一种超细纳米晶碳化钨涂层及其制备方法与流程

文档序号:11380880阅读:872来源:国知局
一种超细纳米晶碳化钨涂层及其制备方法与流程

本发明涉及一种超细纳米晶碳化钨涂层及其制备方法,为一种采用常压化学气相沉积的方法制备的超细纳米晶碳化钨涂层,所制备的超细纳米晶碳化钨涂层为具有高硬度、耐磨损、耐腐蚀特性的细晶粒层状碳化钨涂层,特别是存在粒径为3~5nm的w2c超细纳米晶和非晶,有效提高了层状结构涂层的层间结合力,同时提高了涂层硬度。



背景技术:

随着科学研究和工业应用的深入和发展,极端恶劣环境下的涂层磨损和腐蚀现象越发明显,每年都会造成巨大的经济损失。表面工程是解决此种问题的重要手段,工艺包括热喷涂、超音速火焰喷涂、物理气相沉积等,其中的化学气相沉积技术可在内表面和复杂形状基体上制备结合力强、摩擦系数低、均匀的涂层。碳化钨具有硬度高、耐腐蚀、耐磨损等性能,在磨损、腐蚀等极端恶劣条件下可作为设备零部件的保护涂层,缓解基体失效,延长使用寿命。

化学气相沉积碳化钨涂层大多在低压环境下进行,因为低压时分子平均自由程大,所得涂层较为均匀。但是低压化学气相沉积工艺复杂,设备性能要求很高,且沉积速率较慢,给工业应用带来了困难。

常压化学气相沉积工艺简单,对设备要求较低,且涂层的生长速率较快,当掌握涂层生长的影响因素和控制机制后,可通过调整气体分压、总流速和沉积温度等参数快速得到均匀、致密的涂层。

采用化学气相沉积制备的碳化钨涂层存在柱状晶和层状细晶两种微观结构,柱状晶碳化钨硬度一般为2000到2500kg/mm3,虽具有很好的耐磨性能,但相邻柱状晶晶粒间的间隙区结合力较弱,存在腐蚀剂或腐蚀性介质时容易开裂,耐腐蚀性能较差;层状细晶碳化钨涂层硬度为2400到3000kg/mm3,在高和低-角度冲击时显示出很好的耐冲刷腐蚀性能,但是涂层内应力导致其厚度到达一定程度后易发生开裂、脱层的现象,难以得到质量较好的厚涂层。



技术实现要素:

本发明的目的是为了克服现有技术的不足,提出一种超细纳米晶碳化钨涂层及其制备方法。

本发明的目的是通过以下技术方案实现的。

一种超细纳米晶碳化钨涂层,该涂层包括层状细晶结构和贯穿多层的纤维状组织,层状细晶结构中同时存在w和w2c晶粒,贯穿多层的纤维状组织中仅存在w2c晶粒,其粒径为3~5nm,同时存在非晶。贯穿多层的纤维状组织的存在提高了层状细晶结构的层间结合力和硬度,该涂层的显微硬度可以达到28.8gpa。

一种超细纳米晶碳化钨涂层的制备方法,该方法的步骤包括:

(1)将基体放置在化学气相沉积反应室内,通入惰性气体以排空空气,然后通入氢气并关闭惰性气体;

(2)打开加热装置将基体加热至550-600℃,通入六氟化钨气体并使其预先与氢气混合,六氟化钨和氢气发生还原反应在基体上形成内层钨涂层;

(3)随后通入含碳气体,含碳气体、氢气和六氟化钨三者之间发生化学反应,保持设定时间后关闭含碳气体和六氟化钨;

(4)保持氢气的供给至基体冷却至50℃以下,打开惰性气体关闭氢气,排空氢气后取出样品,得到基体上预先沉积钨涂层的超细纳米晶碳化钨涂层。

所述的步骤(1)中的惰性气体为氩气或氮气;

所述的步骤(2)中,六氟化钨与氢气的摩尔比为1:2-4,优选1:3;

所述的步骤(3)中,含碳气体为二甲醚,六氟化钨与二甲醚摩尔比为1.6~2.9:1,设定时间与沉积超细纳米晶碳化钨涂层的厚度有关,即设定时间越长得到的涂层厚度越厚。

有益效果

(1)采用化学气相沉积的方法可在内表面和复杂形状的基体上沉积碳化钨涂层;

(2)采用常压化学气相沉积可降低实验对设备的要求和工艺复杂度,有效降低实验成本;

(3)预先沉积钨涂层有利于提高碳化钨涂层与基体的结合力;

(4)采用二甲醚作为碳源沉积得到了层状细晶的碳化钨涂层,可避免柱状晶晶间开裂、耐腐蚀性降低的问题;

(5)采用更低的六氟化钨/二甲醚比例可沉积得到粒径为3~5nm的超细晶w2c晶粒以及非晶,有效提高了涂层的层间结合力,解决了层状细晶结构中内应力导致涂层开裂、脱层的问题。

附图说明

图1为实施例1制备的碳化钨涂层的xrd图;

图2为实施例1制备的包括具有钨内层的碳化钨涂层的截面sem图;

图3为实施例1制备的碳化钨涂层的截面sem图;

图4为实施例1制备的碳化钨涂层的sad图;

图5为实施例1制备的碳化钨涂层的hrtem图;

具体实施方式

下面通过实例对本发明作进一步说明,但实施例并不限制本发明的保护范围。

实施例1

将铜基体放置在化学气相沉积反应室内,通入氩气10min后通入氢气并关闭氩气,打开加热装置将铜基体加热至600℃,然后通入六氟化钨气体,10min后通入二甲醚气体,2h后关闭二甲醚和六氟化钨,保持氢气的供给至铜基体冷却至50℃以下,打开氩气并关闭氢气,10min后取出样品。

其中氩气流量为2l/min、氢气流量为1.1l/min、wf6流量为5g/min、二甲醚流量为200ml/min。

对得到的样品进行了xrd测试,如图1所示,由图1可知,预先沉积钨涂层的铜基体上所沉积的涂层中同时存在w和w2c;

对得到的样品进行了sem测试,如图2和图3所示,由图2可知,铜基体预先沉积的钨层为柱状晶结构,由图3可知,在钨层上沉积的涂层具有层状结构和纤维状组织,且纤维状组织贯穿多层层状细晶结构;

对得到的样品涂层中的纤维状组织进行了选区衍射,如图4所示,由图4可知,该衍射环为多晶衍射环,所有衍射环对应晶面均属于六方结构w2c晶体,由内到外对应晶面依次为(0002)、

对得到的样品涂层中的纤维状组织采用高分辨透射电子显微镜进行了观察,得到涂层中纤维状组织的高分辨透射电子显微镜图,如图4所示,由图4可知,晶粒大小为3~5nm,此外还存在非晶,这与xrd图中的衍射峰宽化现象相对应,通过对晶格条纹的测量可以确定晶粒均为w2c晶体,说明纤维状组织是由粒径为3~5nm的w2c纳米晶粒和非晶组成;

利用纳米压痕仪并采用连续刚度法测得涂层的显微硬度为28.8gpa。

实施例2

将铜基体放置在化学气相沉积反应室内,通入氩气10min后通入氢气并关闭氩气,打开加热装置将基体加热至600℃,通入六氟化钨气体,10min后通入二甲醚气体,1h后关闭二甲醚和六氟化钨,保持氢气的供给至基体冷却至50℃以下,打开氩气并关闭氢气,10min后取出样品,其中氩气流量为2l/min、氢气流量为1.1l/min、wf6流量为5g/min、二甲醚流量为150ml/min。

实施例3

将铜基体放置在化学气相沉积反应室内,通入氩气10min后通入氢气并关闭氩气,打开加热装置将基体加热至550℃,通入六氟化钨气体,10min后通入二甲醚气体,1h后关闭二甲醚和六氟化钨,保持氢气的供给至基体冷却至50℃以下,打开氩气并关闭氢气,10min后取出样品,其中氩气流量为2l/min、氢气流量为1.1l/min、wf6流量为5g/min、二甲醚流量为150ml/min。

实施例4

将铜基体放置在化学气相沉积反应室内,通入氩气10min后通入氢气并关闭氩气,打开加热装置将基体加热至600℃,通入六氟化钨气体,10min后通入二甲醚气体,1h后关闭二甲醚和六氟化钨,保持氢气的供给至基体冷却至50℃以下,打开氩气并关闭氢气,10min后取出样品,其中氩气流量为2l/min、氢气流量为1.1l/min、wf6流量为5g/min、二甲醚流量为175ml/min。

实施例5

将铜基体放置在化学气相沉积反应室内,通入氩气10min后通入氢气并关闭氩气,打开加热装置将基体加热至600℃,通入六氟化钨气体,10min后通入二甲醚气体,1h后关闭二甲醚和六氟化钨,保持氢气的供给至基体冷却至50℃以下,打开氩气并关闭氢气,10min后取出样品,其中氩气流量为2l/min、氢气流量为1.1l/min、wf6流量为5g/min、二甲醚流量为225ml/min。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1