镁合金表面类金刚石碳膜的制备方法与流程

文档序号:12056986阅读:305来源:国知局
镁合金表面类金刚石碳膜的制备方法与流程

本发明涉及一种合金表面处理方法,尤其涉及一种镁合金表面的处理方法。



背景技术:

镁合金具有密度小、比强度高、阻尼性能及生物相容性好等优异特性,在交通、航天、信息、及医用等领域具有广阔的应用前景。然而,目前镁合金材料研究领域中仍存在两个关键问题:一是镁合金的电极电位低,耐腐蚀性差,在潮湿空气、含硫气氛和海洋以及人体环境中均会发生严重的腐蚀;二是镁合金质地软,硬度较低,作为结构材料易因磨损失效而导致构件报废。通过在镁合金基体上制备耐磨、耐蚀表面改性涂层材料,被认为是目前有效改善其耐磨损性和耐腐蚀性的一种有效途径。

类金刚石碳(Diamond-like Carbon,DLC)薄膜是一种非晶碳膜材料的统称,主要由金刚石相的C-sp3杂化键和石墨相C-sp2键混合而成,具有高硬度、高热导率、低摩擦系数,极好的耐蚀性、光学透过性、及生物相容性,是机械、电子、汽车、航空、医学、光学等领域的理想材料。因此,在“轻量化”要求日益紧迫的今天,开展在镁合金表面制备DLC薄膜的研究工作具有较高的科学价值和工程意义。

相关文献可以参考申请号为200810150859.5的中国发明专利申请公开《在镁合金表面制备类金刚石复合涂层的方法》(申请公布号为CN101665941A),该申请通过微弧氧化处理和磁控溅射法沉积掺钛DLC薄膜。

又如申请号为N201010177252.3的中国发明专利申请《兼具耐蚀性和耐磨性的镁合金表面气相沉积防护涂层及其制备方法》(申请公布号为CN102251213A),该申请在镁合金表面气相沉积防护涂层是一种无需过渡层,能直接沉积在镁合金表面的铝掺杂类金刚石涂层。

类似的还可以参考申请号为201110319143.5的中国发明专利申请《镁合金上低温制备高性能硅掺杂类金刚石膜层的方法》(申请公布号为CN102352510A)。

然而,镁合金基体与DLC薄膜存在显著的弹性模量与硬度差异,成为制约DLC薄膜表面改性镁合金应用的关键因素。一方面,在镁合金这一化学活性高、质地软的材料表面制备高硬度DLC薄膜的难度较大。另一方面,薄膜沉积过程中不可避免地积聚高残余应力,不仅导致膜基结合力差,薄膜易剥落失效,同时也极大地限制了厚膜的生长,使其应用受到极大限制。



技术实现要素:

本发明所要解决的技术问题是针对上述的技术现状而提供一种结合强度高的镁合金表面类金刚石碳膜的制备方法。

本发明所要解决的技术问题是针对上述的技术现状而提供一种高耐磨和自润滑性能的镁合金表面类金刚石碳膜的制备方法。

本发明解决上述技术问题所采用的技术方案为:一种镁合金表面类金刚石碳膜的制备方法,其特征在于包括如下步骤:

①对镁合金基材表面进行清洗和喷砂粗化处理,得到处理好的基材;

②采用冷喷涂在基材表面喷涂一种金属或金属陶瓷涂层,在镁合金基材表面得到冷喷涂中间层;

③将冷喷涂中间层进行抛光处理以达到设定的粗糙度;

④将抛光处理后的带有冷喷涂中间层的镁合金基材置于磁控溅射沉积设备中,设定镀膜工艺参数后,在冷喷涂中间层表面制备类金刚石碳膜。

作为优选,步骤①中所述的喷砂粗化处理条件为:喷砂压力为0.3~1.0MPa,喷砂时间为10~30s,喷砂用砂丸目数为40~200目。

作为优选,步骤②中所述的金属或金属陶瓷材料为420不锈钢、304不锈钢、316L不锈钢、WC-12Co、WC-17Co、WC-CoCr或WC-NiCr。

作为优选,步骤②中所述的金属或金属陶瓷涂层的厚度为100um~1mm。

作为优选,步骤②中所述的冷喷涂条件为:工作气体预热温度为500~800℃,压力为2.5~3.5MPa,喷涂距离为20~40mm,喷枪移动速度为50~400mm/s,喷涂气体为氦气或氮气。

作为优选,步骤③所述的抛光处理采用机械、电解或化学抛光处理,并且,抛光后粗糙度Ra达到0.1~0.6。

作为优选,步骤④所述的镀膜工艺参数为:沉积过程中,通入高纯氩气与甲烷混合气体,腔体气压为0.6~1.0Pa,氩气与甲烷气体的质量流量比为65/45~85/45,基底脉冲偏压为-200~-400V,脉冲占空比为20%~60%,沉积1.5~3.5h后冷却。

作为优选,步骤④所述的类金刚石碳膜厚度为0.5~2.5um。

作为优选,所述的类金刚石碳膜硬度介于15~25GPa之间,内应力介于0.2~0.6GPa之间,膜基结合力介于20~30N之间,在大气环境下,所述的类金刚石碳膜与GCr15钢球对偶配副时的干摩擦系数在0.08~0.12之间。

与现有技术相比,本发明以镁合金材料为基材,在其表面首先利用冷喷涂技术引入金属或金属陶瓷涂层作为中间层,然后在该中间层表面制备DLC薄膜,从而形成具有优异性能的冷喷涂/DLC复合涂层,该复合涂层的优异性能表现如下:

第一,冷喷涂金属或金属陶瓷涂层作为中间层,对镁合金基材的热影响小,基材不会发生氧化、变形,涂层结合致密、具有较高的结合强度,且其工艺简单、环保、涂层结构可控。

第二,DLC薄膜具有较强膜基界面结合状态,有利于提高膜基体系的摩擦学特性,保证了薄膜具有高硬度、低摩擦系数和优异的耐磨性能。

冷喷涂是近年来发展起来的一种新型涂层制备技术,它利用压缩气体(空气、N2、He)加速金属粒子到临界速度(超音速),金属粒子撞击基体表面后发生剧烈塑性变形,牢固附着在基体表面并不断堆积形成涂层,获得的涂层热应力小、致密性好、孔隙率低、结合强度高、厚度易于控制。同时,冷喷涂技术具有成本低、效率高、环保、可实现复合涂层沉积的特点,使其受到广泛关注。目前冷喷涂可以沉积Ni、Ti、Cu、NiCr、MCrAlY、不锈钢等金属材料和WC-Co、WC-NiCr等金属陶瓷材料。与传统热喷涂相比,冷喷涂在低于粉末粒子熔点的温度下形成涂层。

冷喷涂技术减小甚至消除了高温氧化、相变结晶、残余应力等传统热喷涂方法中存在的有害因素,已成为在镁合金基材上制备表面强化涂层最有效的方法之一。因此,通过冷喷涂技术在镁合金表面制备一层致密、结合强度高、且适合DLC薄膜沉积的金属或金属陶瓷中间层,在不破坏镁合金基材性能的前提下,可以显著改善镁合金基材的承载能力,随后沉积的DLC薄膜可以较好地生长在中间层表面,起到良好的润滑和耐磨效果,该复合涂层技术可以用于各种镁合金部件的强化及自润滑耐磨防护

因此,本发明镁合金表面冷喷涂/DLC复合涂层是一种兼具优异润滑和耐磨特性的复合涂层。冷喷涂/DLC复合涂层与镁合金基材具有优异的膜基结合力,保证其具有优异的力学性能,能够实现镁合金基材表面性能的大幅度改善,促进镁合金在不同领域的工程化应用。本发明提供的方法在不破坏镁合金基材自身性能的前提下,通过冷喷涂和磁控溅射技术在镁合金表面实现了抗磨与固体润滑一体化的效果,所用的两种工艺稳定,适合工业化生产

附图说明

图1为镁合金表面类金刚石碳膜及冷喷涂中间层的示意图。

图2为实施例1中镁合金表面冷喷涂WC-17Co中间层截面电镜照片。

图3为实施例1中冷喷涂WC-17Co中间层及类金刚石碳膜的电镜照片。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

实施例1:

A、依次对镁合金基材表面进行丙酮清洗和喷砂粗化处理,得到处理好的基材。喷砂压力为1.0MPa,喷砂时间为30s,喷砂用砂丸目数为200目。

B、利用冷喷涂技术在步骤A得到的基材上喷涂一层厚度为300um的冷喷涂WC-17Co涂层,在镁合金基材表面得到所述的冷喷涂中间层。冷喷涂的工艺参数为:工作气体预热温度为800℃,压力为3.0MPa,喷涂距离为20mm,喷枪移动速度为400mm/s,喷涂气体为氦气。

C、将步骤B中得到的冷喷涂WC-17Co涂层进行机械抛光处理,使其粗糙度Ra达到0.4。

D、在磁控溅射设备中,在步骤C中得到的抛光后冷喷涂WC-17Co涂层表面沉积厚度为1.5um的类金刚石碳膜。沉积过程中,通入高纯氩气与甲烷混合气体,腔体气压维持在0.8Pa,氩气与甲烷气体的质量流量比为65/45,基底脉冲偏压为-200V,脉冲占空比为40%,沉积2.5h后冷却,最后成功制备出类金刚石碳膜。

所制备的镁合金表面如图1所示,镁合金基材1上是冷喷涂WC-17Co涂层2,冷喷涂WC-17Co涂层2上成型类金刚石碳膜3。

类金刚石碳膜的截面电镜形貌如附图2和图3所示。可以看到,所制备的冷喷涂WC-17Co涂层和类金刚石碳膜都具有极其致密的结构。所制备的类金刚石碳膜的硬度为25GPa,内应力为0.5GPa,膜基结合力为30N,类金刚石碳膜与GCr15钢球对偶配副时的干摩擦系数为0.09,表明所制备的镁合金表面类金刚石碳膜具有硬度高、摩擦系数低、附着力好、涂层质量优良等特点。

实施例2:

A、依次对镁合金基材表面进行丙酮清洗和喷砂粗化处理,得到处理好的基材。喷砂压力为0.5MPa,喷砂时间为20s,喷砂用砂丸目数为100目。

B、利用冷喷涂技术在步骤A得到的基材上喷涂一层厚度为1mm的316L不锈钢涂层,在镁合金基材表面得到所述的冷喷涂中间层。冷喷涂的工艺参数为:工作气体预热温度为600℃,压力为2.5MPa,喷涂距离为30mm,喷枪移动速度为200mm/s,喷涂气体为氮气。

C、将步骤B中得到的冷喷涂中间层进行机械抛光处理,使其粗糙度Ra达到0.1。

D、在磁控溅射设备中,在步骤C中得到的抛光后冷喷涂中间层表面沉积厚度为1um的类金刚石碳膜。沉积过程中,通入高纯氩气与甲烷混合气体,腔体气压维持在0.6Pa,氩气与甲烷气体的质量流量比为65/45,基底脉冲偏压为-300V,脉冲占空比为50%,沉积2.0h后冷却,最后成功制备出类金刚石碳膜。

所制备的类金刚石碳膜的硬度为16GPa,内应力为0.4GPa,膜基结合力为20N,类金刚石碳膜与GCr15钢球对偶配副时的干摩擦系数为0.11。

实施例3:

A、依次对镁合金基材表面进行丙酮清洗和喷砂粗化处理,得到处理好的基材。喷砂压力为0.5MPa,喷砂时间为10s,喷砂用砂丸目数为40目。

B、利用冷喷涂技术在步骤A得到的基材上喷涂一层厚度为500um的420不锈钢涂层,在镁合金基材表面得到所述的冷喷涂中间层。冷喷涂的工艺参数为:工作气体预热温度为700℃,压力为3.0MPa,喷涂距离为20mm,喷枪移动速度为50mm/s,喷涂气体为氮气。

C、将步骤B中得到的冷喷涂中间层进行机械抛光处理,使其粗糙度Ra达到0.2。

D、在磁控溅射设备中,在步骤C中得到的抛光后冷喷涂中间层表面沉积厚度为2um的类金刚石碳膜。沉积过程中,通入高纯氩气与甲烷混合气体,腔体气压维持在0.8Pa,氩气与甲烷气体的质量流量比为65/45,基底脉冲偏压为-400V,脉冲占空比为60%,沉积3.5h后冷却,最后成功制备出类金刚石碳膜。

所制备的类金刚石碳膜的硬度为20GPa,内应力为0.4GPa,膜基结合力为26N,类金刚石碳膜与GCr15钢球对偶配副时的干摩擦系数为0.11。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1