具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法_3

文档序号:9934277阅读:来源:国知局
变频电源控制系统16含有两个功能,一是实现对弯月面电磁搅拌器15的调控;二是实时显示检测的结晶器内钢水液面13的位置(见下文所述)。
[0067]所述的变频电源控制系统16连接弯月面电磁搅拌器15的线圈4的抽头,为弯月面电磁搅拌器15提供三相或者两相变频电源;通过改变线圈4内电流的大小、频率和相位,实现对弯月面电磁搅拌器15的调控;
[0068]所述的弯月面电磁搅拌器15的磁场区大小及磁场方向均可独立通过变频电源控制系统16实时调控;
[0069 ]通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
[0070]所述的弯月面电磁搅拌模式包括多种子模式,可以让钢水形成单一环流区和多个环流区等;
[0071]弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、1、g、让、1;通过调整变频电源控制系统16或者接线方式将线圈&、13、(3与线圈8、11、1均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;图7是该模式下的磁场运行原理图,图8是图7中磁场运行对应的钢水运动与三相绕组简图;
[0072]弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,每一组包括相邻的三个线圈,17个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、1、g、k、l、m、n、o、p、q、s;通过调整变频电源控制系统16或者接线方式将线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈1、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W ;图9是该模式下的磁场运彳丁原理图,图1O是图9中磁场运彳丁对应的钢水运动与三相绕组简图;
[0073]所述的弯月面电磁搅拌模式中采用多对磁极11的模式,其磁场设计特点是:磁路短,磁力线12不穿透铸坯,主要集中在凝固前沿附近,所以产生的电磁力不穿过铸坯中心,主要作用于铸坯凝固前沿。在磁场运行10下,可以使电磁力主要集中在凝固前沿附近,使其中的钢水作旋转流动,其流场特点:使结晶器内钢水2形成多个小的环流区域,凝固前沿附近流速快,向中心逐渐变慢,中心为零。钢水流动方向9是一个方坯或矩形坯电磁搅拌形成的一个矩形环流或多个矩形环流。图11是该模式下的磁场运行原理图;图12是图11中磁场运行对应的钢水运动与三相绕组简图。
[0074]所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈3、13、(3、(1、6 4^、11、1^、1^、1;通过调整变频电源控制系统16或者接线方式将线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
[0075]所述的常规的结晶器搅拌模式中,磁场为一对磁极11,磁力线12穿透钢水2内部。在磁场运行10下,使其激发的电磁力在钢水2内部产生旋转流动。流场形态9是一个类圆形(方坯、圆坯都是类圆形流场)。
[0076]所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括自主研发的结晶器电磁液面检测系统,可以实时检测和显示钢水液面(13)的实际位置,该系统包括传感器14、前端放大装置和数据处理单元;传感器14安装在结晶器铜板I的内侧,能实时检测结晶器内钢水液面13的位置;传感器将测量到的液面位置信号传送至前端放大装置,信号经放大后,传送至数据处理单元,继而输出至变频电源控制系统16。
[0077]所述传感器14安装在结晶器17内的任意一侧,并位于该侧铜板中心位置并与其平行布置,传感器的前端与结晶器铜板的立面平行。
[0078]所述传感器14为电磁式传感器或涡流式传感器;其冷却方式为水冷;
[0079]所述传感器14可自带或不带电缆。
[0080]所述的结晶器电磁液面检测系统是稳定弯月面的先决条件,也是弯月面电磁搅拌的必要条件。液面偏高在弯月面电磁搅拌器运行时易引发弯月面变形和自由面波动;液面偏低影响弯月面电磁搅拌器的使用效果。通过液面检测和调控,防止钢水液面波动而引起卷渣。
[0081]所述弯月面电磁搅拌器15包括两种结构形式,即环形式弯月面电磁搅拌器和凸极式弯月面电磁搅拌器,其差别在于铁芯7结构和线圈4的安装形式不同,而形成的磁场形态是一样的。
[0082]所述环形式弯月面电磁搅拌器的铁芯7应与搅拌铸坯或结晶器结构形式相匹配,由多个不设齿槽的方形、多边形、圆形的电工硅钢片叠成(图3中的铁芯);线圈4采用克莱姆绕组形式绕在铁芯上;此结构的弯月面电磁搅拌器15—般需要在其外围加装磁屏蔽罩6,以屏蔽线圈4外侧激发的磁场。
[0083]所述凸极形弯月面电磁搅拌器的铁芯7按照搅拌铸坯或结晶器结构形式的不同,有方形、多边形或圆形等。它由多个带凸极(图4、图5和图6中的铁芯)的电工硅钢片叠成;线圈4采用克莱姆绕组形式或集中式绕组形式绕在铁芯上。对于采用克莱姆绕组形式的凸极形弯月面电磁搅拌器15—般需要在其外围加磁屏蔽罩6,而采用集中式绕组形式的凸极形弯月面电磁搅拌器15—般不需要加磁屏蔽罩6。
[0084]所述磁屏蔽罩6,是一个由高导电率紫铜板制成的凹字形开口罩,置于所述线圈4与铁芯之间或线圈4外侧,其开口侧面向所述的结晶器铜板I,参看图2。
[0085]所述线圈4,由扁铜线或空芯铜管线绕制而成。
[0086]所述封闭壳体为空腔结构,内通有循环冷却水,用于对空腔内的铁芯和线圈进行实时冷却;
[0087]所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括与封闭壳体相连的冷却水系统,为弯月面电磁搅拌器提供循环冷却水。
[0088]本发明还提供了一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,采用上述任一项所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统;
[0089 ]通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
[0090]所述的弯月面电磁搅拌模式,包括让钢水I形成单一环流区和单二环流区的两种子模式;
[0091]弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n 2 I)组线圈,η为每一组线圈包括的相邻线圈个数;以η = 3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f ^、11、;[、8、1^、1;线圈3、13、0与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V.-W;
[0092]弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,共需要6n(n 2 I)组线圈,η为每一组线圈包括的相邻线圈个数;以η = 3为例,即每一组包括相邻的三个线圈,18个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、1、g、k、l、m、n、o、p、q、s;线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈1、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
[0093]所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈(4)包括对称绕制在铁芯7上的4组线圈,共需要4n(n 2 I)组线圈,η为每一组线圈包括的相邻线圈个数;以η = 3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、1、g、k、l;线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-u、-v、-w。
[0094]通过结晶器电磁液面检测系统实时检测和显示钢水液面13的实际位置;变频电源控制系统16根据检测结果对钢水液面13进行调控,防止钢水液面波动而引起卷渣。
[0095]根据不同钢种冶金效果需要,通过调整变频电源控制系统16或者线圈接线方式选择所需要的搅拌模式;对内部质量要求较高的钢种,选择结晶器搅拌模式进行搅拌;对表面和皮下质量要求较高的钢种,选择弯月面电磁搅拌模式进行搅拌。
[0096]在连铸生产过程中,根据不同钢种冶金效果需要,通过调整变频电源控制系统16或者接线方式选择所需要的搅拌模式。如果是对铸坯内部质量要求较高的钢种,例如要求提高等轴晶、减少中心偏析、疏松,可以选择结晶器搅拌模式。如果主要是
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1