半导体用铜合金接合线的制作方法

文档序号:11839622阅读:264来源:国知局

技术领域

本发明涉及为连接半导体元件上的电极和电路布线基板的布线而利用的半导体用铜合金接合线。



背景技术:

现在,作为将半导体元件上的电极与外部端子之间进行接合的接合线,主要使用线直径(线径)为20~50μm左右的细线(接合线)。接合线的接合一般是超声波并用热压接方式,可使用通用接合装置、使接合线通过其内部而用于连接的毛细管夹具等。在利用电弧热输入将线尖端加热熔融,通过表面张力使其形成球后,将该球部压接接合于在150~300℃的范围内加热了的半导体元件的电极上,其后,通过超声波压接使接合线直接在外部引线侧楔接合。

接合线的坯料迄今为止主要使用高纯度4N系(纯度>99.99质量%)的金。但是,由于金价格高昂,而且在功率系IC等中要求粗线(线直径50~100μm左右)等,因此优选材料费便宜的其他种类金属的接合线。

在来自接合线技术的要求上,优选在球形成时形成圆球性良好的球,该球部与电极的接合部的形状尽可能接近正圆,进而要求得到充分的接合强度。另外,为了对应于接合温度的低温化、接合线的细线化等,在引线端子和布线基板上使接合线超声波压接的楔连接时,要求可以不发生剥离等地进行连接接合,并且可得到足够的接合强度等。

在如汽车用半导体等那样在高温下放置的用途中,金接合线和铝电极的接合部的长期可靠性成为问题的情况较多。根据高温加热试验等的加速评价,发生该接合部的接合强度的降低、电阻的上升等的不良。金/铝接合部(金接合线和铝电极的接合部)在高温加热下的不良成为制约半导体的高温使用的主要原因。

为了提高这样的在高温加热下的接合可靠性,一般已知以铜作为坯料的铜接合线是有希望的,例如,在非专利文献1等中曾有报告。作为原因之一,曾指出在铜/铝接合部(铜接合线和铝电极的接合部)的Cu-Al系金属间化合物的生长速度与在金/铝接合部的Au-Al系金属间化合物的生长速度相比为1/10以下、较慢等。

由于铜有材料费便宜、导电性比金高等的优点因而开发了铜接合线,在专利文献1~3等中被公开。但是,铜接合线,其球部的硬度比Au高,在焊盘电极上使球变形以接合时,对芯片给予裂纹等的损伤成为问题。对于铜接合线的楔接合,与Au相比制造余地(margin)窄,担心量产性降低。另外,如上述那样,对于利用Au成问题的高温加热下的接合可靠性,确认出铜为良好,但在除此以外的严酷使用环境下的可靠性等并不充分知道,要求面向实用化的综合的使用性能、可靠性的确认及改善。

现有技术文献

专利文献1:日本特开昭61-251062号公报

专利文献2:日本特开昭61-20693号公报

专利文献3:日本特开昭59-139663号公报

专利文献4:日本特开平7-70673号公报

专利文献5:日本特开平7-70675号公报

非专利文献1:”The emergence of high volume copper ball bonding”,M.Deley,L.Levine,IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium,(2004),pp.186-190.



技术实现要素:

关于面向实用化的综合可靠性的确保,对铜接合线的长期可靠性进行了较多的可靠性评价,确认出作为最多被利用的加热试验的干燥气氛下的高温保管评价中为正常,与此相对,在高湿加热评价中发生不良。作为一般的高湿加热评价,进行PCT试验(压力锅试验)。其中饱和类型的PCT试验作为比较严格的评价经常被使用,代表性的试验条件是在温度121℃、相对湿度100%RH(Relative Humidity;相对湿度)、2大气压下进行。关于PCT试验,在金接合线中出于线材料的原因几乎没有成为问题,金接合线(Au线)的PCT试验没有受到关注。在开发阶段的铜接合线中PCT试验的可靠性受到关注较少,迄今为止几乎不知道PCT试验的不良。

在本发明者们的实验中,如果将连接了铜接合线的半导体进行树脂封装后,进行饱和类型的PCT试验,则确认出发生接合强度的降低、电阻的增加等的不良。在上述加热条件下的不良发生时间为100小时~200小时,担心实用上的问题。铜接合线在PCT试验中导通不良的发生频率比金接合线高,因此为了在与金接合线同等的用途有效利用,要求在PCT试验中的寿命提高。

另外,根据用途,有时除了上述可靠性以外,希望对于热循环的可靠性提高。在采用温度的升降的热循环试验(TCT:Temperature Cycle Test)中,确认出铜接合线(Cu线)的不良发生频率比金接合线高。TCT试验的条件是在-55℃~150℃的范围反复进行温度循环后,评价电阻、接合强度等。主要的不良部位是第二接合部。认为其原因是因为,树脂、引线框、硅芯片等的材料的热膨胀差大,因而产生热应变,引起在接合线的第二接合部的断裂。认为金接合线的TCT试验在通常的半导体封装和使用环境下不会产生问题,仅仅在周边部件的变化、严酷的加热条件等的极少案例中,有可能在TCT试验中发生不良。但是,在铜接合线中,由于TCT试验的不良发生频率比金接合线高,因此有时用途受限,或对多样化的周边部件的适应变困难。因而,作为更优异的铜接合线,要求进一步提高对于热循环的可靠性。

铜接合线,在将球部接合到铝电极上时担心接合形状的不良频率比金接合线高。在通用地使用的金接合线中,为了应对窄间距连接等LSI用途的严格要求,进行了用于使球接合形状正圆化的开发。在铜接合线中,出于减轻接合部正下方的芯片损伤等的目的,将高纯度的铜用于坯料的情况较多,结果,担心接合形状恶化。为了在今后的窄间距连接等LSI用途中促进铜接合线的实用化,除了上述可靠性以外,还要求球接合形状的进一步提高。

最近的接合技术、封装结构等在快速地进化,铜接合线的要求特性也在变化。以前,在铜接合线中,与金接合线同样地期待高强度化。但是,最近,为了适应接合技术的提高、量产性的追赶等的需求,在铜接合线的要求特性中,更加重视软质化、接合稳定性等。

本发明的目的是提供解决如上述那样的现有技术的问题,改善在高湿加热PCT试验中的可靠性,以比金接合线廉价的铜为主体的半导体用铜合金接合线。

权利要求1涉及的半导体用铜合金接合线,其特征在于,是将铜合金拉丝加工而成的,该铜合金含有0.13~1.15质量%的Pd,其余量为铜和不可避免的杂质。

权利要求2涉及的半导体用铜合金接合线,其特征在于,在权利要求1中,线表面的氧化铜的平均膜厚为0.0005~0.02μm的范围。

权利要求3涉及的半导体用铜合金接合线,其特征在于,在权利要求1、2中,在与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上且为线直径的1.5倍以下。

权利要求4涉及的半导体用铜合金接合线,其特征在于,在权利要求1~3的任一项中,上述铜合金还含有总计为0.0005~0.07质量%的Ag、Au的至少一种。

权利要求5涉及的半导体用铜合金接合线,其特征在于,在权利要求1~4的任一项中,上述铜合金还含有总计为0.0005~0.025质量%的Ti:0.0005~0.01质量%、B:0.0005~0.007质量%、P:0.0005~0.02质量%的至少一种。

根据本发明,可以提供材料费便宜、关于高湿加热的接合部的长期可靠性优异的半导体用铜合金接合线。并且,可以提供关于热循环的可靠性优异的半导体用铜合金接合线。并且,能够提供球变形良好、量产性也优异的半导体用铜合金接合线。

具体实施方式

对接合线专心调查了以铜为坯料的铜接合线的含有成分的影响,结果发现通过向铜中添加特定量的Pd,采用PCT试验的高湿加热可靠性提高。在专利文献4和5中曾公开了,关于铜接合线,为了在球形成时抑制H2、O2、N2和CO气体的产生,添加含有Pd的元素群。但是,上述含有Pd的元素群的添加量为0.001~2质量%,为较宽的范围,既没有记载也没有启发通过以本发明涉及的特定的范围添加Pd来得到高湿加热可靠性提高这样完全不同的作用效果。

另外,发现了通过除了添加Pd以外还添加特定量的Ag、Au(将其余量的铜用特定的添加量的Ag和/或Au置换),来改善球变形形状,或者通过除了添加Pd以外还添加特定量的Ti、B、P(将其余量的铜用特定的添加量的Ti、B、P置换),对采用TCT试验的热循环可靠性的提高有效。此外,还确认出通过添加上述的Pd,并且控制为特定的组织,可得到提高楔接合性的高的效果。

本发明的半导体用铜合金接合线,是由以0.13~1.15质量%的浓度范围含有Pd的铜合金构成的半导体用铜合金接合线。通过以上述浓度范围添加Pd,可以提高采用PCT试验的高湿加热可靠性。即,通过以上述浓度范围含有Pd,可以将PCT试验的直到不良产生的寿命相对于以往的铜接合线提高到1.3~3倍。由此,变得可以在与金接合线同等的用途下利用铜接合线。即,铜接合线的用途可以扩大到以往以上。

连接了以往的铜接合线的半导体的PCT试验中的不良形态是在铜接合线和铝电极的接合部的强度降低和电阻的增加。作为其不良机理,本发明者们清楚了在Cu/Al接合界面(铜接合线和铝电极的接合界面)的腐蚀反应是主因。即,该主因是,PCT试验中在接合界面生长的Cu-Al系的金属间化合物与封装树脂所含有的气体成分或离子等发生腐蚀反应。认为本发明的半导体用铜合金接合线通过在铜接合线中以上述浓度范围含有Pd,Pd扩散或浓化到接合界面,对Cu和Al的相互扩散带来影响,由此使腐蚀反应推迟。认为接合界面附近的Pd的作用是阻碍腐蚀反应物的移动的阻挡功能、控制Cu、Al的相互扩散和金属间化合物的生长等的功能等。

若Pd浓度为0.13~1.15质量%的范围,则可得到控制接合界面中的Cu、Al的相互扩散的效果,PCT试验中的接合部的寿命提高到200小时以上。作为在此的接合部的评价,是在PCT试验后将树脂开封并除去,其后通过扯拉试验评价接合部的断裂状况。在此,如果Pd浓度低于0.13质量%,则上述的PCT可靠性的改善效果小、不充分。另一方面,如果Pd浓度超过1.15质量%,则低温接合下的与铝电极的初期的接合强度降低,因此在PCT试验中的长期可靠性降低,BGA(Ball Grid Array;球栅阵列封装)、CSP(Chip Size Package;芯片尺寸封装)等的向基板、带等的接合的量产余地变窄。更优选上述Pd浓度为0.2~1.1质量%的范围,若为上述范围,则在PCT试验中的可靠性进一步提高。例如,PCT试验的直到不良发生的寿命提高到500小时以上。这也有时相当于以往的铜接合线的1.5倍以上的长寿命化,变得能够应对严酷的环境下的使用。

另外,作为高浓度地添加Pd时的注意点,需要进行研讨以使得半导体用铜合金接合线的使用性能不会降低。如果Pd浓度超过1.15质量%,则因线的常温强度和高温强度等上升,环路形状的偏差的产生、楔接合性的降低等变得显著。因而,Pd浓度若为0.13~1.15质量%的范围,则环路高度的偏差的减轻、确保良好的楔接合性等变得容易。

若为由以0.13~1.15质量%的浓度范围含有Pd的铜合金构成的半导体用铜合金接合线,则在将其尖端熔融形成的球的内部也大致均质地固溶Pd,由此可得到使PCT可靠性在量产水平下稳定地提高的效果。认为球内部的Pd的作用是推迟球内部的腐蚀性离子的扩散,由于接合界面的粘附性提高从而阻碍腐蚀性气体的移动,并且,作为从上述球内部扩散到接合界面的Pd的供给源起作用等。所谓的上述的量产水平的PCT可靠性提高,是在高密度安装中,每1个芯片在300~1800管脚等的多管脚系中的1管脚都不在接合部引起不良的稳定的管理,或者,相当于在压接球直径为45μm以下的小的接合部的界面中的数μm的范围下也能够抑制腐蚀的严格控制等的管理。对这样的高度的可靠性提高,在球内部固溶Pd是有效的。

球内部含有的Pd的含量若为0.08~1.5质量%的范围,则可提高使PCT的接合可靠性在量产水平下稳定地提高的效果。在此,作为球内部的Pd含量的合适范围与线内部的含量稍有偏差的理由,认为是由于在线熔融和凝固时发生由一部分的Pd扩散引起的球表面的浓化、球内部的浓度偏析等,并且,因接合后的树脂封装工序和可靠性试验等的加热,Pd扩散到接合界面的附近等,由此发生Pd浓度的分布。即,只要是线内部的Pd含量为0.13~1.15质量%的浓度范围的半导体用铜合金接合线,将球内部的Pd含量设为0.08~1.5质量%的合适范围就变得容易,由此可提高使可靠性稳定地提高的效果。

若为由以0.13~1.15质量%的浓度范围含有Pd的铜合金构成、线表面的氧化铜的平均膜厚为0.0005~0.02μm的范围的半导体用铜合金接合线,则可更进一步提高使PCT可靠性在量产水平下稳定地提高的效果。如果线表面的氧化铜的膜厚比0.02μm厚,则由含有Pd的铜合金构成的接合线的球接合部的PCT可靠性的改善效果产生偏差,PCT加热后的接合强度等有变不稳定的倾向。该PCT可靠性偏差在线直径为20μm以下的接合线中更有可能成为问题。对于含有Pd的铜合金的表面的氧化铜使PCT可靠性不稳定化的主要原因,尚有不清楚的地方,但认为是半导体用铜合金接合线的纵向或从线表面起在深度方向的Pd浓度分布变得不均匀、或者球内部的侵入氧或残留氧化物有阻碍Pd的提高PCT可靠性的效果的可能性等等。另外,由于含有Pd的半导体用铜合金接合线可得到推迟表面氧化的效果,因此将氧化铜的平均膜厚控制在薄的范围即0.0005~0.02μm也变得容易。在以0.13~1.15质量%的浓度范围含有Pd的半导体用铜合金接合线中,确认出与高纯度铜相比,具有使20~40℃左右的低温区域的线表面的氧化铜膜的生长推迟的作用。

将线表面的氧化铜的平均膜厚设为0.0005~0.02μm的范围的理由是因为,如果超过0.02μm,则如上述那样,PCT可靠性的改善效果容易产生偏差,例如,如果增加评价的接合数,则改善效果产生偏差,变得不稳定的可能性升高。另一方面,因为将线表面的氧化铜的平均膜厚稳定地抑制在低于0.0005μm需要特殊的表面处理、制品管理等,诱发接合性的降低、成本上升等,在工业上适应变得困难。例如,如果出于将氧化铜的平均膜厚抑制在低于0.0005μm的目的,增厚线表面的防锈剂的涂布膜,则有接合强度降低、连续接合性降低的问题。另外,如果出于将氧化铜的平均膜厚抑制在低于0.0005μm的目的,极端地缩短线制品的大气保管的保证寿命,则线接合的量产工序中的操作变困难,或发生碎屑问题,因此也有时在工业上不被允许。

关于线表面的氧化铜的平均膜厚的测定,适合于表面分析的俄歇光谱分析是有效的,优选使用在线表面的随机位置的最低3处以上、如果可能则为5处以上进行了测定的氧化铜的膜厚的平均值。所谓氧浓度,使用O浓度相对于将Cu、O、金属元素总计的浓度的比率。由于作为线表面的代表性污染的有机物除外,因此在上述的浓度计算中不包含C量。由于高精度地求得氧化铜的膜厚的绝对值困难,因此优选采用俄歇光谱法中一般所使用的SiO2换算值算出氧化铜膜厚。在本说明书中,将氧浓度为30质量%作为氧化铜和金属铜的边界。主要的氧化铜已知是Cu2O、CuO,但含有Pd的铜合金的表面在低温(25~500℃)下优先地形成Cu2O的情况较多,因此将氧浓度为30质量%作为边界。

作为用于在量产水平下将线表面的氧化铜的平均膜厚管理为0.0005~0.02μm的范围的制造条件,需要抑制线制造工序中的氧化。为了控制热处理工序中的氧化铜的形成,温度(200~850℃)、热处理工序中的惰性气体流量的调整(1~8L/分)、炉内的氧浓度的管理等是有效的。氧浓度在炉的中央部进行测定,其浓度范围调整成0.1~6体积%是有效的。作为将氧浓度控制在上述范围的手段,通过上述气体流量的适当化、改变炉的入口、出口等的形状可以管理从外界向热处理炉内的大气卷入的防止等。进而在量产水平下,优选拉丝工序也进行管理,例如,在水中的拉丝工序的1个道次后卷绕线之前进行干燥(40~60℃的热风大气的喷吹),由此积极地除去线表面的水分;管理制造工序中途的保管的湿度(在保管2天以上时相对湿度为60%以下)等也是有效的。

更优选:以0.13~1.15质量%的浓度范围含有Pd,并且,在与半导体用铜合金接合线的纵向(以下,将其称为线纵向)平行的线截面中的晶粒的平均尺寸(数均尺寸)为2μm~75μm的半导体用铜合金接合线。通过上述晶粒的平均尺寸为2μm以上,变得减轻晶体取向的各向异性、促进半导体用铜合金接合线的软质化。其结果,可得到使环路形状更稳定化、楔接合性更加提高的效果。作为具体的效果,有控制半导体用铜合金接合线的折曲、塑性变形,在连接方向没有约束地在四个方向稳定地控制复杂的环路形状,以及降低在楔接合中发生不粘接的不良(Non-Stick-On-Lead:NSOL),安装成品率提高的效果等。最近的接合技术、封装结构等在快速地进化,铜接合线的要求特性也在变化。以前,在铜接合线中,与金接合线同样地期待高强度化,但最近,更加重视软质化、接合稳定性等。为了很好地适应最新的封装结构,抑制添加有Pd的铜接合线的高强度化,并且进一步提高环路控制、楔接合性,增大晶粒的平均尺寸是有效的。在此,若晶粒尺寸为2μm以上,则可得到上述的充分的效果。例如,在环路高度不同的多段连接等的最尖端的封装中也能够充分应用。在现有的金接合线的通用品中,金接合线的组织成为纤维状,晶粒的平均尺寸低于1μm。在添加有Pd的铜接合线中,由于晶粒微细化的倾向强,因此担心接合工序的成品率降低。通过组合Pd添加和晶粒的粗大化,可得到环路控制、楔接合性进一步提高这样更高的效果。优选晶粒的平均尺寸为3μm以上,若这样的话则提高楔接合性的效果进一步提高,主要在线直径20μm以下的细线中可得到特别的改善效果。为了得到上述效果,晶粒的平均尺寸的上限没有特别限定,但从半导体用铜合金接合线的生产率来看将上限设为75μm。这是相当于50μm直径的半导体用铜合金接合线中的线直径的1.5倍以下的尺寸。在线直径为25μm以下的细线中,优选晶粒的平均尺寸的上限为线直径的1.5倍以下。如果超过上述上限,则有时过量地粗大化,晶粒成为竹节状,由此线制造中线直径局部地变细,生产率降低。在此,本发明的晶粒的粒尺寸如以下那样确定。

半导体用铜合金接合线的晶粒的观察可以利用包含线轴的线纵向的线截面(轴截面)或线表面的观察。优选为在轴截面的观察,若这样的话则能够观察也包含内部的半导体用铜合金接合线整体的组织。

为了以量产水平稳定制造以0.13~1.15质量%的浓度范围含有Pd,并且,在与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上且为线直径的1.5倍以下的半导体用铜合金接合线,将拉丝加工和加热处理的条件适当化是有效的。在线直径为20μm的极细线的制造条件的一例中,在拉丝工序中加工率设为99.9%以上、平均拉丝速度设为200~400m/分,在热处理工序中,使用均热带长度200mm的热处理炉,温度设为400~800℃、扫掠速度设为20~100m/分、惰性气体流量设为0.5~6L/分的范围,由此,即使是品质稳定化困难的极细线,不使生产率降低地使晶粒的平均尺寸稳定化为2μm以上、且为线直径的1.5倍以下在工业上也变得容易。优选在拉丝工序的中途的加工率为99.5~99.99%的范围进行一次以上的热处理(在上述条件下温度为300~600℃)。这是因为,由此,通过使固溶Pd的铜合金中的回复和再结晶部分进行,可得到抑制最终线直径中的晶体粒径的偏差的效果。

晶粒的尺寸是如下那样地特定晶界(晶粒彼此的界限),使晶粒的形状明确来测定的。通过采用化学蚀刻法或CP(Cross-section Polishing;截面抛光)法直接观察晶界的方法、或者采用电子背散射图(Electron Back Scattering Pattern、以下称为EBSP)法解析晶界的方法,来特定上述晶界。在化学蚀刻中,通过选定适合于表皮层或芯材的坯料、结构等的药液、蚀刻条件,可以简便地观察晶粒等的组织。作为上述药液,可使用例如盐酸、硝酸、硫酸、醋酸等的酸性水溶液。通过选定上述酸浓度(pH)和温度、时间这些蚀刻条件,选择性地溶解晶界,或使特定的晶面选择性地溶解,从而确定晶界,观察晶粒的形状。在CP法中,使用例如2~6kV的加速电压的氩离子的宽幅的束形成试样截面,使晶界明确,观察晶粒的形状。由于能够在EBSP法中测定各晶粒的取向,因此能够确定晶界。在本发明中,将相邻的晶粒的取向差为15°以上的边界作为晶界。

晶粒的平均尺寸是以数均来算出的尺寸。将至少5个以上的晶粒的尺寸进行平均。另外,在本发明中,不需要采用上述全部的分析方法得到的晶粒平均尺寸都满足本发明的规定范围,采用一个分析方法得到的晶粒平均尺寸满足本发明的规定范围即可得到其效果。

晶粒的尺寸判定可以利用下述方法:以采用光学显微镜、SEM(Scanning Electron Microscope;扫描电子显微镜)、EBSP等拍摄的照片为基础判定的方法、和采用解析软件的方法等等。在前者的照片判定中,晶粒不是圆形而是无定形的场合,测定晶粒的长径和短径从而求得其平均值的方法是有效的。在后者中,通过利用装备在EBSP装置的解析软件等,可在观察的同时比较容易地求得。

更优选:以0.13~1.15质量%的浓度范围含有Pd,并含有总计为0.0005~0.07质量%的Ag、Au的至少一种的半导体用铜合金接合线。在最近的高密度安装所要求的窄间距连接中,球接合部的变形形状是重要的,要求抑制花瓣状、偏心等的异形,使其正圆化。通过与Pd并用地添加Ag、Au的至少一种,可以使球变形容易地各向同性,使压接形状正圆化的效果提高。由此,确认出可以充分适应于50μm以下的窄间距连接。确认出使球变形正圆化的效果仅靠Ag、Au的元素群时较小,通过与Pd组合可更进一步提高。详细的机理并不清楚,但认为在球部凝固时作为高熔点金属的Pd在球表面附近比较高浓度地聚集,作为比Pd熔点低的Ag、Au均匀地固溶到球的内部,由此利用它们的组合来补充性地作用,从而可以对球变形的正圆化发挥更加优异的效果。作为在此的补充性作用的一例,球部的花瓣状变形在球表面附近被控制,偏心在球内部被控制,期待同时改善两者的作用。还确认出Ag和Au的效果为相同程度。在此,关于Ag、Au的总计的浓度范围,若低于0.0005质量%则有时使球变形容易地正圆化的效果变小。如果超过0.07质量%则有时球接合部的剪切强度降低。另外,关于Ag、Au的添加,在不含有Pd的场合(虽然不能够满足高湿加热的可靠性),由Ag和/或Au的添加引起的使球变形正圆化的效果变小,为了得到充分的效果,Ag、Au的浓度的总计需要高浓度化到0.2质量%以上。即,通过将Ag、Au的至少一种与Pd并用,可得到使球变形正圆化的显著的效果。而且,在含有Pd的场合,即使抑制Ag、Au的添加浓度较低,也可得到能够充分抑制对芯片损伤等的恶劣影响这样的协同效应。

进而,通过含有0.13~1.15质量%的Pd、总计为0.0005~0.07质量%的Ag、Au的至少一种,且在与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上,可得到能够使球形状正圆化的更高的效果。对其机理还留有不清楚的地方,但认为通过晶粒变大,楔接合后的切尾形状稳定化,利用电弧放电使该切尾部熔融而形成了的球部的组织均匀化等。该正圆化的效果在线直径为20μm以下的半导体用铜合金接合线的场合更显著。

更优选为下述的半导体用铜合金接合线,其由铜合金构成,所述铜合金以0.13~1.15质量%的浓度范围含有Pd;含有Ti:0.0005~0.01质量%、B:0.0005~0.007质量%、P:0.0005~0.02质量%的至少一种,上述三种元素总计为0.0005~0.025质量%。通过与Pd并用地添加Ti、B、P的至少一种,可得到使TCT试验等的热循环评价中的楔接合部的不良发生降低的高的效果。利用Ti、B、P的添加,在线发生大变形时降低线的加工硬化,提高促进楔接合的线变形的作用。另外,即使半导体用铜合金接合线因TCT试验中的热应变而发生伸缩,也能够期待这些元素对楔接合了的半导体用铜合金接合线抑制微裂纹等的损伤的效果。确认出:在TCT试验中进一步提高可靠性的效果,仅靠Ti、B、P的元素群时较小,通过与Pd组合可进一步提高。详细的机理并不清楚,但认为由于Pd在Cu中固溶,Ti、B、P在Cu中的固溶度小因而析出、偏析,由此这些元素补充性地作用,能够对楔接合的线变形发挥更加优异的效果。在此,关于Ti、B、P的浓度,下限值若低于0.0005质量%则有时上述的效果变小。另外,如果上限浓度Ti、B、P单独分别超过Ti:0.01质量%、B:0.007质量%、P:0.02质量%,或者总计超过0.025质量%,则有时线强度上升,梯形环路的直线性降低,与相邻的半导体用铜合金接合线的间隔变窄。

进而,更优选为下述的半导体用铜合金接合线,该接合线含有0.13~1.15质量%的Pd;含有Ti:0.0005~0.01质量%、B:0.0005~0.007质量%、P:0.0005~0.02质量%的至少一种,含有这些元素的至少一种的Pd、Ti、B、P的总计为0.0005~0.025质量%;与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上。利用上述半导体用铜合金接合线,可得到使楔接合性提高的更高的效果。认为这是因为,为了降低由热应变引起的在楔接合部的破损发生,除了上述的元素添加作用以外,通过与晶粒的粗大化的相互作用,来提高改善TCT试验的可靠性的效果的缘故。该改善效果在线直径为20μm以下的细线的场合更显著。

本发明的半导体用铜合金接合线,也可以在保存时涂布通常的防锈剂或者密封在N2气体等的惰性气氛中,或者实施上述两者。另外,在本发明的半导体用铜合金接合线的使用时,除了涂布上述保存用的防锈剂以外,即使不对线表面实施特别的涂覆和镀覆等,也可以保持原样(以单层线)地使用,可得到其作用效果。

对于本发明的半导体用铜合金接合线的制造方法的概要进行说明。

通过将使用铜纯度为4N~6N(99.99~99.9999质量%)的高纯度铜,并含有必要浓度的添加元素的铜合金熔化(熔融)来制作。在该合金化中,有直接添加高纯度的成分的方法、和利用含有1%左右的高浓度的添加元素的母合金的方法。利用母合金的方法,对于低浓度地含有并使元素分布均匀化是有效的。在本发明的添加成分中,在以0.5质量%以上的较高浓度含有Pd的场合,可以利用高纯度的直接添加,为了低浓度地稳定地含有Pd、Ag、Au、Ti、B、P等的元素,添加母合金的方法是有利的。熔化是在真空中或者氮或氩气的气氛下、在1100℃以上进行加热。其后在炉中缓冷来制作锭(铸块)。为了锭表面的洗涤,进行酸洗涤和水洗并使其干燥。铜中的添加元素的浓度分析,有效的是ICP(Inductively Coupled Plasma;电感耦合等离子体)分析等。

粗径利用轧制来加工,细线利用拉丝加工变细到最终线直径。在轧制工序中,使用沟型辊或模锻等。在拉丝工序中,使用能够安置多个经金刚石涂覆过的模的连续拉丝装置。根据需要,在加工的途中阶段或最终线直径下实施热处理。在半导体用铜合金接合线的制造工序中,为了形成与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上的金属组织,优选将加工和热处理适当化。特别优选将热处理工序分割为两个以上的工序。例如,在拉丝加工的途中实施中间退火,进而实施拉丝,在最终线直径下实施最终退火的方法等,对稳定地控制晶粒的尺寸是有效的。作为用于变更晶粒尺寸的制造条件,调整实施中间退火的线直径、其热处理条件、该中间退火的前后的拉丝工序中的加工条件、最终退火的热处理条件等是有效的。导入加工时的位错、原子空穴等的晶格缺陷、在热处理中以晶格缺陷为核形成再结晶晶粒等,通过含有0.13~1.15质量%的Pd而变得比较容易。通过将加工和热处理的条件适当化,利用在Cu中固溶的Pd元素和晶格缺陷的相互作用来控制加工织构和再结晶织构,对调整晶粒尺寸是有效的。

实施例

以下,对实施例进行说明。

叙述具体的制造工序。使用铜纯度为4N~6N(99.99~99.9999质量%)的高纯度铜,添加必要的含有成分,在真空中或者氮或氩气的气氛下,在1100℃以上熔化。其后在炉中缓冷,制作直径6~30mm的铸块。为了铸块表面的洗涤,进行酸洗涤和水洗并使其干燥。对于铜中的微量元素的分析,合金元素的浓度分析使用ICP装置。

粗径利用轧制加工、细线利用拉丝加工变细到最终线直径的25μm或18μm。在轧制工序中,使用沟型辊,以10~100m/分的速度加工到线直径成为0.5~1.5mm。在拉丝工序中,使用能够安置多个模的连续拉丝装置和经金刚石涂覆过的模,在拉丝速度为50~400m/分的范围进行。以模的内壁的清洁化为目的,在使用前实施了超声波洗涤。

在加工的过程中进行2~4次热处理。在线直径500~40μm的范围进行1~3次中间热处理,在最终线直径下进行1次最终热处理。热处理方法是使用具有10cm以上的均热带的红外加热炉,一边在设定为250~800℃的炉中在速度为10~500m/分、扫掠张力为2~30mN的范围使线连续地移动一边实施热处理。为了抑制线表面的铜的氧化,向炉内以流量为0.5~5L/分的范围连续地流入惰性气体(使用的气体是纯度4N的氮气)。作为在线表面的氧化铜的形成的管理指标,在炉的中央部测定氧浓度,调整该值达到0.1~6体积%的范围。氧浓度测定使用市售的伽伐尼(galvanic)电池式氧传感器。调整在最终线直径下的拉伸试验的拉伸值成为4~25%。根据需要,向线表面涂布防锈剂,保管时用保护袋覆盖卷绕了半导体用铜合金接合线的卷轴,在氮气气氛中进行密封。

线表面的氧化铜的平均膜厚的测定,采用俄歇光谱分析进行深度分析,使用在线表面的随机位置的最低3处以上测定的氧化铜的膜厚的平均值。一边用Ar离子溅射一边在深度方向测定,深度的单位按SiO2换算表示。以氧浓度为30质量%作为氧化铜和金属铜的边界。在此的所谓氧浓度,使用氧浓度相对于将Cu、氧、金属元素总计了的浓度的比率。测定使用SAM-670(PHI公司制、FE型),将电子束的加速电压设为5kV、测定区域为10nA,Ar离子溅射的加速电压为3kV、溅射速度为11nm/分从而实施测定。将氧化铜的平均膜厚的测定结果记载于表1、3的「线表面的氧化铜膜厚」的栏中。

如上述那样,制作了以下的表1、2中记载的各半导体用铜合金接合线。

表1

表2

半导体用铜合金接合线的连接使用ASM公司制的通用自动线接合装置,进行球/楔接合。在球接合中,在线尖端通过电弧放电形成球部,通过并用超声波的热压接将该球部接合到电极膜上。在半导体用铜合金接合线中为了抑制熔融时的氧化,在线尖端在流通惰性气体的状态下形成球。惰性气体使用N2+5%H2气体。

接合对象使用作为硅基板上的电极膜的材料的约0.8~3μm的厚度的Al合金膜(Al-1%Si-0.5%Cu)。另外,确认出即使是Al-0.5%Cu也可得到大致同样的结果。楔接合的对象使用了表面施加了Ag镀层(厚度为2~4μm)的引线框。另外,即使使用表面形成有Au镀层/Ni镀层/Cu布线的玻璃环氧树脂基板也确认出实施例和比较例的差别。

关于制作的半导体用铜合金接合线,进行了以下的可靠性的评价试验。线直径使用18μm。压接球直径为32μm、接合温度为175℃、接合对象的材质为Al-0.5%Cu、膜厚为1μm。用于接合连接了的试样的树脂封装的封装树脂使用不含Br(溴)等卤素的生树脂系的通用封装树脂。作为封装树脂中含有的代表性杂质的氯的分析浓度为3~8质量ppm。

PCT试验(压力锅试验)是将预先连接了40根半导体用铜合金接合线的试样在作为饱和型的条件的温度121℃、相对湿度100%、2大气压的高温高湿环境下加热200、500小时。其后,评价了上述连接了的40根半导体用铜合金接合线的电特性。在电阻上升到初期的3倍以上的半导体用铜合金接合线的比例为30%以上(相对于40根中的比例,以下同样)的场合,为接合不良,因而将×标记表示在表1的「PCT可靠性」的栏中。在电阻上升到3倍以上的半导体用铜合金接合线的比例为5%以上且低于30%的范围的场合,能够在可靠性要求不严格的IC中使用,因而将△标记表示在表1的「PCT可靠性」的栏中。在电阻上升到3倍以上的半导体用铜合金接合线的比例低于5%,并且电阻上升到1.5倍以上的半导体用铜合金接合线的比例为5%以上且低于30%的场合,实用上没有问题,因而将○标记表示在表1的「PCT可靠性」的栏中。在电阻上升到1.5倍以上的接合线的比例低于5%的场合,为良好,因而将◎标记表示在表1的「PCT可靠性」的栏中。

在PCT试验中加热200、500小时后,评价了100根半导体用铜合金接合线的球接合部的剪切强度。关于相对于加热前的初期的剪切强度的平均值,PCT试验之后的剪切强度的平均值的比率,在低于40%的场合由于可靠性不良而表示为×标记;在40%以上且低于60%的范围的场合由于能够在可靠性要求不严格的IC中使用而表示为△标记;在为60%以上且低于80%的场合由于实用上没有问题而表示为○标记;在为80%以上的场合由于PCT可靠性良好而表示为◎标记,将上述标记表示在表1的「PCT可靠性评价」的200、500小时的各自的「剪切强度」的栏中。

另外,关于PCT可靠性的偏差,针对相对于PCT试验之后的剪切强度的平均值的标准偏差的比例(%),在9%以上的场合由于强度偏差大、实用化上产生问题而表示为×标记;在6%以上且低于9%的范围的场合虽然希望改善,但由于能够在可靠性要求不严格的IC中使用而表示为△标记;在为4%以上且低于6%的场合,由于实用上不马上出现问题而表示为○标记;在为0%以上且低于4%的场合,由于PCT可靠性稳定,量产性也优异而表示为◎标记,将上述标记分别表示在表1的「PCT可靠性评价」的200、500小时的各自的「偏差」的栏中。

TCT试验使用市售的TCT试验装置。将预先连接了400根半导体用铜合金接合线的试样用于严酷的温度历程的条件(-55℃/30分~155℃/30分)的试验,该试验后,对400根上述连接了的半导体用铜合金接合线进行电测定,评价了电导通。在不良率为零的场合,可靠性高因而表示为◎标记;不良率低于2%则判断为没有实用上的大问题,表示为○标记;不良率若为2~5%的范围则表示为△标记;不良率若超过5%则需要改善,因而表示为×标记,将上述标记表示在表2中的「TCT可靠性」的栏中。

除了上述可靠性的评价以外,进行了下述的线性能评价试验。

在压接球部的接合形状的判定中,观察200根接合了的球,评价了形状的正圆性、异常变形不良、尺寸精度等。使用线直径为25μm和18μm的两种线。若从正圆脱离的各向异性、花瓣状等的不良球形状为6根以上则判定为不良,将×标记表示在表2的「球接合形状」的栏中。另外,在各向异性、花瓣状等的不良球形状为1~5根的场合分为两类,若显著的偏心等的异常变形发生1根以上则希望量产上的改善,因而表示为△标记,若没有发生异常变形则能够使用,因而表示为○标记;若不良球形状为0根则为良好,因此表示为◎标记,将上述标记表示在表2的「球接合形状」的栏中。

球接合强度的评价,使用线直径为25μm且球直径为50~65μm的范围的在级温度(stage temperature)175℃下进行了接合的试样。进行20根的球接合部的剪切试验,测定该剪切强度的平均值,使用采用球结合部的面积的平均值计算出的每单位面积的剪切强度。若每单位面积的剪切强度低于70MPa,则接合强度不充分,因此表示为×标记;若为70MPa以上且低于90MPa的范围,则可以利用若干接合条件的变更进行改善,因此表示为△标记;若为90MPa以上且低于110MPa的范围,则判断为实用上没有问题,表示为○标记;若为110MPa以上的范围,则为良好,因此表示为◎标记,将上述标记表示在表2的「剪切强度」的栏中。

在楔接合性的评价中,利用增加剥离不良的低载荷、在低温下的连接进行加速评价。连接温度设为160℃,接合对象使用施加了Ag镀层的Cu引线框。在此,使用了线直径为25μm和18μm的两种半导体用铜合金接合线。通过2000根的接合来评价不粘接(Non-Stick-On-Lead:NSOL)的发生频率。在不粘接数为6根以上的场合需要改善,因此表示为×标记;在不粘接数为3~5根的场合表示为△标记;在不粘接数为1根或2根的场合为大致良好,因此表示为○标记;在不粘接数为零的场合,判断为线保管寿命良好,表示为◎标记,将上述标记表示在表2中的「楔接合性」的栏中。

对于接合工序中的环路形状稳定性,以线间隔(跨距)为4mm的长跨距和2mm的通常跨距制作了500条环路。利用投影机观察环路,评价了半导体用铜合金接合线的环路高度的偏差、线折曲等。在此,使用了线直径为25μm和18μm的2种半导体用铜合金接合线。为了避免向芯片端的接触,线长度为较长的4mm的梯形环路的形成需要更严格的环路控制。在表2的「环路控制高度稳定性」的栏中,在线长为2mm,直线性、环路高度等的不良有5根以上的场合,判断为有问题,用×标记表示;在线长为2mm,不良有2~4根,并且,在线长为4mm,不良为5根以上的场合,判断为需要改善,用△标记表示;在线长为2mm,不良为1根以下,并且,在线长为4mm,不良为2~4根的场合,环路形状比较良好,因此用○标记表示;在线长为4mm,不良为1根以下的场合,判断为环路形状稳定,用◎标记表示。

为了评价梯形环路的直线性,以线间隔为4mm的长跨距进行了接合。线直径设为25μm。利用投影机从上方观察30根的半导体用铜合金接合线,对于连结球侧和楔侧的接合部的直线,以半导体用铜合金接合线离开最多的部位的偏离作为折曲量进行了测定。在表2中的「梯形环路直线性」的栏中,其折弯量的平均值若低于1根线直径的量则判断为良好,用◎标记表示;若为2根的量以上则需要改善,因此用△标记表示;若为其中间则通常不成问题,因此用○标记表示。

在表1、2中,权利要求1涉及的半导体用铜合金接合线为实施例1~50,权利要求3涉及的半导体用铜合金接合线相当于实施例1~7、11~16、18、20~26、28~33、35、37~50,权利要求4涉及的半导体用铜合金接合线相当于实施例11~20、36~40,权利要求5涉及的半导体用铜合金接合线相当于实施例21~40。另外,比较例1~4相当于不满足权利要求1的半导体用铜合金接合线的场合。

实施例1~50的半导体用铜合金接合线相当于本发明的权利要求1涉及的半导体用铜合金接合线,通过含有0.13~1.15质量%的Pd,确认出在加热时间200小时下的PCT可靠性良好。另一方面,在比较例1~5中,不满足含有0.13~1.15质量%的Pd的条件,确认出即使在200小时的短时间加热下PCT可靠性也降低。实施例2~5、8~15、17、18、20、22~25、27~31、33~40、42~50的半导体用铜合金接合线,通过含有0.2~1.1质量%的Pd,确认出在加热时间500小时下的PCT可靠性良好。

实施例1~7、11~16、18、20~26、28~33、35、37~50的半导体用铜合金接合线相当于本发明的权利要求3涉及的半导体用铜合金接合线,含有0.13~1.15质量%的Pd,且与线纵向平行的线截面中的晶粒的平均尺寸为2μm以上,确认出环路高度的稳定性、楔接合性良好。另一方面,在实施例8~10、17、19、27、34、36中,不满足晶粒的平均尺寸为2μm以上的条件,确认出环路高度的稳定性、楔接合性虽然在可容许范围但稍有降低。实施例1~3、5、6、12~16、18、21~24、28、29、31、32、35、37~40、42~44、46~49的半导体用铜合金接合线通过晶粒的平均尺寸为3μm以上,确认出环路高度的稳定性、楔接合性进一步提高。

实施例11~20、36~40的半导体用铜合金接合线相当于本发明的权利要求4涉及的半导体用铜合金接合线,通过含有0.13~1.15质量%的Pd,并含有总计为0.0005~0.07质量%的Ag、Au的至少一种,确认出在线直径25μm下的球接合形状良好。进而,实施例11~16、18、37~40的铜合金接合线通过满足:含有0.13~1.15质量%的Pd;含有总计为0.0005~0.07质量%的Ag、Au的至少一种;晶粒的平均尺寸为2μm以上的条件,确认出在使用线直径18μm的细线的严格的球接合形状的评价中也为良好的结果。

实施例21~40的半导体用铜合金接合线相当于本发明的权利要求5涉及的半导体用铜合金接合线,以0.13~1.15质量%的范围含有Pd;含有Ti:0.0005~0.01质量%、B:0.0005~0.007质量%、P:0.0005~0.02质量%的至少一种,上述三种元素的总计为0.0005~0.025质量%,确认出在线直径25μm下的TCT可靠性良好。进而也满足晶粒的平均尺寸为2μm以上的条件的实施例21~26、28~33、35、37~40的半导体用铜合金接合线中,确认出使用线直径18μm的细线的严格的TCT可靠性评价中也为良好的结果。

表3

表3表示将氧化铜的膜厚进行了管理的各半导体用铜合金接合线中的评价结果。使用表1的实施例中制作的试样,将氧化铜的膜厚进行了管理、变更。关于试样表示,在试样编号的末尾附记了a的试样相当于表1的实施例中评价过的试样,在末尾附记了b、c、d的试样是通过制造条件的变更等将氧化铜的膜厚进行了变更的试样。为了简便地控制氧化膜厚度,控制了在最终径的热处理工序中的加热温度、氮气的流量、走线速度、炉内的氧浓度等。权利要求2涉及的半导体用铜合金接合线在表1、2中相当于实施例1~50、在表3中相当于实施例2a、2c、3a、3b、4a、4b、4c、6a、6b、14a、14b、24a、24b、29a、29b,比较例1a、1b相当于不满足权利要求1的半导体用铜合金接合线的场合。

实施例2a、2c、3a、3b、4a、4b、4c、6a、6b、14a、14b、24a、24b、29a、29b的半导体用铜合金接合线,相当于本发明的权利要求2涉及的半导体用铜合金接合线,通过以0.13~1.15质量%的范围含有Pd,且线表面的氧化铜的平均膜厚为0.0005~0.02μm的范围,PCT可靠性的偏差减少,确认出稳定的效果。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1