描电子显微镜(SEM)观测,薄膜是由许多直径范围在几百个纳米的磁环构成,磁环是由直径在几十到上百纳米不等的颗粒组成(图2)。
5、经交变梯度磁强计(AGM)测量分析,这种网状纳米阵列锰锑薄膜显示室温铁磁性(图3),并且其矫顽力比在相同条件下生长在单晶硅上的薄膜有很大幅度的下降。
权利要求
1.一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,包括如下步骤1)选择基底材料,选择锰金属和锑金属为源;2)将基底材料和锰、锑源材料送入生长炉;3)抽真空,控制锰源和锑源的温度和生长时间;4)退火;5)完成薄膜的制备工艺。
2.根据权利要求1所述的制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,其中抽真空至真空度优于10-5mbar,控制锰源的温度在800℃-900℃;控制锑源的温度在400℃-500℃,生长时间控制在60min-180min。
3.根据权利要求1所述的制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,其中基底选择的是多孔硅。
4.根据权利要求3所述的制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,其中多孔硅为单晶Si经电化学腐蚀处理得到。
5.根据权利要求1所述的制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,其中的退火是指氮气保护下的退火,退火温度范围200℃-400℃,退火时间为20-60min。
全文摘要
本发明一种制备网状纳米阵列铁磁性薄膜的物理气相沉积方法,其特征在于,包括如下步骤1)选择基底材料,选择锰金属和锑金属为源;2)将基底材料和锰、锑源材料送入生长炉;3)抽真空,控制锰源和锑源的温度和生长时间;4)退火;5)完成薄膜的制备工艺。
文档编号C23C14/14GK101089219SQ20061001224
公开日2007年12月19日 申请日期2006年6月14日 优先权日2006年6月14日
发明者戴瑞烜, 陈诺夫, 彭长涛, 王鹏 申请人:中国科学院半导体研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1