提升碳纤维布的亲水性及导电性的方法与流程

文档序号:11272308阅读:1412来源:国知局
提升碳纤维布的亲水性及导电性的方法与流程

本发明涉及一种提升碳纤维布的亲水性及导电性的方法,特别是涉及一种通过电浆处理提升碳纤维布的亲水性及导电性的方法。



背景技术:

中国台湾专利i318243公开一种疏水性含碳材料的制法,是为了要得到一薄膜电极的气体扩散层以及进一步应用于燃料电池中,所以使用电浆对活性碳纤维进行改质,以增加其疏水性。经电浆改质的活性碳纤维具有优异的疏水性,并可维持良好的多孔性供气体扩散,可有效提高燃料电池的功率输出。

然而,所述疏水性含碳材料的应用有限,无法适用于各种领域,例如以铅酸电容电池领域来说,因铅酸电容电池的电极是直接与硫酸电解液接触,所以所述疏水性含碳材料并不适合应用在铅酸电池电容中。

基于上述,仍有必要提出一种新颖的碳纤维布的改质方法。



技术实现要素:

本发明的目的即在于提供一种提升碳纤维布的亲水性及导电性的方法。

本发明提升碳纤维布的亲水性及导电性的方法,包含以下步骤:

对一碳纤维布施予一电浆处理,使所述碳纤维布与一亲水性物质反应而于所述碳纤维布上形成亲水性官能基团,以及使所述碳纤维布中的碳纤维断裂而形成松散结构,且所述碳纤维布经电浆处理后的亲水性及导电性大于所述碳纤维布电浆处理前的亲水性及导电性。

本发明提升碳纤维布的亲水性及导电性的方法,还包含一在所述电浆处理之后的热处理。

本发明提升碳纤维布的亲水性及导电性的方法,所述热处理的温度范围为120至170℃。

本发明提升碳纤维布的亲水性及导电性的方法,所述电浆处理对所述碳纤维布的单位时间处理面积范围为222mm2/sec至318mm2/sec。

本发明提升碳纤维布的亲水性及导电性的方法,所述电浆处理对碳纤维布的单位面积处理功率量范围为3.18w/mm2至63.6w/mm2

本发明提升碳纤维布的亲水性及导电性的方法,当进行所述电浆处理时,所述电浆处理使得所述碳纤维布的表面的温度范围为50至90℃。

本发明提升碳纤维布的亲水性及导电性的方法,所述亲水性物质是含氧的物质。

本发明提升碳纤维布的亲水性及导电性的方法,所述含氧的物质是源自于大气、氧气电浆,或此等一组合。

本发明提升碳纤维布的亲水性及导电性的方法,所述电浆处理的电浆是选自于氮气电浆、氧气电浆、氦气电浆、氩气电浆,或上述的一组合。

本发明提升碳纤维布的亲水性及导电性的方法,所述电浆处理的功率范围为50瓦至700瓦。

本发明的有益的效果在于:通过所述电浆处理使所述碳纤维布与所述亲水性物质反应而于所述碳纤维布上形成亲水性官能基团,

因此提升所述碳纤维布的亲水性,以及通过所述电浆处理使所述碳纤维布中的碳纤维断裂而形成松散结构,因此提升所述碳纤维布的导电性。

附图说明

图1是实施例1至4在氮气(n2)环境下的傅里叶转换红外光谱图;

图2是实施例1至4在大气环境下的傅里叶转换红外光谱图;

图3是实施例1以及比较例1的钮扣型电池充放电测试结果,为在充放电电流密度为1.5ma/cm2时的一比电容对充放电电流密度的关系图;

图4是实施例1的扫描式电子显微镜的照片;

图5是实施例2的扫描式电子显微镜的照片;

图6是实施例3的扫描式电子显微镜的照片;及

图7是实施例4的扫描式电子显微镜的照片。

具体实施方式

以下将就本发明内容进行详细说明:

于本文中,所述亲水性官能基团例如但不限于:c=o、o-c-o、cooh、oh等。所述碳纤维布的种类并无特别限制,只要经电浆处理后能使碳纤维布中的多数碳纤维被活化并与所述亲水性物质反应而于所述碳纤维上连接亲水性官能基团,以及经电浆处理能使所述碳纤维断裂而产生松散结构的碳纤维布皆适用。较佳的,所述碳纤维布为活性碳纤维布(activatedcarbonfiber)。所述亲水性物质并无特别限制,只要能与电浆处理后碳纤维布中被活化的碳纤维反应并形成亲水性官能基团的亲水性物质皆适用。较佳地,所述亲水性物质是含氧的物质。较佳地,所述含氧的物质是源自于大气、氧气电浆,或上述的一组合。

较佳地,所述电浆处理为常压电浆处理,使用所述常压电浆处理时,较易于控制操作条件,以及有助于大面积的碳纤维布进行电浆处理。较佳地,所述电浆处理的电浆是选自于氮气电浆、氧气电浆、氦气电浆、氩气电浆,或此等一组合。所述电浆处理的条件参数,例如功率范围、流速范围、移动速率及工作距离等并无特别限制,只要能使所述碳纤维布上形成亲水性官能基团以及使所述碳纤维断裂而产生松散结构即可。较佳地,所述电浆处理的功率范围为50瓦至700瓦,能够更提升所述碳纤维布经电浆处理后的亲水性及导电性。较佳地,所述电浆处理对所述碳纤维布的单位时间处理面积范围为222mm2/sec至318mm2/sec,能够更提升所述碳纤维布经电浆处理后的亲水性及导电性。较佳地,所述电浆处理对碳纤维布的单位面积处理功率量范围为3.18w/mm2至63.6w/mm2,能够更提升所述碳纤维布经电浆处理后的亲水性及导电性。较佳地,当进行所述电浆处理时,所述电浆处理使得所述碳纤维布的表面的温度范围为50至90℃,能够更提升所述碳纤维布经电浆处理后的亲水性及导电性。所述电浆处理的电浆流速范围例如但不限于5至70ml/min。所述电浆处理的工作距离范围为5至25mm。所述电浆处理的电浆移动速率范围例如但不限于1至700mm/s。

较佳地,所述提升碳纤维布的亲水性及导电性的方法还包含一在 所述电浆处理之后的热处理。通过所述热处理能使经所述电浆处理后的所述碳纤维布具有长效的导电性。所述热处理的操作环境并无特别限制,可在或不在真空或特定气氛中进行。较佳地,所述热处理的温度范围为120至170℃。当所述热处理的温度范围为120至170℃时,能使得经所述电浆处理后的所述碳纤维布具有更长效的导电性。所述热处理的时间并无特别限制,例如但不限于2至3小时。

相较于未经所述电浆处理的碳纤维布,经过所述电浆处理的碳纤维布具有较高的亲水性及导电性,其应用领域例如但不限于铅酸电容电池。当经电浆处理的碳纤维布应用在铅酸电容电池中,因为经电浆处理的碳纤维布中的碳纤维断裂并形成松散结构所以具有较高的导电性,并且能够吸附较多电解液中的电荷,以及因为经电浆处理的碳纤维布上形成有亲水性官能基团而使电解液能够更润进于碳纤维布中,从而使铅酸电容电池具有较高的电容值。

本发明将就以下实施例来进一步说明,但应了解的是,所述实施例仅为例示说明,而不应被解释为本发明实施的限制。

[实施例1]

电浆处理:将一活性碳纤维布(厂商:台碳科技股份有限公司,型号:aw-1114,平均比表面积为1100m2/g,尺寸为1030×1000×0.4mm3),以一常压氮气电浆装置[笔式(pen-like),氮气纯度99.99%]对所述活性碳纤维布施予一电浆处理,并使用一能x-y二轴移动的控制装置操控所述常压氮气电浆装置的移动。将所述活性碳纤维布平放在所述控制装置的平台上后,先使所述常压氮气电浆装置的氮气电浆顺着所述活性碳纤维布的纬线方向扫过所述活性碳纤维布一次,再顺着所述活性碳纤维布的经线方向扫过所述活性碳纤维布一次,以此做为扫描圈数「1圈」(「1圈」时的单位面积处理功率量为3.18w/mm2,每增加一圈,单位面积处理功率量即增一倍。)。其中,所述电浆处理的功率为100瓦,所述氮气电浆的流速为15ml/min,所述氮气电浆作用的直径为4mm,氮气电浆与所述活性碳纤维布间的工作距离为1.5cm,所述常压氮气电浆装置的移动速率为30mm/s。

热处理:接着,将经电浆处理的活性碳纤维布放置在一不锈钢盘上,并置入一循环烘箱中,将所述循环烘箱的温度控制在150℃,热 处理2小时,得到一经改质活性碳纤维布。

[实施例2至4]

实施例2至4中电浆处理及热处理的方式是与实施例1中相同,差别在于改变电浆处理的圈数。实施例1至4中电浆处理的圈数是如表1所示。

[比较例1]

以市售且未经改质的活性碳纤维布(厂商:台碳科技股份有限公司,型号:aw-1114,平均比表面积为1100平方米/克)做为比较例1。

[经改质活性碳纤维布的应用]钮扣型充电电池

使用实施例1及2的经改质活性碳纤维布依照现有方式分别制备成cr2032钮扣型电池,其中,钮扣型充电电池的结构由下至上依序为:不锈钢下盖、不锈钢片、高亲水性导电碳纤维布、pp隔离膜、高亲水性导电碳纤维布、弹簧片,及不锈钢上盖,并以浓度为1m的h2so4做为电解液。

并使用比较例1未经改质活性碳纤维布依照相同的方式制备成cr2032钮扣型电池。

[评价项目]

1.水接触角

使用座滴法(sessiledrop)量测实施例1至4的经改质活性碳纤维布,以及比较例1未经改质活性碳纤维布的水接触角。水接触角的结果如表1所示。

2.x-射线光电子光谱(xps)

以x光光电子能谱仪(厂商:ulvac-phi,型号:phi5000versaprobeii)量测实施例1至4的经改质活性碳纤维布,以及比较例1未经改质活性碳纤维布。x-射线光电子光谱的结果如表2及3所示。

3.傅里叶转换红外光谱(ftir)

以傅里叶转换红外线光谱分析仪(厂商:thermoscientific,型号:nicilet6700)量测实施例1至4的经改质活性碳纤维布。傅里叶转换红外光谱的结果如图1及图2所示。

4.交流阻抗频谱测试(eis)

将上述使用实施例1及比较例1所制得的钮扣型电池,以恒电位仪(厂商:autolab,型号:pgstat30)进行交流阻抗频谱测试,得到实施例1及比较例1所制得的钮扣型电池的界面接触阻抗(rc),结果如表1所示。

5.充放电测试

以恒电位仪(厂商:autolab,型号:pgstat30)对上述使用实施例1、2及比较例1所制得的钮扣型电池进行充放电测试。其中,在充放电电流密度为1.5ma/cm2时,实施例1、2及比较例1的钮扣型电池的比电容值结果是如表1所示,实施例1及比较例1的钮扣型电池的比电容对充放电电流密度的关系图是如图3所示。

表1

注:「---」表示未量测。

表2

表3

[注]:

i(a):水气吸附(adsorbedwater);

ii(a):c-o,羟基中的氧原子;

iii(a):羰基中的c=o、羧基、醌(quinone)中的氧;

i(b):羧基及酯基的碳;

ii(b):羰基、醌基及酮基的碳;

iii(b):醇基及醚基的碳;

iv(b):石墨;

v(b):碳化物(carbide)。

从表1中水接触角的结果可知,实施例1至4的经改质活性碳纤维布的水接触角为0度,表示实施例1至4的经改质活性碳纤维布具有很高的亲水性。比较例1未经改质活性碳纤维布的水接触角为120度,代表实施例1未经改质活性碳纤维布的亲水性较差。证明通过电浆处理确实能使得碳纤维布经电浆处理后的亲水性大于碳纤维布电浆处理前的亲水性。

从表2中「o1s」峰值的结果可知,实施例1至4的经改质活性碳纤维布的氧的相对含量为22.4%至34.6%,而比较例1的未经改质活性碳纤维布的氧的相对含量为11.3%,证明通过电浆处理确实能使得碳纤维布中的多数碳纤维被活化并与氧反应而使得碳纤维布上的氧增加。并配合图1及2可知,实施例1至4经改质活性碳纤维布具有亲水性官能基(o-h、c=o、c-o、-cooh),证明通过所述电浆处理确实能使得碳纤维布中的多数碳纤维被活化并与亲水性物质反应而于所述碳纤维上连接亲水性官能基团。

配合表2及表3中的「o1s峰位的i(a)」相对含量可知,实施例1经改质活性碳纤维布所吸附水气的相对含量为3.36%(0.15×0.224×100%),实施例2经改质活性碳纤维布所吸附水气的相对含量为5.88%(0.17×0.346×100%),实施例3经改质活性碳纤维布所吸附水气的相对含量为9.74%(0.29×0.336×100%),实施例4经改质活性碳纤维布所吸附水气的相对含量为9.95%(0.32×0.311×100%),皆高于比较例1未经改质活性碳纤维布所吸附水气的相对含量为1.58%(0.14×0.113×100%),证明通过电浆处理确实能使得碳纤维布经电浆处理后的亲水性大于所述碳纤维布电浆处理前的亲水性。

由表1中界面接触阻抗的结果可知,实施例1所制得的钮扣型电池具有较低的界面接触阻抗,比较例1所制得的钮扣型电池具有较高的界面接触阻抗。以及由表1中充放电测试的结果可知,实施例1与实施例2所制得的钮扣型电池能承受较快的充电速率,比较例1所制得的钮扣型电仅可承受较慢的充电速率。并由图3可知,实施例1所制得的钮扣型电池具有较高的比电容,比较例1制得的钮扣型电池具有较低的比电容。证明通过所述电浆处理确实能使得碳纤维布经电浆处理后的的导电性大于所述碳纤维布电浆处理前的导电性,从而使得钮扣型电池具有较佳的性能。

由图4至7证明,通过电浆处理确实使得碳纤维布中的碳纤维断裂而形成松散结构。

综上所述,通过所述电浆处理能使所述碳纤维布与所述亲水性物质反应而于所述碳纤维布上形成亲水性官能基团,因此提升所述碳纤维布的亲水性,以及通过所述电浆处理使所述碳纤维布中的碳纤维断裂而形成松散结构,因此提升所述碳纤维布的导电性,故确实能达成本发明之目的。

只是以上所述,为本发明的较佳实施例而已,当不能用此限定本发明实施的范围,也就是说大凡依本发明权利要求书及发明说明书所作的简单的等效变化与修饰,皆仍属本发明涵盖的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1