高强度热浸镀锌钢板的制作方法

文档序号:12509722阅读:242来源:国知局

本发明涉及用于汽车的内板的高强度热浸镀锌钢板。



背景技术:

近年来,在汽车、家电、建材等领域使用对原料钢板赋予了防锈性的表面处理钢板,其中,使用了能够廉价地制造、且防锈性优异的热浸镀锌钢板。特别是,欧美的汽车制造商认为通过应用简单地增加镀覆厚度的热浸镀锌钢板,从而提高防锈性能,其状况是,对于经济增长明显的东亚地区而言,能够期待大的汽车用钢板的需求。

在严格要求良好加工性的汽车用钢板的情况下,若诸如冲压加工后的耐冲击密合性、加工后的涂装后耐腐蚀性这样的镀覆品质不是良好的话,则耐久性不能维持。以往,未能提供具有充分的镀覆品质的热浸镀锌钢板。

另外,特别地,由于对于作为强度构件而使用的所谓的高强度钢板,也要求严格的加工性和加工部的防锈性,因此对于加工部需要优异的镀覆品质。

专利文献1中,公开了规定了镀覆层中Al量、镀覆层与钢板的界面Al量,且冲压加工时的滑动性优异的热浸镀锌钢板的制造方法。然而,对于专利文献1中记载的技术而言,对于诸如加工部的耐冲击密合性、涂装后耐腐蚀性这样的镀覆品质及镀覆外观而言,还没有充分考虑,还需要进一步进行改良。

现有技术文献

专利文献

专利文献1:日本特开2004-315965号公报



技术实现要素:

发明要解决的问题

本发明鉴于上述状况而做出,其目的在于,提供一种加工部的镀覆品质及镀覆外观优异的高强度热浸镀锌钢板。

用于解决问题的手段

本申请的发明人经潜心研究,结果发现:不是像现有技术那样,简单地进行热浸镀锌处理,而是通过(1)以规定的性状在镀覆层/钢板界面形成FeAl金属间化合物,(2)控制镀覆的凝固组织,同时,(3)控制表面的织构(texture),并(4)控制钢板表层部的内部氧化的状态,从而能够提供冲压加工后的加工部的镀覆品质及镀覆外观优异的高强度热浸镀锌钢板,从而完成了本发明。本发明基于上述发现而做出,其主旨如下所述。

[1]一种高强度热浸镀锌钢板,具有:冷轧钢板、金属间化合物和热浸镀锌层,

所述冷轧钢板由下述组成构成,所述组成为:以质量%计,含有C:0.06%以上且0.09%以下、Si:0.30%以下、Mn:1.7%以上且2.3%以下、P:0.001%以上且0.020%以下、S:0.010%以下、Mo:0.05%以上且0.30%以下、N:0.005%以下、Al:0.01%以上且0.10%以下,余部为Fe及不可避免的杂质,

所述冷轧钢板具有马氏体面积率为7%以上且小于25%、铁素体面积率为50%以上的组织,且所述冷轧钢板的基底金属表层部的内部氧化量每单面为0.05g/m2以下,

所述金属间化合物形成于所述冷轧钢板上,且含有0.12g/m2以上且0.22g/m2以下的Al、及平均粒径小于1.0μm的Fe2Al5

所述热浸镀锌层形成于所述金属间化合物上,且含有0.3%≤Al%≤0.6%,其中Al%表示热浸镀锌层的Al的以质量%计的含量,

且热浸镀锌层的表面粗糙度Ra为0.8μm以上且1.6μm以下、

光泽度以G值计为550以上且750以下、

由下式(1)规定的锌基底面取向比Zn(002)/(004)为60%以上且90%以下

Zn(002)/(004)=

{(002)面的Zn晶体取向}×100/{(004)面的Zn晶体取向}...(1)

其中,I(xyz)为样品的(xyz)面的由X射线测定的Zn强度,Istd(xyz)为标准样品即纯Zn粉末的(xyz)面的由X射线测定的Zn强度。

需要说明的是,在本发明中,所谓高强度热浸钢板,是指拉伸强度(TS)为590~690MPa的钢板。

发明效果

根据本发明,可提供加工部的镀覆品质及镀覆外观优异的高强度热浸镀锌钢板。

具体实施方式

关于本发明的高强度热浸镀锌钢板,在特定构成的冷轧钢板上,具有特定构成的热浸镀锌层。另外,在该冷轧钢板与热浸镀锌层间形成特定构成的金属间化合物。由此,关于本发明的高强度热浸镀锌钢板,加工部的镀覆品质及镀覆外观优异。更具体而言,关于本发明的高强度热浸镀锌钢板,60°弯曲加工部的耐冲击性试验时的镀覆密合性和涂装后耐腐蚀性及镀覆外观优异。

以下,对本发明进行具体说明。

<冷轧钢板>

构成本发明的高强度热浸镀锌钢板的冷轧钢板由下述组成构成,所述组成含有C:0.06%以上且0.09%以下、Si:0.30%以下、Mn:1.7%以上且2.3%以下、P:0.001%以上且0.020%以下、S:0.010%以下、Mo:0.05%以上且0.30%以下、N:0.005%以下、Al:0.01%以上且0.10%以下,余部为Fe及不可避免的杂质。这里,首先,针对上述冷轧钢板的成分限定理由进行说明。需要说明的是,除非特别说明,本发明的钢板中的各成分的“%”表示“质量%”。

[C:0.06%以上且0.09%以下]

C为钢的重要的基本成分之一,特别的,在本发明中,由于C对于加热至(α(铁素体)+γ(奥氏体))区域时的奥氏体(γ)相的体积率,乃至转变后的马氏体的量产生影响,因此是重要的元素。并且,强度等的机械特性很大程度上取决于上述马氏体分率和马氏体相的硬度。当C含量小于0.06%时,马氏体相不易生成,另一方面,当C含量大于0.09%时,点焊性劣化,因此C含量设为0.06%以上且0.09%以下。

[Si:0.30%以下]

Si为通过减少铁素体(α)相中的固溶C量,从而提高伸长率等加工性的元素,但当含有大于0.30%的量的Si时,会损失镀覆品质,因此Si含量的上限设为0.30%。

[Mn:1.7%以上且2.3%以下]

在本发明中,Mn聚集于奥氏体(γ)相,具有促进马氏体转变的效果,是作为基本成分的重要元素。然而,当Mn含量小于1.7%时,上述效果消失,另一方面,当大于2.3%时,会显著有损点焊性及镀覆品质,因此Mn含量设为1.7%以上且2.3%以下。

[P:0.001%以上且0.020%以下]

P为能够廉价地有效实现高强度化的元素,为了实现高强度化,P含量设为0.001%以上。另一方面,若含有大于0.020%的P话,会显著有损点焊性,因此P含量的上限设为0.020%。

[S:0.010%以下]

S会导致在热轧时产生热开裂,除此以外,还会诱发点焊部的熔核内断裂,因此期望极力降低。因此,在本发明中,S含量抑制为0.010%以下。

[Mo:0.05%以上且0.30%以下]

Mo是在不损失镀覆品质的情况下,用于得到铁素体+马氏体的复合组织的重要元素,至少需要将Mo含量设为0.05%。但是,即便含有大于0.30%的量的Mo,能够进一步获得的效果也小、且会导致制造成本的上升,因此Mo含量的上限设为0.30%。

[N:0.005%以下]

N除了能够带来时效劣化外,还会导致屈服点(屈服比)的上升、发生屈服伸长,因此,需要将N含量抑制为0.005%以下。

[Al:0.01%以上且0.10%以下]

Al是作为制钢工序中的脱氧剂、而且可发挥将引起时效劣化的N固定为AlN的作用的元素,为了充分发挥其效果,Al含量设为0.01%以上。另一方面,若含有大于0.10%的量的Al的话,会导致制造成本的上升,因此需要将Al含量抑制为0.10%以下。

本发明的钢板的余部由Fe及不可避免的杂质构成。

以上说明的、构成本发明的高强度热浸镀锌钢板的冷轧钢板具有特定的组织及物性,以下说明其详情。

(马氏体的面积率:7%以上且小于25%)

对于构成本发明的高强度热浸镀锌钢板的冷轧钢板而言,若马氏体的面积率小于7%,则屈服比YR显著上升。另一方面,若马氏体的面积率为25%以上的话,局部延展性降低,因此总伸长率EL降低。因而,对于构成本发明的高强度热浸镀锌钢板的冷轧钢板而言,马氏体的面积率设为7%以上且小于25%。上述马氏体的面积率优选为7%以上且22%以下,更优选为7%以上且20%以下。关于马氏体的面积率,主要能够通过将钢中的C含量控制为0.06%以上且0.09%以下,并且将退火时的加热温度(意思是退火温度、为钢板最高到达温度)设定为730℃以上且880℃以下,从而进行调节。

(铁素体的面积率:50%以上)

对于构成本发明的高强度热浸镀锌钢板的冷轧钢板而言,若铁素体的面积率小于50%,则总伸长率EL显著降低。因而,铁素体的面积率设为50%以上。上述铁素体的面积率优选为60%以上。铁素体的面积率主要能够通过将钢中的C含量控制为0.06%以上且0.09%以下来调节。

这里,铁素体的面积率是观察面积内铁素体相所占的面积的比例,马氏体的面积率为观察面积内马氏体相所占的面积的比例。实际的铁素体的面积率及马氏体的面积率能够按以下方式算出。即,在将所得钢板的板厚方向截面研磨后,用3%的硝酸乙醇(硝酸3%的乙醇液)腐蚀。然后,使用SEM(扫描电子显微镜)以1500倍程度的倍率观察板厚方向的1/4位置附近,使用通常的图像解析软件对所得图像进行解析,从而能够求出各相的面积率。在所得灰度图像中,铁素体能够判别为呈灰色(基体组织)、马氏体能够判别为呈白色的组织。

(冷轧钢板的表面的基底金属表层部的内部氧化量每单面为0.05g/m2以下)

通过控制钢板表层部(基底金属表层部)的内部氧化的状态,能够使高强度热浸镀锌钢板中的、冲压加工后的加工部的耐冲击性试验时的镀覆密合性和涂装后耐腐蚀性优异。另外,还能够使点焊性也优异。为了确保良好的镀覆密合性,需要冷轧钢板的表面的基底金属表层部的内部氧化量每单面为0.05g/m2以下。

内部氧化会通过钢板所含的Si、Mn、Al、P等易氧化性元素在热轧工序及/或CGL(连续热浸镀锌生产线)的退火工序等中被氧化从而发生。为了将冷轧钢板的表面的基底金属表层部的内部氧化量设为每单面0.05g/m2以下,需要不使热轧时的卷绕温度过度升高、不使CGL中的退火气氛中的露点过度上升。作为露点的适当范围,为了避免辊表面发生氧化从而辊发生劣化,优选不大于0℃。另外,为了提高脱鳞性,卷绕温度优选不大于700℃。

需要说明的是,上述的冷轧钢板的表面的基底金属表层部,是指与热浸镀锌层接触的表层部,并且是指镀覆层除去后的镀覆层正下的钢板表层部。另外,上述规定了内部氧化量的基底金属表层部,是指从热浸镀锌层与钢板的界面起在钢板的厚度方向上50μm为止的范围。

若上述的内部氧化量大于每单面0.05g/m2,则加工部处的晶界发生脆化,加工后的镀覆密合性发生劣化,此外焊接性也发生劣化。

关于上述内部氧化量,通过测定镀覆层除去后的基底金属钢中氧量从而得到。对于镀覆层的除去方法没有特别限制,利用酸、碱的除去中的任一者均可。但是,需要注意,通过并用抑制剂(基底金属溶解抑制剂)等而不将基底金属除去,不使除去后的表面发生氧化。作为一个例子,能够用20质量%NaOH-10质量%三乙醇胺水溶液195cc+35质量%H2O2水溶液7cc将镀覆层除去。除此以外,用含有抑制剂的稀HCl溶液也能将镀覆层除去。

关于钢中氧化物量,例如通过“脉冲炉熔融-红外线吸收法”来测定。但是,为了估算镀覆层正下的内部氧化量,需要减去母材自身含有的氧量,因此,对于将试样(以同样的方式除去了镀覆层)的表面和背面的表层部机械研磨而除去100μm以上的试样、另行测定钢中氧量,并从刚除去了镀覆层状态下的试样的氧量将其减去,从而算出仅仅表层部的氧化增量,从而获得换算为每单位面积的量的值。

<金属间化合物>

下面,针对前述的在冷轧钢板上形成的金属间化合物的构成进行说明。

[Al:0.12g/m2以上且0.22g/m2以下]

关于本发明的高强度热浸镀锌钢板,通过在镀覆层与钢板的界面含有金属间化合物,从而提高加工部的耐冲击性试验时的密合性。上述金属间化合物具有0.12g/m2以上且0.22g/m2以下的Al,且含有平均粒径小于1.0μm的Fe2Al5。由此,在本发明的高强度热浸镀锌钢板中,能够在镀覆层与钢板的界面处以微细且致密的性状来形成FeAl金属间化合物。

这里,为了使Al在金属间化合物中小于0.12g/m2,需要降低镀覆的热浸浴中的Al浓度,若上述Al浓度过低,则浮渣析出从而外观性劣化。另一方面,为了使Al在金属间化合物中大于0.22g/m2,需要提高镀覆的热浸浴中的Al浓度,若上述Al浓度过高,则Al的氧化皮膜大量形成在镀覆层表面,从而点焊性发生劣化。

(Fe2Al5的平均粒径小于1.0μm)

当Fe2Al5的平均粒径为1.0μm以上时,硬质的FeAl金属间化合物过剩地生长,结果本发明的高强度热浸镀锌钢板的耐冲击特性劣化。因此,Fe2Al5的平均粒径设为小于1.0μm。

上述金属间化合物的生成量取决于热浸浴中的Al的活度,因此,主要通过增加Al浓度来增加金属间化合物的生成量。但是,若Al过多,则如上文所述,耐冲击特性发生劣化,因此,需要控制为适度的量。

上述Fe2Al5的平均粒径能够通过控制镀覆浴中的Al浓度来调节。

需要说明的是,上述的平均粒径没有特别限定,能够通过使用扫描电子显微镜(SEM)、并设定为规定的倍率的测定方法进行测定。

<热浸镀锌层>

接下来,对通过在冷轧钢板的表面上进行热浸镀锌处理从而形成的、在上文所述的金属间化合物上形成的热浸镀锌层的构成进行说明。

[Zn及0.3%≤Al%≤0.6%]

构成本发明的高强度热浸镀锌钢板的热浸镀锌层含有Zn及0.3%≤Al%≤0.6%。这里,Al%表示热浸镀锌层的Al的含量(质量%)。为了使Al小于0.3%,需要降低镀覆的热浸浴中的Al浓度,若上述Al浓度过低,则由于Fe的溶出,浮渣析出从而外观性劣化。若Al大于0.6%,则在镀覆层表面上Al的氧化皮膜大量形成,从而点焊性劣化。另外,热浸镀锌层还能够含有Pb、Sb、Mg、Ni、Mn、Si、Ti、Cr、Sr和Ca。

(热浸镀锌层表面的表面粗糙度Ra:0.8μm以上且1.6μm以下)

若热浸镀锌层表面的表面粗糙度Ra小于0.8μm,则冲压时不能保持油,加工时的冲压成型性变差。另一方面,若Ra大于1.6μm,则涂装后鲜映性及/或密合性变差。因此,Ra设为0.8μm以上且1.6μm以下。

关于Ra的调节,在表皮光轧处理中,通过使用了被施以高粗糙度加工的毛面辊,从而能够确保为适当的量。在拉毛调节(dull adjustment)方法中,使用喷丸拉毛(shot dull)、EDT(放电拉毛(electron discharged texturing))、EBT(电子束拉毛(electron beam texturing))、刮擦拉毛(scratch dull)、加工毛面辊(working dull rolls)。需要说明的是,上述的Ra没有特别限定,能够基于JIS B 0601(2001年)而使用粗糙度计来测定。

(热浸镀锌层表面的光泽度(G值):550以上且750以下)且(锌基底面取向比(zinc basal plane orientation ratio):Zn(002)/(004)为60%以上且90%以下)

对于本发明的高强度热浸镀锌钢板而言,为了控制镀覆的凝固组织,首先,将光泽度(G值)设为550以上且750以下,将由下式(1)规定的锌基底面取向比Zn(002)/(004)设为60%以上且90%以下。通过将锌基底面取向比Zn(002)/(004)设为60%以上且90%以下,当将hcp(hexagonal close-packed:六方密堆积结构)的锌凝固时,能够易于向基底面取向。

[数2]

Zn(002)/(004)={(002)面的Zn晶体取向}×100/{(004)面的Zn晶体取向}...(1)

其中,I(xyz)为样品的(xyz)面的由X射线测定的Zn强度,Istd(xyz)为标准样品即纯Zn粉末的(xyz)面的由X射线测定的Zn强度。

对于上述的镀覆的凝固组织,主要是当浴中的Al浓度成为规定值时,在镀覆相与钢板界面处生成Fe-Al金属间化合物,且锌的凝固组织健全地生长。而且,若Al浓度过高,则凝固组织形成为树枝状,因此表面上凹凸变多,光泽度(G值)降低(变得小于550)。相反,若Al浓度低,则界面的Fe-Al金属间化合物的形成被抑制,同时Fe-Zn合金层生长。由此,为了增加Zn凝固核的基点,通过将凝固组织微细化、平滑化,光泽度(G值)增加至所需要的值以上,大于750。光泽度(G值)小于550的情况下,相当于向锌浴中添加过剩的Al,点焊性劣化。另外,若光泽度(G值)大于750的话,相当于向锌浴中添加的Al的量少的情况,Fe熔出,从而引起由浮渣导致的表面缺陷。

需要说明的是,上述的光泽度(G值)没有特别限制,但能够基于JIS Z 8741(1997年)而利用光泽度计进行测定。关于所期望的表面性状,能够通过表皮光轧等来控制织构从而确保。

另外,若锌基底面取向比Zn(002)/(004)小于60%,则当锌晶体的取向比较不规则的情况下,刚镀覆之后锌凝固时的晶体尺寸变细,因此过于平滑、冲压时难以将油保持于钢板,从而成型性变差。若锌基底面取向比大于90%,则Zn晶体的基底面的取向过高,晶粒易于生长,结果枝晶臂生长,因此不仅涂装后鲜映性变差而且耐腐蚀性也劣化。需要说明的是,关于上述的锌基底面取向比Zn(002)/(004),没有特别限定,但能够根据X射线衍射强度的测定来获得。

Zn呈hcp结构(密排六方结构)、且通常易于向基底面取向,但通过由式(1)所示的锌基底面取向比的测定,能够获知晶体以何种程度不规则取向。由于上述凝固组织的取向程度而会影响到光泽、晶体尺寸、表面上的粗糙度,因此,正确地控制锌基底面取向比不仅对于高强度热浸镀锌钢板的表面性状、在控制冲压加工性的时候也是极为重要的。关于取向性,如上文所述,通过确保适当的量的、镀覆相/钢板界面的Fe-Al合金层,抑制成为锌凝固组织的析出核的Fe-Zn合金层的形成,从而调节。

(拉伸强度(TS):590MPa以上且690MPa以下)

对于本发明的高强度热浸镀锌钢板而言,主要为了确保内板的强度,而将拉伸强度(TS)设为590MPa以上且690MPa以下。关于这种拉伸强度(TS)为590MPa以上且690MPa以下的高强度热浸镀锌钢板,能够在适当的退火条件下、使本发明的钢板成分的材料通过CGL,从而得到。作为退火温度,由于需要2相区中的退火,因此优选设为800℃~850℃左右的温度。

[加工部的耐冲击性试验时的镀覆密合性(耐冲击密合性)和涂装后耐腐蚀性]

汽车的侧梁等的加工部模拟了通过汽车冲撞时受到的冲击的加工而弯曲90°,将该弯曲90°的部分作为对象。通过所谓的杜邦试验机对该部分进行耐冲击性的调查,进行胶带剥离从而评价。关于涂装后耐腐蚀性,对上述弯曲部分部分进行化学转化处理·电镀涂装,进行横切(cross cut)从而通过SST试验、由膨胀腐蚀宽度进行评价。如上所述,若能够将界面的Fe-Al金属间化合物的量确保为所需要的量以上,能够确保良好的镀覆密合性(耐冲击密合性)。

<高强度热浸镀锌钢板的制造方法>

接下来,对高强度热浸镀锌钢板的制造方法进行说明。例如,能够通过以下的方法来制造高强度热浸镀锌钢板。首先,经连续铸造将具有上述成分组成的钢制成板坯,将所述板坯加热,进行氧化皮除去及粗轧。接下来,进行冷却、进行精轧、冷却、卷绕,并接着进行酸洗,冷轧。接下来,在连续式热浸镀锌设备中,进行钢板的退火及热浸镀锌处理。

关于加热板坯时的加热时间、加热温度、粗轧的条件、冷却条件、精轧的条件、卷绕的条件等,能够基于技术常识来适当设定。然而,在本发明中,为了将基底金属表层部的内部氧化量调节为上述的范围,优选调节精轧(热轧)的条件及/或卷绕温度。

另外,钢板的退火的条件对高强度热浸镀锌钢板的屈服应力产生影响。在本发明中,为了将拉伸强度设定为上述范围,将退火时的加热温度(意思是退火温度、为钢板最高到达温度)设定为730℃以上且880℃以下,优选为800℃以上且850℃以下。

另外,可适当地进行退火气氛的调节,在本发明中,优选将露点调节为0℃以下。若大于0℃,则由于炉体表面易于发生脆化的理由,不优选。

另外,退火气氛中的氢浓度优选为1体积%以上且50体积%以下。若氢浓度为1体积%以上,则基于将钢板表面活化的理由而优选,若氢浓度大于50体积%,则基于成本上不利的理由而不优选。需要说明的是,通常,除氢以外含有N2。作为不可避免地含有的成分,可举出CO2、CO、O2等。

在本发明中,为了控制热浸镀锌层的Al含量、并在钢板与热浸镀锌层之间存在金属间化合物,需要调节热浸镀锌处理的条件。另外,为了将热浸镀锌层的表面状态(表面粗糙度Ra,光泽度(G值),锌基底面取向比)设为所期望的状态,需要调节热浸镀锌处理的条件。以下,对热浸镀锌处理的条件进行说明。

关于退火后的钢板浸入到镀覆浴中时的钢板的温度(即浸入板温),没有特别限定,但优选镀覆浴的温度(浴温)-20℃以上且浴温+20℃以下。若浸入板温在上述范围内的话,浴温的变化小,易于连续进行所期望的热浸镀锌处理。关于热浸镀锌层中的Al含量、金属间化合物中的Al含量,通过提高浴温,具有降低的倾向。另外,若浴温上升,则热浸镀锌层的表面的光泽度具有上升的倾向。

关于退火后的钢板浸入的镀覆浴的组成,除Zn以外含有Al即可,根据需要,也可以含有其他成分。关于镀覆浴中的Al的浓度,没有特别限定,但优选为0.16质量%以上且0.25质量%以下。若Al的浓度在上述范围内的话,则形成Fe-Al合金相、Fe-Zn合金相被抑制,故优选。光泽度能够通过镀覆浴中的Al浓度来调节。若镀覆浴中的Al浓度降低,则在界面处不是形成Fe-Al、而是少量地形成Fe-Zn晶体,其成为Zn凝固核产生位点,从而生成大量的锌晶体,由于锌晶体取向的不规则从而取向比具有降低的倾向。其结果,Al浓度越低,树枝状的Zn晶体生长越会被抑制,表面的凹凸越会减少从而平滑化,因此光泽度上升。更优选的,Al的浓度为0.19质量%以上且0.22质量%以下。需要说明的是,Al浓度对热浸镀锌层中的Al含量、金属间化合物中的Al含量也会产生影响,因此优选在还考虑它们的含量的基础上决定Al浓度。

另外,对镀覆浴的温度(浴温)没有特别限定,优选430℃以上且470℃以下。若浴温为430℃以上的话,锌浴不会凝固而是稳定地溶解,基于该理由而优选,若浴温为470℃以下的话,则Fe溶出变少、浮渣缺陷降低,基于该理由而优选。更优选的浴温的范围为450℃以上且465℃以下。

对将钢板浸渍于镀覆浴时的浸渍时间没有特别限定,但优选为0.1秒以上且5秒以下。通过浸渍时间为上述范围,易于在钢板的表面上形成所期望的热浸镀锌层。

在将钢板从镀覆浴提起之后、利用喷气擦拭等来调节镀覆附着量。在本发明中,镀覆附着量没有特别限定,但优选为20g/m2以上且120g/m2以下的范围。当小于20g/m2时,有时难以确保耐腐蚀性。另一方面,若大于120g/m2的话,则耐镀覆剥离性有时变差。

当按上述方式调节镀覆附着量后,进行平整轧制(SK处理)。对SK处理中使用的辊的种类没有特别限定,能够使用辊(EDT辊)、辊(EBT辊)、喷丸毛面辊,局部镀铬辊(Topochrome roll)等。

对SK处理的时的压下率(SK压下率(%))也没有特别限定,优选为0.7~0.9%。SK压下率在上述范围内的话,易于将表面粗糙度调节至上述优选的范围。另外,若在上述范围外,则有时不能形成保持润滑油的毛面图案、冲压加工性降低,另外,有时屈服强度也降低。

关于将钢板从镀覆浴提起后的冷却速度,优选为-5℃/秒以上且-30℃/秒以下。

如上所述,说明了本发明的高强度热浸镀锌钢板,以下,针对本发明的高强度热浸镀锌钢板的使用进行说明。

本发明的高强度热浸镀锌钢板由于冲压加工后的涂装后耐腐蚀性优异,因此,优选用于在热浸镀锌层的表面上形成涂膜的用途。另外,关于本发明的高强度热浸镀锌钢板,即便应用于要求严格的加工性的用途中,镀覆密合性也是优异的,且耐腐蚀性、机械特性也不会大幅降低。作为要求严格的加工且形成涂膜的用途,可举出汽车的外板、内板等汽车用钢板。关于涂膜的形成方法,没有特别限定,优选对热浸镀锌层的表面进行化学转化处理,在形成化学转化皮膜后,在该化学转化皮膜上形成涂膜。

作为化学转化处理液,可使用涂布型、反应型中的任一者。另外,对于化学转化处理液中所含的成分也没有特别限定,既可使用铬酸盐处理液,也可以使用无铬化学转化处理液。另外,化学转化皮膜既可以为单层,也可以为多层。

关于用于形成涂膜的涂装方法,没有特别限定,作为涂装方法,可举出电镀涂装、辊涂涂装、幕式涂装,喷涂涂装等。另外,为了干燥涂料,能够使用热风干燥,红外线加热,感应加热等手段。

实施例

以下,基于实施例对本发明进行具体说明。需要说明的是,本发明不限定于以下的实施例。

通过酸洗,将如表1所示的钢组成的、在卷绕温度为650℃以下进行卷绕从而制造的热轧钢板的黑皮氧化皮除去,以冷轧压下率为50%进行冷轧,从而制造板厚为1.2mm或2.3mm的冷轧原料。之后,对表面进行脱脂处理、并在表2所示的条件下,进行退火、热浸镀锌处理。线速率(LS)设为60mpm或100mpm。适当改变浴温、浴中Al浓度。调节镀覆附着量后,进行平整轧制(SK处理),SK处理中使用的辊使用EDT加工辊、并适当改变压下率。附着量设为每单面55g/m2。结果示于表2。

[表1]

(质量%)

对于所得的高强度热浸镀锌钢板,首先,作为外观性(镀覆外观),通过目视进行判定,将没有镀覆不均等的外观不良的情况判定为良好(○),将存在镀覆不均等的外观不良的情况判定为不良(×)。

另外,基于JISZ8741(1997年),利用光泽度计测定60度镜面光泽度(G值)。

通过X射线衍射装置、使用θ-2θ扫描方式,利用X射线测定(002)面的Zn晶体取向(zinc basal plane orientation ratio)及(004)面的Zn晶体取向,并测定热浸镀锌层表面的锌基底面取向比Zn(002)/(004)。

基于JISB0601(2001年),利用粗糙度计测定热浸镀锌层表面的表面粗糙度Ra。

关于热浸镀锌层的Al含量,用含有抑制剂的稀盐酸剥离,利用ICP发射光谱法进行定量。

作为金属间化合物的组成,FeAl富集层量(Fe2Al5合金层的总质量)通过发烟硝酸而将镀锌层剥离,利用ICP发射光谱法将FeAl富集层量换算为Al从而进行定量。

构成金属间化合物的Fe2Al5的平均粒径使用扫描电子显微镜(SEM),以5000倍进行观察从而测定。

关于金属间化合物的组成,通过薄膜X射线衍射从而判定是否是Fe2Al5

关于内部氧化量,通过测定镀覆层除去后的基底金属钢中氧量而获得。钢中氧化物量通过“脉冲炉熔融-红外线吸收法”来测定。为了估算镀覆层正下的内部氧化量,由于需要减去母材自身含有的氧量,因此,对于将试样(以同样的方式除去了镀覆层)的表面和背面的表层部机械研磨而除去100μm以上的试样、另行测定钢中氧量,并从刚除去了镀覆层状态下的试样的氧量将其减去,从而算出仅仅表层部的氧化增量,从而获得换算为每单位面积的量的值,从而得到内部氧化量的值。

作为马氏体面积率及铁素体面积率的测定,首先,将所得钢板的板厚方向截面进行研磨后,用3%的硝酸乙醇(硝酸3%的乙醇液)进行腐蚀。然后,使用SEM(扫描电子显微镜)以1500倍程度的倍率观察板厚方向的1/4位置附近,使用图像解析软件对所得图像进行解析,从而能够求出各相的面积率。在所得灰度图像中,铁素体能够判别为呈灰色(基体组织)、马氏体能够判别为呈白色的组织。

关于加工部的耐冲击密合性,对在长度方向40mm的位置处将长度80mm×宽度30mm的样品、以弯曲R=1.5mm而弯曲60°的部分,将1843g且冲击芯直径(core diameter)为5/8英寸的冲头从高度1m向弯曲部的外侧凸部的部分落下,从而实施耐冲击性试验,用Nichiban胶带进行剥离,从而观察镀覆剥离。将存在剥离的样品作为×,将没有剥离的样品作为○。

○:密合良好

×:密合不良

另外,对进行了相同加工处理的部分进行化学转化处理、电镀涂装、中间涂层、上涂层的综合涂装,调查涂装后耐腐蚀性。基于JISZ2371(2000年),进行10目的盐水喷雾试验,评价弯曲加工部外侧中是否存在显著的膨胀。

良好(○):无膨胀

不良(×):有膨胀

从试样中在相对于轧制方向为90°方向上取出JIS5号拉伸试验片,按照JISZ2241的规定以恒定的十字头速度(10mm/分钟)进行拉伸试验,测定拉伸强度(TS(MPa))。

由表2可知,本发明的高强度热浸镀锌钢板即便经过冲压加工,特性也极为良好,且未发生镀覆剥离,耐冲击密合性优异。另外,涂装后耐腐蚀性也良好。另外,镀覆外观也良好。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1