用于在金属硫化物常压浸出过程中提高金属回收的系统和方法与流程

文档序号:11934344阅读:504来源:国知局
用于在金属硫化物常压浸出过程中提高金属回收的系统和方法与流程

本申请要求于2014年9月12日提交的名称为“SYSTEM AND METHOD FOR ENHANCED METAL RECOVERY DURING ATOSPHERIC LEACHING OF METAL SULFIDES”的共同未决的美国临时专利申请第62/050,039号的优先权和权益,为了任何和所有目的其内容通过引用整体并入本文,如在本文中完全阐述。

技术领域

本发明的实施方式涉及用于提高从金属硫化物矿石中提取的金属值的设备、流程和方法。具体地,公开了用于增加在常压或基本常压的氧化浸出中的金属回收的系统和方法。还公开了用于增加金属硫化物的堆浸过程中的金属回收的系统和方法。



背景技术:

由于氧化浸出期间的表面钝化效应,粗金属硫化物(例如,黄铜矿、砷黝铜矿和硫砷铜矿)常压浸出的现有和过去的方法可能遭受缓慢的反应动力学和差的金属回收。当元素硫产物层的生长阻塞被浸出的颗粒的表面时,发生表面钝化。硫反应产物层作为物理屏障,阻碍了反应物和产物从反应平面的输送。

许多因素可通过改变产品层的孔隙率和/或弯曲度来增强硫产物对金属溶解的有害影响。这些因素单独地或共同地包括晶相转变、部分熔融和重结晶或完全晶体熔融。钝化效应的范围将取决于反应介质的温度和反应区的温度,其可能不同于总的系统温度。该温度差可在整个浸出过程中持续,或者它可能是暂时的。

其他的钝化机理可包括形成对于进一步的阳极溶解反应耐受的非化学计量、金属缺失的硫化物相。此外,如果金属硫化物的溶解经由电化学氧化还原机理发生,则阳极溶解步骤将取决于反应平面处的pH和氧化还原电位。

本领域技术人员已知的许多因素可能使得难以保持最佳的氧化还原电位并从而在最大溶解速率下实现完全的金属回收。在一些情况下,由于在泡沫浮选期间使用的残余起泡剂,粗金属硫化物的浸出也可能经历缓慢的反应动力学和差的金属回收。残余的起泡剂可以存在于被浸出的颗粒上并干扰表面浸出化学。

过去已经尝试了许多方法,以通过采用浸出催化剂来提高金属浸出速率。一种方法建议通过经由细颗粒碳涂覆电阻性反应产物层来增加经过该层的电子传输来解决钝化问题(参见例如US-4,343,773)。此外,用于解决钝化的更新提出的方法(US-2012/0279357)依赖于添加活性炭催化剂以提高含砷硫化铜的浸出速率。还有其它方法已经使用银基催化浸出系统来提高酸性硫酸铁介质中的铜溶解速率(J.D.Miller,P.J.McDonough and P.J.Portillo,Electrochemistry in Silver Catalyzed Ferric Sulfate Leaching of Chalcopyrite,in Process and Fundamental Considerations of Selected Hydrometallurgical Systems,M.C.Kuhn,Ed.,SME-AIME,New York,pp.327-338,1981),而其他方法已经使用银活化黄铁矿来实现类似的结果(US-8,795,612)。申请人最近还提出了用于增强含铜硫化物矿物浸出的方法和工艺,其在浸出过程中利用微波辐射以抵抗钝化对浸出的不利影响(WO2014074985A1)。

还有一些人已经采用硫酸铜精矿的预浸出超细研磨(即,机械活化)以实现快速的研磨后浸出动力学。US-5,993,635描述了一种从硫化物-矿物组合物中回收铜的方法,其包括将浸出原料超细研磨至约5μm的P80的步骤(参见US-5,993,635中的实施例3)。虽然在10小时内小规模地实现了95%或更大的铜溶解,但在浸出进料是低等级金属精矿的那些情况下,在浸出之前研磨至这样小的粒径并不总是经济的。

还有,一些人已经在所谓的分批机械-化学浸出方法中结合了超细磨碎和浸出,该分批机械-化学浸出方法是不提供连续下游流动的循环分批方法。此外,所有现有技术的方法都需要过大的能量输入以实现来自黄铜矿的显着水平的铜溶解。虽然已经证明实现80%铜提取的浸出时间短至1小时,但是该方法难以适应大规模商业操作(D.A.Rice,J.R.Cobble,and D.R.Brooks,Effects of Turbo-milling Parameters on the Simultaneous Grinding and Ferric Sulfate Leaching of Chalcopyrite,RI 9351,US Bureau of Mines,1991)。此外,由于在高元素硫含量下的钝化,不能实现超过95-97%的铜回收。

如前所述,大比能的应用和消耗使得在机械化学方法中的全面工业金属回收的经济可行性不切实际。

发明目的

因此,一些实施方式的目的是通过在氧化浸出之前使用还原活化步骤来改善浸出动力学和金属回收。氧化浸出优选在常压或基本常压的金属硫化物浸出回路中进行。

一些实施方式的另一目的是减少和/或消除向浸出回路中添加多余的试剂或多种试剂的需要,这可能花费额外的钱购买、运输和进料;和/或可能负面影响下游的SX/EW系统。

一些实施方式的另一个目的是在氧化浸出过程之前提供还原活化。还原活化导致晶格变形,并通过转化为一个或多个过渡的亚稳态非化学计量的二元金属硫化物相而改变浸出颗粒内的电化学性质。

根据一些实施方式的另外的目的,堆浸操作的效率可以通过在堆浸之前或在矿石堆积之后但在氧化浸出之前还原处理矿石来提高。

根据一些实施方式的另外的目的,生物浸出操作的效率可以通过在生物浸出之前通过还原处理矿石以便经由亚稳定、非化学计量的二元金属硫化物相的生成而产生晶格转变和/或晶格变形来提高。

根据一些实施方式的另外的目的,罐或桶浸出操作的效率可以通过在罐或桶浸出之前还原活化矿石来提高。

一些实施方式的另一个目的是通过在氧化浸出之前使用活化技术来减轻机械和/或电化学钝化的影响(例如,经由还原活化)。

一些实施方式的另一个目的是通过在氧化浸出期间采用机械化学/物理化学活化技术来减轻机械和/或电化学钝化的影响。

从本文的附图和描述中,本发明的这些和其它目的将是显而易见的。尽管本发明的每个目的被认为是通过本发明的至少一个实施方式来实现的,但是不一定需要本发明的任何一个实施方式实现本发明的所有目的。



技术实现要素:

公开了在金属硫化物的常压或基本常压浸出中提高金属浸出动力学和金属回收的方法。在一些实施方式中,该方法可包括以下步骤:(a)生产浮选精矿;(b)在还原条件下处理精矿以生产活化的精矿;和(c)随后通过氧化溶解处理活化的精矿以提取金属值。

在一些实施方式中,还原活化的精矿可以包含由黄铜矿组成的颗粒,其中的杂质可以包括黄铁矿和硅酸盐。在一些实施方式中,活化的精矿还包括辉钼矿和/或贵金属。

所述方法可以进一步包括如步骤(c)中所述使活化的精矿经受氧化浸出过程的步骤。在一些实施方式中,活化的精矿可以包含具有外部类铜蓝矿物相的黄铜矿颗粒。

在一些实施方式中,经由氧化溶解实现从活化的精矿中提取大于95%的金属值的时间可小于6小时。在一些实施方式中,通过氧化溶解实现大于95%金属提取的时间可小于5小时,或介于2.5至4小时。

在一些实施方式中,还原活化回路可以包括以下的一种或多种:搅拌釜式反应器、剪切釜式反应器及其各种组合。

在一些实施方式中,还原活化回路可以保持在200mV(SHE)和650mV(SHE)之间,例如200mV(SHE)和450mV(SHE)之间的氧化还原电位。在一些实施方式中,氧化浸出回路可以保持在600mV(SHE)和800mV(SHE)之间,例如650mV(SHE)和750mV(SHE)之间的氧化还原电位。

在一些实施方式中,氧化浸出活化的精矿的步骤可以进一步包括多个搅拌釜式反应器与一个或多个剪切釜式反应器的组合。在一些实施方式中,氧化浸出反应器可以与剪切釜式反应器(一个或多个)串联布置。在一些实施方式中,氧化性搅拌釜式反应器可以与剪切釜式反应器并联布置。在一些实施方式中,氧化性搅拌釜式反应器可以与剪切釜式反应器串联和并联布置。

在一些实施方式中,单个剪切釜式反应可在多个氧化性搅拌釜式反应器之间共享。在一些实施方式中,所述方法可以进一步包括使用至少一个还原活化反应器将金属硫化物精矿中的大部分金属硫化物颗粒转化/转变为活化的矿物相。

还公开了金属回收流程。该金属回收流程可以包括:(a)硫化物浓缩器,其包括用于产生金属硫化物精矿的浮选回路;和(b)常压或基本常压的金属硫化物浸出回路。该常压或基本常压的金属硫化物浸出回路可以包括:(i)还原活化过程,(ii)和随后的氧化浸出过程,用于经由溶解从活化的精矿中回收至少一种金属值。

在一些实施方式中,还原活化回路可以在pH控制下保持在200mV(SHE)和650mV(SHE)之间的氧化还原电位,并且以产生还原活化的金属硫化物产品这样的方式维持pH和氧化还原的组合。

在一些实施方式中,氧化浸出回路可以维持在低于约1.0的pH和600mV(SHE)至800mV(SHE)之间的氧化还原电位,或者维持在小于约1.0的pH和比还原活化回路的氧化还原电位更高的氧化还原电位的组合。在一些实施方式中,该流程还可包括可操作地连接到多个氧化性搅拌釜式反应器的一个或剪切釜式反应器。

还公开了从金属硫化物颗粒中提取金属的方法。根据一些优选的实施方式,该方法可以包括以下步骤:(还原性地)通过铜复分解反应活化金属硫化物颗粒,从而将部分金属硫化物颗粒从粗金属硫化物转变为非化学计量的亚稳态二元-金属硫化物相;和从活化的金属硫化物颗粒中提取金属。进行向亚稳态非化学计量的二元金属硫化物相的转化,以便基本上遍及整个活性颗粒引入点缺陷。

根据一些优选的实施方式,从活化的金属硫化物颗粒中提取金属的步骤可以包括氧化浸出过程。根据一些实施方式,经由铜复分解转变为过渡的非化学计量的亚稳态二元金属硫化物相的部分金属硫化物颗粒可以小于金属硫化物颗粒重量的约一半或小于其体积的约一半。根据一些实施方式,所转变的部分金属硫化物颗粒的量可以小于金属硫化物颗粒重量的约四分之一或小于其体积的约四分之一。根据一些实施方式,所转变的部分金属硫化物颗粒的量可以小于金属硫化物颗粒重量的约十分之一或小于其体积的约十分之一,例如,所述颗粒重量或体积的约2-8%,不限于此。

根据一些实施方式,活化金属硫化物颗粒的步骤可以在约200至约650mV(SHE)范围的还原环境中进行,同时进行pH控制。根据一些实施方式,在金属硫化物颗粒的还原性预处理/活化之后提取金属的步骤可以通过堆浸法、桶浸法、槽浸法、倾倒浸法、生物浸法或其组合进行,但不限于此;其中过渡的非化学计量的亚稳态二元金属硫化物相可改善金属的浸出动力学和/或回收。

在一些实施方式中,所述方法还可以包括以下步骤:在活化之前,分析金属硫化物精矿,以确定钝化次生金属硫化物边缘是否以足以抑制金属硫化物颗粒活化的量存在;并且随后如果确定钝化次生金属硫化物边缘的量足以抑制金属硫化物颗粒的活化,则将精矿的平均粒径减小到足够的程度。在这点上,可优化活化步骤,并且可改善金属从金属硫化物颗粒的释放。根据一些实施方式,分析金属硫化物精矿的步骤可以使用矿物分析仪进行。根据一些实施方式,该方法还可以包括使用由矿物分析仪收集的数据进行粒子映射或释放分析的步骤。根据一些实施方式,降低平均粒径的步骤可以包括研磨,直到钝化次生金属硫化物边缘的量小于约25%。根据一些实施方式,降低平均粒径的步骤可包括研磨,直到钝化次生金属硫化物边缘的量小于约10%。根据一些实施方式,降低平均粒径的步骤可以包括研磨,直到钝化次生金属硫化物边缘的量小于约5%。根据一些实施方式,多于约5%的粗金属硫化物的表面可含钝化次生金属硫化物边缘。根据一些实施方式,多于约10%的粗金属硫化物的表面可含钝化次生金属硫化物边缘。根据一些实施方式,多于约25%的粗金属硫化物的表面可含钝化次生金属硫化物边缘。根据一些实施方式,粗金属硫化物相可以包含黄铜矿。

还公开了浸出金属硫化精矿的方法。该方法优选地包括以下步骤:在第一氧化还原电位下处理金属硫化物精矿,以产生包含非化学计量的亚稳态(例如,过渡态)二元金属硫化物相的还原活化金属硫化物精矿;以及经由氧化溶解从还原处理的金属硫化物精矿中浸出金属。

根据一些实施方式,非化学计量的亚稳态二元金属硫化物相占活化颗粒的小于约50wt%或小于约50vol%。根据一些实施方式,非化学计量的亚稳态二元金属硫化物相占活化颗粒的小于约25wt%或小于约25vol%。根据一些实施方式,非化学计量的亚稳态二元金属硫化物相占活化颗粒的小于约10wt%或小于约10vol%。

根据一些实施方式,氧化溶解发生在处于大于活化颗粒的静电位的第二氧化还原电位下的氧化性搅拌釜式反应器中。根据一些实施方式,第一氧化还原电位在约200至约650mV(SHE)的范围内。根据一些实施方式,第二氧化还原电位在约600至约800mV(SHE)的范围内。

根据一些实施方式,金属硫化物浓精矿包扩黄铜矿。根据一些实施方式,氧化溶解在剪切釜式反应器中进行;其中反应器可以选自以下的至少一个:搅拌介质反应器(即,SMRt反应器),包扩一个或多个高剪切叶轮和/或泵送叶片的高剪切搅拌反应器,以及包括高剪切转子和定子的高剪切反应器。

根据一些实施方式,所述方法可以进一步包括在约6小时内通过以约2千瓦/立方米至约100千瓦/立方米的功率密度操作剪切釜式反应器来浸出大于80%的金属。根据一些实施方式,所述方法可以包括在约6小时内通过以约5千瓦/立方米至约100千瓦/立方米的功率密度操作剪切釜式反应器来浸出大于95%的金属。

根据一些实施方式,所述方法可以包括在约6小时内通过以约5千瓦/立方米至约20千瓦/立方米的功率密度操作剪切釜式反应器来浸出大于98%的金属。根据一些实施方式,所述方法可以包括在约6小时内通过以约20千瓦/立方米至约100千瓦/立方米的功率密度操作剪切釜式反应器来浸出大于95%的金属。在一些优选的实施方式中,从金属硫化物中浸出的金属是铜。

还公开了从金属硫化物颗粒中提取金属的方法。所述方法可以包括以下步骤:通过将部分金属硫化物颗粒从粗金属硫化物转变为活化的二元金属硫化物相来活化金属硫化物颗粒;然后通过氧化浸出过程从活化的金属硫化物中提取金属。

根据一些优选的实施方式,活化的金属硫化物颗粒的氧化浸出可以通过物理化学过程进一步增强。所述方法可以包括金属硫化物颗粒的氧化浸出,其经由物理化学机理基本上减少了金属硫化物颗粒的电化学钝化和机械钝化。根据一些实施方式,物理化学机理可以包括使用剪切过程和搅拌釜式浸出过程。根据一些实施方式,剪切过程可以包括机械洗涤、研磨、磨损或其组合。根据一些实施方式,剪切过程可以使用选自以下的至少一种的剪切釜式反应器:搅拌介质反应器(SMRt反应器),包括一个或多个高剪切叶轮和/或泵送叶片的高剪切搅拌反应器,以及包括高剪切转子和定子的高剪切反应器。根据一些实施方式,所述剪切过程可以在搅拌釜式浸出过程之后进行。根据一些实施方式,所述剪切过程在搅拌釜式浸出过程之前进行。根据一些实施方式,所述剪切过程可以与搅拌釜式浸出过程串联和/或并联进行。根据一些实施方式,所述搅拌釜式浸出过程和所述剪切釜式反应器可以经由流通连续线性过程进行。

根据一些实施方式,搅拌釜式反应器可以在常压下操作,并且剪切釜式反应器可以基本上在常压之上或常压操作。

根据一些实施方式,剪切釜式反应器可以在约1至约10巴的氧过压压力下操作。根据一些实施方式,金属硫化物颗粒可以在搅拌釜式反应器中驻留大于其总驻留时间的约80-95%。根据一些实施方式,金属硫化物颗粒可以在搅拌釜式反应器中驻留小于其总驻留时间的约10-20%。根据一些实施方式,剪切过程可以包括通过使用酸、三价铁、气态O2、空气或其组合同时控制pH和氧化还原电位。

根据一些实施方式,润湿剂可以用于控制起泡。润湿剂可以包括聚合物电解质、聚合物絮凝剂或多种聚合物电解质和聚合物絮凝剂中的一种或多种。

根据一些实施方式,湿润剂可以有利地用于将来自氧化浸出过程的浸出尾矿中的残留金属的量减少至小于1wt%,更有利地小于0.8wt%,更有利地小于0.5wt%。

根据一些实施方式,一个或多个剪切釜式反应器可以可操作地连接至多个搅拌釜式反应器,其中金属硫化物颗粒在一个或多个剪切釜式反应器中的总体停留时间可取决于在氧化浸出过程中的总停留时间。在一个或多个剪切釜式反应器内的停留时间还将取决于搅拌釜式反应器的组合体积与剪切反应器的组合体积之间的体积比。优选的体积比不等于1。根据一些实施方式,剪切釜式反应器与搅拌釜式反应器的体积比可以在约1:10至约1:150之间。

根据一些实施方式,当在低于元素硫的熔点的温度下操作时,可以在小于10小时内实现约90%或更高的金属回收。根据一些实施方式,该方法可以进一步包括在还原活化和氧化浸出之前将精矿超细研磨至40微米或更细的P95。

附图说明

为了补充正在进行的描述,并且为了帮助更好地理解本发明的特征,示出优选的处理装置及使用该装置的方法的一组附图作为本说明书的组成部分附于本说明书,其中以下以说明性和非限制性的特点描述。应当理解,附图中使用的相同附图标记(如果使用任何)可以标识相同的部件。

图1是示出可以采用本发明的某些实施方式的非限制性、示例性流程的示意图。

图2是更详细地示出图1所示的非限制性、示例性流程的一部分的示意图,其中还原活化/预处理步骤可以在氧化性常压(或基本常压)金属硫化物浸出过程之前进行。

图3是示出根据一些实施方式在氧化性常压(或基本常压)金属硫化物浸出之前提供还原活化步骤的系统和方法的示意图。

图4是示出使用可以在堆浸操作中采用还原活化和/或还原预处理步骤的系统和方法的示意图。

图5提出了根据一些实施方式用于增强从金属硫化物的金属回收和/或用于增强金属硫化物的浸出动力学的方法,其可用于各种形式的浸出,包括但不限于桶浸、槽浸、堆浸、生物浸出和/或类似,但不限于此。

图6提出了根据一些实施方式用于增强从金属硫化物的金属回收和/或用于增强金属硫化物的浸出动力学的方法;特别是用于浸出金属硫化物精矿。

图7提出了根据一些实施方式的用于增强从金属硫化物的金属回收和/或用于增强金属硫化物的浸出动力学的方法;特别是用于堆浸金属硫化矿石。

图8提出了在氧化性金属硫化物浸出回路内的剪切釜式反应器和多个搅拌釜式反应器的若干示例性和非限制性布置。应当理解的是,提供图8中描绘的具体布置仅仅是为了说明在同一图中的剪切釜式反应器和搅拌釜式反应器之间的几种不同的可能的合作结构关系,且因此变形的实施方式不应限于所示的具体配置。因此,预期的实施方式可以少至所示的具体配置之一来实施;预期的实施方式可以多于所示的具体配置之一来实施;预期实施方式可以包含所示的具体配置的任何模式或顺序;并且预期的实施方式可以冗余地包含一个或多个具体配置,而不限于此。

在下文中,将参考附图结合示例性、非限制性实施方式更详细地描述本发明。

具体实施方式

附图中所示的非限制性实施方式的以下描述在本质上仅仅是示例性的,并且绝不旨在限制本文公开的发明、它们的应用或使用。

如图1中示意性所示,本发明的实施方式可以包括具有单元操作12的金属回收流程10。单元操作12可以包括硫化物浓缩器回路100下游的常压或基本常压的金属硫化物浸出回路200,但不限于此。没有示出外围流程操作,特别是矿物处理领域技术人员已知的的这些方法。

在一些优选的实施方式中,大部分或全部氧化浸出可以在常压条件下发生。在一些实施方式中,少量的氧化浸出(例如,在一个或多个任选但优选的剪切釜式反应器内发生的浸出)可以在常压条件或任选地在高于常压条件下发生。

在一些优选的实施方式中,大多数的累积浸出时间可以在常压条件下发生,并且最小量的累积浸出时间可以在高于常压的条件发生。例如,在一些非限制性的实施方式中,氧化浸出反应器202,诸如图2、3和8中所示的,可以包括一个或多个连续搅拌釜式反应器(CSTR)。剪切釜式反应器可以包括一个或多个封闭的搅拌介质反应器,其优选地被设置为是加压的(例如,至1-20巴、1-10巴、1-5巴、约5巴或类似),接收氧气、含氧气体,和/或包含研磨介质,但不限于此。

在一些实施方式中,剪切釜式反应器212可以包括一个或多个封闭的高剪切搅拌反应器,其被设置为是加压的(例如,至1-20巴、1-10巴、1-5巴、约5巴或类似),接收氧气,和/或通过使用一个或多个高剪切叶轮和/或泵送叶片来赋予剪切,而不限于此。在一些实施方式中,高剪切叶轮可以选自:Cowles分散器叶片、锯片混合叶轮、分散叶片、锯齿分散叶片、成角度的齿叶片、超剪切分散叶片、高流量分散叶片、转子/定子及其组合,但不限于此。

在一些实施方式中,多个氧化浸出反应器202可以并联、串联或其组合(如图8所示)可操作地连接至剪切釜式反应器212。在一些优选的实施方式中,剪切釜式反应器212串联放置,即,置于两个氧化性搅拌釜式反应器202之间。

在一些优选的实施方式中,剪切釜式反应器212的体积可以相对小于氧化性搅拌釜式反应器202的体积。在一些优选的实施方式中,剪切釜式反应器212消耗的能量可相对大于氧化性搅拌釜式反应器202消耗的能量。

在一些实施方式(未示出)中,一个或多个剪切釜式反应器212可以从常压或基本常压的金属硫化物浸出回路200中一起省略。这种布置能有利地用于这样的情况,其中高等级精矿首先在还原活化和下游的氧化浸出之前研磨至超细尺寸分布。

如果一个或多个单独的剪切釜式反应器212与多个氧化性搅拌釜式反应器202组合使用,则可以在氧化浸出过程中采用浆料循环。

提供溶解的铜以使还原活化过程能够进行。提供的溶解铜的量应足以完成从粗金属硫化物到亚稳态、非化学计量的二元金属硫化物的所需转化程度。完成活化处理所需的停留时间通常在约5至60分钟之间。例如,大约10-45分钟的停留时间,或大约15-30分钟,诸如20分钟的停留时间在转移到下游氧化浸出步骤之前可以是足够的。活化的金属硫化物精矿116可以任选地在步骤216中再研磨,或者直接送入氧化浸出回路202。

在金属硫化物精矿116的常压或基本常压浸出期间产生的浸出母液(PLS)204可以从氧化浸出回路200输送至下游的溶剂萃取/电解沉积(SX/EW)回路或直接电解沉积(D/EW)过程。

提余液206可以从各自的下游溶剂萃取/电解沉积(SX/EW)回路或直接电解沉积(D/EW)过程再循环,并送回到氧化浸出回路200。在常压或基本常压的金属硫化物浸出回路200中形成的浸出渣可以被送到贵金属回收回路和/或最终到达浸出渣处置区域,如图1所示。虽然未明确示出,但是硫浸出渣可以在内部或外部处理/回收/除去,以产生硫酸,其可以重新供应金属回收流程10内的浸出过程,诸如活化回路220和/或氧化202浸出回路。元素硫产生的制造硫酸也可以被送至另一单元操作,或者可以出售或分配在流程10之外,作为可销售的副产品以帮助补偿流程10的操作成本。

在一些实施方式中,排出流233可以从还原活化产物231的主流分离,如图3所示。排出流233进入固/液分离回路222,其可以包括诸如过滤器、增稠器、离心机、旋风分离器、脱水筛或类似的设备,但不限于此。离开固/液分离回路222的固体部分224可以与在氧化浸出回路202中处理的活化精矿重新结合。离开固/液分离回路222的液体部分226可以进入一个或多个下游过程,用于回收其它金属或杂质去除,但不限于此。

如本文所述,“还原活化”可以包括能够将至少一部分浸出颗粒从第一矿物相转化为过渡矿物相的任何复分解或预处理步骤、方法、系统或装置。例如,“还原活化”预处理步骤或回路可以被设置为将浸出颗粒的外表面从粗金属硫化物(例如,黄铜矿)转变或转化为不同于黄铜矿和铜蓝的亚稳态、非化学计量的二元金属硫化物相。在一些实施方式中,还原活化步骤可以完全或部分地改变、干扰、损坏或改变晶格以充分地增强氧化溶解过程,由此可以在约6小时内或更少的浸出时间达到约95%金属回收。

在一些情况下,黄铜矿浸出颗粒可以在一个或多个还原浸出反应器220中经历还原活化/还原预处理步骤,其中黄铜矿浸出颗粒的外表面产物层的至少一部分可以至少部分转化为包括亚稳态、非化学计量的二元金属硫化物相的过渡矿物相,其中黄铜矿浸出颗粒未完全转化为次生金属硫化物相,例如铜蓝。例如,小于约一半的每个颗粒可以转化为所述过渡矿物相,以及更优选地,小于约10%的每个颗粒、但大于50%的每个颗粒外表面可以转化为所述过渡矿物相,因此,金属硫化物精矿116在还原活化过程中的停留时间可以保持最小。

在一些情况下,活化可能需要转化0.01至50%的粗硫化物;可选地可能需要转化0.01至40%的粗金属硫化物;或者可选地可能需要转化0.01至30%的粗硫化物;或者可选地可能需要转化0.01至20%的粗硫化物;或者可选地可能需要转化0.01至10%的粗硫化物;例如,转化少至2至8%的粗硫化物。进行转化为亚稳态、非化学计量的二元金属硫化物相的程度,以便基本上遍布整个活性颗粒引入点缺陷。

在一些情况下,氧化还原电位在还原活化过程中作为时间的函数或在各种还原浸出反应器220内变化。在一些情况下,还原过程可以包括与随后氧化浸出期间保持的pH不同的pH。在一些情况下,还原活化可以包括与随后的氧化浸出不同的氧化还原电位。例如,活化回路220内测量的氧化还原电位可以落在约200mV(SHE)至约650mV(SHE)的范围内,其中部分黄铜矿浸提颗粒可以转化为过渡矿物相,其包含亚稳态、非化学计量的二元金属硫化物相。氧化浸出回路内测量的氧化还原电位可落在约600mV(SHE)至约800mV(SHE)的范围内。这些氧化还原电位可随时间或根据精矿的组成和/或期望从精矿中回收的期望金属值而改变或波动。

在一些实施方式中,金属硫化物精矿116(例如,硫化铜精矿)可以包含残余浮选试剂。在一些优选的实施方式中,金属硫化物包括黄铜矿(CuFeS2)和/或铜蓝(CuS)形式的铜。然而,应当知道,与金属硫化物结合出现的其他含金属矿物(例如,包括螺硫银Ag2S、辉铜矿Cu2S、斑铜矿Cu5FeS4、硫砷铜矿Cu3AsS4、砷黝铜矿Cu12As4S13、黝铜矿Cu3SbS3·x(Fe,Zn)6Sb2S9、方铅矿PbS、闪锌矿ZnS、黄铜矿CuFeS2、磁黄铁矿Fe1-xS、针硫镍矿NiS、镍黄铁矿(Fe,Ni)9S8、辰砂HgS、雄黄AsS、雌黄As2S3、辉锑矿Sb2S3、黄铁矿FeS2、白铁矿FeS2、辉钼矿MoS2、孔雀石CuCO3·Cu(OH)2、蓝铜矿2CuCO3·Cu(OH)2、赤铜矿Cu2O、硅孔雀石CuO·SiO2·2H2O)可以使用在本公开的系统和方法中。

在一些实施方式中,部分常压或基本常压的金属硫化物浸出回路200的部分,诸如多个氧化浸出反应器202,可以保持在低于约1.8的pH(例如,在0.5的pH和约1.2的pH之间)。

在一些优选的实施方式中,常压或基本常压的金属硫化物浸出200可以保持在低于元素硫的熔点的温度,以控制浸出颗粒的钝化。

应当知道,本文详细示出和描述的具体特征、过程和益处本质上是纯示例性的,并且不应限制本发明的范围。例如,在本文中使用以及在本文参考的相关共同未决申请中,术语“常压浸出”可包括在非常小的压力下浸出,所述压力接近但不完全是环境的。换言之,尽管最优选地“常压”浸出在完全对空气开放下进行,但是本发明人预期,使用本发明概念的一些最佳浸出模式可以包括使用对空气开放的多个搅拌釜式反应器202,和可以是加压的一个或多个更小的剪切釜式反应器212(例如,至1-10巴),以克服氧传递限制。因此,氧化性金属硫化物浸出200的一些部分可以在轻微压力下(例如,在带盖或可加压容器中)或完全常压(例如,在多个非加压搅拌釜式反应器中)进行。

进一步预期在优选的实施方式中,金属硫化物浸出颗粒的累积氧化浸出时间的大部分(例如,高达约95%)可以在常压条件下发生,而小于累积氧化浸出时间的约10%发生在常压条件下或高于常压条件,导致在整个本说明书中使用的术语“基本常压”。

在不偏离本发明的意图的情况下,还原和/或氧化反应器顶部空间可以是常压或可选地加压至环境压力以上以增强氧传质。压力可以通过温度和/或通过高于环境压力的施加气体压力来控制。预期高于常压,如果使用,可接近高达20巴,但优选地保持在约1巴和约10巴之间,例如约5巴,而不限于此。

尽管已经根据具体实施方式和应用描述了本发明,但是本领域的普通技术人员根据该教导,可以产生其他的实施方式和修改而不脱离所要求保护的发明的精神或超出所要求保护发明的范围。因此,应当理解,本文中的附图和描述是作为示例方式提供的,以便于理解本发明,并且不应被解释为限制其范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1