氧化铝烧结体及光学元件用基底基板的制作方法

文档序号:11631782阅读:298来源:国知局
氧化铝烧结体及光学元件用基底基板的制造方法与工艺

本发明涉及氧化铝烧结体及光学元件用基底基板。



背景技术:

作为机械强度、绝缘性、耐热冲击性、耐腐蚀性优异的材料,广泛使用多晶氧化铝(al2o3)烧结体。关于该多晶氧化铝烧结体,众所周知:通过控制微观结构,能够使构成粒子的结晶方位与特定方位一致(取向),由此,机械强度、耐热冲击性、耐腐蚀性得到提高。这是因为:断裂韧性、介电常数、热传导率、热膨胀系数具有结晶方位所带来的各向异性。例如专利文献1中,公开有将板状氧化铝粉末用作原料的一部分制作而成的取向氧化铝烧结体表现出优异的耐热性、耐腐蚀性的内容。专利文献1中,虽然对将板状氧化铝粉末用作原料的一部分而得到的成型体进行了烧成,但是,氧化铝纯度低至不足99.9质量%,且烧成温度低至1500~1750℃,并且在常压下进行烧成,因此,推测没有充分取向。另外,专利文献1中对透光性没有记载,因此,推测得到的取向氧化铝烧结体是不透明的。

另一方面,众所周知高密度的多晶氧化铝烧结体通过降低杂质浓度而表现出透光性,被用于高压钠灯用发光管、高耐热窗部件、半导体装置用部件、光学元件用基板等。关于该透光性氧化铝烧结体,为了提高透光性,可以尝试控制结晶粒径或者降低气孔、杂质浓度,但是,未能得到充分的透光性。其主要原因之一:可以举出源自于结晶结构的双折射。众所周知:氧化铝烧结体在结晶结构上具有光学各向异性,多晶氧化铝的取向性较低的情况下,会限制透光性。例如非专利文献1中,通过将注浆成型和磁场取向组合来使多晶氧化铝烧结体取向,由此,使透光性得到提高。

现有技术文献

专利文献

专利文献1:日本特许第2916664号

非专利文献

非专利文献1:journalofamericanceramicsociety91[10]pp3431-3433(2008)



技术实现要素:

但是,非专利文献1的透光性氧化铝烧结体的直线透过率(非专利文献1中记载为in-linetransmission,但认为准确地为in-linetransmittance)在350~1000nm处仅为大约50~60%左右。因此,希望开发出透光性更优异的氧化铝烧结体。

本发明是为了解决该课题而完成的,主要目的是提供一种透光性比以往高的氧化铝烧结体。

本发明的氧化铝烧结体具有c晶面取向度为90%以上的面,该c晶面取向度是使用照射x射线时在2θ=20°~70°的范围内的x射线衍射图谱利用lotgering法求出的,通过离子铣削对任意的截面进行研磨后利用扫描型电子显微镜以倍率5000倍进行查看时的气孔的数量为零,mg、c以外的杂质元素的合计的质量比例为100ppm以下。该氧化铝烧结体由于c晶面取向度为90%以上,所以为高取向,由于气孔的数量为零,所以为高密度,由于mg、c以外的杂质元素的合计的质量比例为100ppm以下,所以为高纯度。因此,本发明的氧化铝烧结体具有比以往高的透光性。

本发明的光学元件用基底基板是包含上述的本发明的氧化铝烧结体的基板。作为光学元件,可以举出例如led、ld、太阳能电池、传感器、光电二极管、光学部件、窗部件等。

附图说明

图1是以tgg法制作氧化铝烧结体的工序的示意图。

图2是发光元件10的截面简图。

图3是横型发光元件20的截面简图。

图4是表示纵型发光元件30的制造工序的截面简图。

图5是氧化铝烧结体的样品的外观照片。

图6是板状氧化铝粒子的示意图,(a)是俯视图,(b)是主视图。

图7是氧化铝烧结体的被研磨后的截面的高倍率照片。

图8是表示将高倍率照片排列成连续的照片而得到的样子的说明图。

图9是表示具有脱粒部的氧化铝烧结体的光学显微镜像之一例的照片。

具体实施方式

本发明的氧化铝烧结体具有c晶面取向度为90%以上的面,该c晶面取向度是使用照射x射线时在2θ=20°~70°的范围内的x射线衍射图谱利用lotgering法求出的,通过离子铣削对任意的截面进行研磨后利用扫描型电子显微镜以倍率5000倍进行查看时的气孔的数量为零,mg、c以外的杂质元素的合计的质量比例为100ppm以下。应予说明,本发明中,杂质元素的质量比例的合计是将用后述的icp(电感耦合等离子体)发光分析、燃烧(高频加热)-红外线吸收法、惰性气体熔融-热导法、惰性气体熔融-非分散型红外线吸收法、高温水解-离子色谱法检测到的元素的定量值求和而得到的。

c晶面取向度是如下计算得到的:使用xrd装置(例如rigaku制、rint-ttriii),将氧化铝烧结体的规定截面(例如与c晶面平行的截面)研磨加工成平滑后,对该面照射x射线,使用此时在2θ=20°~70°的范围内的x射线衍射图谱,利用以下的式子算出c晶面取向度。式中,p是由氧化铝烧结体的xrd得到的值,p0是由标准α-氧化铝(jcpdscardno.46-1212)计算得到的值。c晶面是氧化铝的(006)晶面。本发明的氧化铝烧结体是c晶面取向度在90%以上的高取向的氧化铝烧结体。

数学式1

气孔的数量如下计数。即,通过离子铣削对本发明的氧化铝烧结体的任意截面进行研磨后,利用扫描型电子显微镜以倍率5000倍查看该研磨后的截面,数出气孔的数量。例如按纵6张、横5张(纵向114μm×横向127μm)以成为连续照片的方式拍摄30张照片,所述照片是利用扫描型电子显微镜观察研磨后的截面并将纵向19.0μm×横向25.4μm的视野扩大为5000倍而得到的照片,用肉眼观察这30张照片数出气孔的数量。通过离子铣削进行研磨是为了使其不会从截面发生脱粒。应予说明,作为使用离子铣削的研磨装置,例如可以举出日本电子制的截面抛光机。扩大为倍率5000倍的照片中,气孔以黑点的形式出现,因此,能够通过肉眼观察来充分地识别。本发明的氧化铝烧结体的气孔的数量为零,因此,是高密度的氧化铝烧结体。

杂质元素(此处为mg、c以外的元素)可以与元素对应地采用icp发光分析、燃烧(高频加热)-红外线吸收法、高温水解-离子色谱法、惰性气体熔融-热导法、惰性气体熔融-非分散型红外线吸收法进行定量。例如s可以用燃烧(高频加热)-红外线吸收法进行定量,n可以用惰性气体熔融-热导法进行定量,h可以用惰性气体熔融-非分散型红外线吸收法进行定量,f可以用高温水解-离子色谱法进行定量,其它元素可以用icp发光分析进行定量。本发明的氧化铝烧结体的mg、c以外的杂质元素的合计的质量比例为100ppm以下,因此,是高纯度的氧化铝烧结体。杂质元素的合计的质量比例更优选为50ppm以下,进一步优选为10ppm以下。

本发明的氧化铝烧结体中,c的含量优选以质量比例计为30~70ppm。c可以利用燃烧(高频加热)-红外线吸收法进行定量。由此,在使用磨粒将该氧化铝烧结体的表面研磨加工成没有凹凸的情况下,氧化铝粒子从表面脱落的频率大幅降低。例如,在该氧化铝烧结体的研磨加工后的表面生成gan等光学元件中所使用的化合物的膜的情况下,由于表面几乎没有脱粒所引起的凹凸,因此,不易在生成的膜上产生缺陷。

本发明的氧化铝烧结体的氧化铝含量优选为99.9质量%以上。关于氧化铝的纯度,为了方便可以测定烧结体中的杂质元素(此处包含mg、c)的质量%之和x,利用100-x来求出。

本发明的氧化铝烧结体优选从该氧化铝烧结体中取出的厚度0.2mm的试样在波长350~1000nm处的直线透过率为70%以上。像这样高透光性的氧化铝烧结体在以往是未知的,因此,期待在各种领域中进行利用。可以使用分光光度计(例如perkinelmer制、lambda900)来测定直线透过率。

本发明的氧化铝烧结体中,可以包含以质量比例计为1300ppm以下(优选为1150ppm以下,更优选为450ppm以下,进一步优选为120ppm以下)的mg。这是因为:即使使用这样的氧化铝烧结体制作led等发光元件,也几乎没有mg的影响。但是,从针对na助熔剂的耐腐蚀性的观点考虑,mg的含量优选以质量比例计为125ppm以下。例如以助熔剂法在本发明的氧化铝烧结体上形成gan、aln、inn等的膜时利用na助熔剂。在制作本发明的氧化铝烧结体时,对氧化铝进行烧成而使其烧结,但是,如果在烧结前向氧化铝中添加mgo,则在烧结时利用mgo的气孔排出效果而进行致密化。因此,优选以氧化铝烧结体中所包含的mg处于上述的质量比例的范围内的方式在烧结前将mgo添加到混合粉末中。

本发明的氧化铝烧结体优选在利用na助熔剂法将gan等成膜的情况下不会被na助熔剂侵蚀。可以利用如下所述的方法来评价助熔剂对氧化铝烧结体的侵蚀程度。计算出从浸渍于na助熔剂之前的所述氧化铝烧结体中取出的厚度0.2mm的试样在波长350~1000nm处的直线透过率的最小值减去从在氮气中于870℃的na助熔剂内浸渍120小时后的所述氧化铝烧结体中取出的厚度0.2mm的试样在波长350~1000nm处的直线透过率的最小值而得到的值。如果该值为5%以下,则可以说不易被助熔剂侵蚀。换言之,优选上述值为5%以下这样的氧化铝烧结体。

本发明的氧化铝烧结体可以用作用于形成膜的基底基板,例如可以用作用于形成gan、zno、aln、sic、inn等的膜的基底基板。本发明的氧化铝烧结体优选在成膜之前对表面进行机械研磨。由此,表面的凹凸消失,因此,容易成膜,并且,不易在膜上产生缺陷。如果在机械研磨时使用硬度高的粒子(例如氧化铝粒子),则有可能从表面脱粒。考虑这一点,作为本发明的氧化铝烧结体,优选包含以质量比例计为30~70ppm的c的氧化铝烧结体。由此,能够使机械研磨所导致的脱粒的频率大幅降低。

本发明的氧化铝烧结体可以通过如下方法制造:将例如板状氧化铝粉末和平均粒径比板状氧化铝粉末小的微细氧化铝粉末混合,得到混合粉末,将该混合粉末成型,进行烧成,由此制造本发明的氧化铝烧结体。将板状氧化铝粉末和微细氧化铝粉末的混合粉末成型,由此,在成型时(流延成型、挤压成型、浇铸成型、注射成型、单轴压制成型等)板状粒子容易取向。另外,在烧成时,板状氧化铝粉末成为晶种(模板),微细氧化铝粉末成为基质,模板拉拢基质的同时进行同质外延生长。这样的制法被称为tgg(templatedgraingrowth)法。将以tgg法制作氧化铝烧结体的工序的示意图示于图1。tgg法中,可以通过板状氧化铝粉末和微细氧化铝粉末的粒径、混合比来控制得到的氧化铝烧结体的微观结构,与对板状氧化铝粉末单体进行烧成的情形相比,容易致密化,取向度容易提高。

tgg法中,利用加压烧成(例如热压烧成、hip烧成等)进行烧成。应予说明,可以在加压烧成前进行常压预烧成。在进行hip烧成时,还可以使用封装法。烧成温度优选为1750~2000℃。热压烧成时的压力优选为50kgf/cm2以上,更优选为200kgf/cm2以上。hip烧成时的压力优选为1000kgf/cm2以上,更优选为2000kgf/cm2以上。混合粉末中的板状氧化铝粉末的含量并没有特别限定,可以为100质量%,但是,优选为0.1~50质量%。这是因为:如果低于0.1质量%,则得到的氧化铝烧结体的c晶面取向度可能不易升高;如果超过50质量%,则氧化铝可能不易烧结。板状氧化铝粉末的含量更优选为0.1~15质量%,进一步优选为0.5~5质量%,特别优选为1.5~5质量%。由此,得到的c晶面取向度充分升高,并且,昂贵的板状氧化铝的使用量比较少,因此,在成本上非常有利。另外,从进行致密化的观点考虑,可以在混合粉末中添加适量的烧结助剂。作为烧结助剂,可以举出:从mgo、zro2、y2o2、cao、sio2、tio2、fe2o3、mn2o3、la2o3等氧化物、alf3、mgf2、ybf3等氟化物等中选择的至少1种。其中,优选mgo、cao、sio2、la2o3,特别优选mgo。从提高得到的氧化铝烧结体的取向度的观点考虑,优选构成板状氧化铝粉末的粒子的厚度比微细氧化铝粉末的粒子的平均粒径大。另外,从高取向化的观点考虑,构成板状氧化铝粉末的板状粒子的板面的粒径较大比较理想,优选为1.5μm以上,更优选为5μm以上,进一步优选为10μm以上,特别优选为15μm以上。但是,从致密化的观点考虑,板面的粒径较小比较理想,优选为30μm以下。由此,为了兼具高取向和致密化,优选板面的粒径为1.5~20μm。

此处,板状氧化铝粉末优选使用高纯度的板状氧化铝粉末。板状氧化铝粉末的纯度优选为99质量%以上,更优选为99.9质量%以上,进一步优选为99.99质量%以上。但是,可以包含在烧成中挥发消失的杂质元素,还可以包含例如f、s等元素。高纯度的板状氧化铝粉末可以通过以下的步骤来制造。即,首先将从由三水铝石、勃姆石及γ-氧化铝构成的组中选择的至少1种过渡氧化铝粉末和alf3粉末按alf3的含有率为0.25质量%以上进行混合,得到f、h、c、s以外的杂质元素的质量比例的合计为1000ppm以下的混合粉末。优选在该混合粉末中添加α-氧化铝粒子作为晶种。接下来,作为容器,准备混合粉末中所包含的alf3的质量除以容器的体积所得到的值(=alf3质量/容器体积)为1×10-4g/cm3以上的容器。关于容器,优选al、o、mg、n、re(re:稀土元素)以外的元素的合计在1质量%以下。容器的材质优选为纯度99.5质量%以上的al2o3。然后,将混合粉末放入容器中并盖上盖子,或者将混合粉末放入容器中进行密闭,或将混合粉末封闭在由多孔质材料形成的容器中,于750~1650℃进行热处理,由此,得到由板状的α-氧化铝粒子构成的板状氧化铝粉末。可以将该板状氧化铝粉末和微细氧化铝粉末混合,得到混合粉末,将该混合粉末成型,进行烧成,由此制成氧化铝烧结体。或者,可以将板状氧化铝粉末在大气、不活泼或真空的气氛下于900~1350℃进行退火处理而得到的物质和微细氧化铝粉末混合,得到混合粉末,将该混合粉末成型,进行烧成,由此制成氧化铝烧结体。板状氧化铝粉末可以在与微细氧化铝粉末混合之前进行粉碎。

本发明的光学元件用基底基板是包含上述的本发明的氧化铝烧结体的基板。作为光学元件,可以举出发光元件、受光元件。例如通过在本发明的光学元件用基底基板形成gan层,与将蓝宝石用于基底基板的情形相比,能够用作大型且便宜的led等的发光基板。本发明的光学元件用基底基板的氧化铝的取向度高,因此,能够形成致密的gan层。应予说明,除gan层以外,还可以形成zno层、aln层、inn层等。

以下,示出将本发明的光学元件用基底基板用于发光元件的例子。如图2所示,发光元件10包括基底基板12和形成在基底基板12上的发光功能层14。发光功能层14是通过施加电压而基于led的发光原理进行发光的层,此处,自靠近基底基板12的一侧依次层叠p型层14a、活性层14b、n型层14c。该发光功能层14由gan系材料、zno系材料、aln系材料等制作。

关于横型发光元件20,如图3所示,形成为n型层14c的表面在发光元件10中的发光功能层14的外周部成为台阶面,在n型层14c的台阶面安装有阴极电极22,在p型层14a的表面隔着透光性阳极电极24设置有阳极电极焊盘25。根据该横型发光元件20,电流不仅在发光功能层14的法线方向流动,还在水平方向流动。

关于纵型发光元件30,如图4所示,在发光功能层14的n型层14c的表面安装有阴极电极34,并在p型层14a的表面隔着阳极电极32安装有安装基板16。该纵型发光元件30是通过以下方式制作的:在发光元件10的p型层14a的表面形成阳极电极32,将阳极电极32接合于安装基板16,利用激光剥离法除去基底基板12,在暴露出来的n型层14c的表面形成阴极电极34,由此制作纵型发光元件30。根据该纵型发光元件30,电流在发光功能层14的法线方向流动。能够像这样地利用激光剥离法是因为基底基板12的直线透过率大且透光性高。

实施例

[实验例1]

1.氧化铝烧结体的制作

(1)板状氧化铝粉末的制作

溶剂为ipa(异丙醇),使用的氧化铝球,将高纯度γ-氧化铝粉末(tm-300d、大明化学制)96质量份、高纯度alf3粉末(关东化学制、鹿特级)4质量份、作为晶种的高纯度α-氧化铝粉末(tm-dar、大明化学制、d50=1μm)0.17质量份在罐磨机中混合5小时。得到的混合粉末中所包含的f、h、c、s以外的杂质元素的质量比例的合计为1000ppm以下。将得到的混合粉末300g放入纯度99.5质量%的高纯度氧化铝制的匣钵(容积750cm3)中,盖上纯度99.5质量%的高纯度氧化铝制的盖子,在电炉内,空气流中,900℃进行3小时的热处理。空气的流量为25000cc/min。将热处理后的粉末在大气中、于1150℃进行40小时的退火处理后,使用的氧化铝球进行4小时的粉碎,得到平均粒径2μm、厚度0.2μm、纵横尺寸比10的板状氧化铝粉末。利用扫描型电子显微镜(sem)观察板状氧化铝粉末中的任意100个粒子来确定粒子的平均粒径、平均厚度、纵横尺寸比。平均粒径是粒子板面的长轴长的平均值,平均厚度是粒子的短轴长(厚度)的平均值,纵横尺寸比是平均粒径/平均厚度。图6是板状氧化铝粒子的示意图,(a)是俯视图,(b)是主视图。板状氧化铝粒子在俯视观察时的形状为大致六边形,其粒径如图6(a)所示,厚度如图6(b)所示。得到的板状氧化铝粉末是α-氧化铝,f、c、s以外的杂质元素为10ppm以下。利用高温水解-离子色谱法求出该板状氧化铝粉末中所包含的f的质量比例,结果为24ppm。另外,利用燃烧(高频加热)-红外线吸收法求出c、s的质量比例,结果,c为240ppm,s为检测极限以下,该板状氧化铝粉末的纯度为99.97质量%。

(2)流延成型

将上述(1)中制作的板状氧化铝粉末5质量份和微细氧化铝粉末(tm-dar、平均粒径0.1μm、大明化学制)95质量份混合。在该混合氧化铝粉末100质量份中加入氧化镁(500a、ubematerials制)0.025质量份、石墨粉末(uf-g5、昭和电工制)0.01质量份、作为粘合剂的聚乙烯醇缩丁醛(产品编号bm-2、积水化学工业制)7.8质量份、作为增塑剂的二(2-乙基己基)邻苯二甲酸酯(黑金化成制)3.9质量份、作为分散剂的失水山梨糖醇三油酸酯(rheodolsp-o30、花王制)2质量份、以及作为分散介质的2-乙基己醇,进行混合。分散介质的量按浆料粘度为20000cp进行调整。将像这样调制的浆料通过刮刀法按干燥后的厚度为20μm在pet膜上成型为片状。将得到的带切成口径50.8mm(2英寸)的圆形后,层叠150张,载置于厚度10mm的al板上,然后,放入箱体中并使内部为真空,由此得到真空包装。将该真空包装在85℃的温水中以100kgf/cm2的压力进行等静压压制,得到圆板状的成型体。

(3)烧成

将得到的成型体配置在脱脂炉中,在600℃、10小时的条件下进行脱脂。将得到的脱脂体使用石墨制的模具以热压在氮气中1800℃、4小时、表面压力200kgf/cm2的条件下进行烧成,得到氧化铝烧结体。将得到的氧化铝烧结体的样品的外观照片示于图5。图5中所画的带ngk标的标志是日本碍子(株)的注册商标。

2.氧化铝烧结体的特性

(1)c晶面取向度的计算

为了确认得到的氧化铝烧结体的取向度,利用xrd测定c晶面取向度。实施研磨加工,使其相对于圆板状的氧化铝烧结体的上表面平行后,在使用xrd装置(rigaku制、rint-ttriii)对其研磨面照射x射线时的2θ=20~70°的范围内测定xrd图谱。具体而言,使用cukα射线在电压50kv、电流300ma这样的条件下进行测定。通过lotgering法计算c晶面取向度。具体而言,利用以下的式子进行计算。实验例1的氧化铝烧结体的c晶面取向度为99.7%。

数学式2

(2)纯度-1

将氧化铝烧结体用纯度99.9%的氧化铝研钵粉碎后,利用下述方法对al、o以外的元素进行定量分析。然后,求出氧化铝烧结体中的mg、c以外的杂质元素的合计的质量比例(ppm)、氧化铝烧结体中所包含的mg、c各自的质量比例(ppm)。实验例1的氧化铝烧结体中不含mg、c以外的杂质元素(检测极限以下),检测到112ppm的mg、40ppm的c。

c、s:燃烧(高频加热)-红外线吸收法

n:惰性气体熔融-热导法

h:惰性气体熔融-非分散型红外线吸收法

f:高温水解-离子色谱法

上述以外的元素(主要是si、fe、ti、na、ca、mg、k、p、v、cr、mn、co、ni、cu、zn、y、zr、pb、bi、li、be、b、cl、sc、ga、ge、as、se、br、rb、sr、nb、mo、ru、rh、pd、ag、cd、in、sn、sb、te、cs、ba、hf、ta、w、ir、pt、au、hg、la、ce、pr、nd、sm、eu、gd、tb、dy、ho、er、tm、yb、lu):icp发光分析

(3)纯度-2

氧化铝烧结体的al2o3含量(质量%)是通过上述(2)测定烧结体中的al、o以外的元素的质量%之和x,并利用100-x求出的。实验例1的氧化铝烧结体的al2o3含量为99.98质量%。

(4)气孔(密度)

用截面抛光机(cp)(日本电子制、ib-09010cp)对得到的氧化铝烧结体的任意截面进行研磨。cp属于离子铣削的范畴。使用cp是因为不会在研磨面发生脱粒。利用扫描型电子显微镜(日本电子制、jsm-6390)对得到的截面进行拍摄。具体而言,将像图7那样的纵向19.0μm×横向25.4μm的视野以倍率5000倍进行拍摄得到的照片如图8那样排列成纵6张、横5张的连续照片(纵向114μm×横向127μm),通过肉眼观察来数出气孔的数量。气孔和非气孔部分的明暗鲜明,因此,通过肉眼观察能够容易地区别。实验例1的氧化铝烧结体中所确认的气孔数为0个。

(5)脱粒

将得到的氧化铝烧结体切成10mm×10mm的大小,在的金属制平台的最外周部间隔90°固定4个,在sic研磨纸上,在仅施加金属制平台和研磨夹具的载荷(合计1314g)的状态下,用#800精研(预研磨)10分钟,用#1200精研(预研磨)5分钟。然后,在陶瓷平台上,使用金刚石磨粒进行精研。关于精研,以磨粒尺寸1μm进行30分钟,然后,以磨粒尺寸0.5μm进行2小时。将研磨后的10mm×10mm的烧结体(试样)依次用丙酮、乙醇、离子交换水分别清洗3分钟后,利用光学显微镜(nikon制、mm-60)以倍率100倍观察任意的20处,数出脱粒的数量。关于实验例1的氧化铝烧结体,发生10处以上脱粒的试样在20个中为0个(0/20)。将具有脱粒部的氧化铝烧结体的光学显微镜像之一例示于图9。

(6)直线透过率

使用分光光度计(perkinelmer制、lambda900)对得到的氧化铝烧结体20个中的用光学显微镜确认的脱粒的个数最少的试验片在波长350~1000nm处的直线透过率进行测定。实验例1的氧化铝烧结体在波长350~1000nm处的直线透过率为76.2%以上。

(7)na助熔剂耐腐蚀性

与实际的gan培养条件同等地,对得到的氧化铝烧结体调查针对na助熔剂的耐腐蚀性。将氧化铝烧结体设置于内径80mm、高度45mm的圆筒平底的氧化铝坩埚的底部分,接下来,在手套箱内将熔液组合物填充到坩埚内。熔液组合物的组成:金属ga60g、金属na60g、四氯化锗1.85g。将该氧化铝坩埚放入耐热金属制的容器中进行密闭后,设置于结晶培养炉的能够旋转的台上。在氮气氛中,升温加压至870℃、4.0mpa后,保持120小时,同时使溶液旋转。然后,经3小时缓慢冷却至室温,从结晶培养炉中取出容器。使用乙醇对耐腐蚀性试验后的氧化铝烧结体的表面进行超声波清洗后,与上述(5)同样地测定直线透过率。实验例1的氧化铝烧结体在耐腐蚀性试验后波长350~1000nm处的直线透过率为72.6%以上。

表1

[实验例2]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,代替热压,在实施常压大气烧成后,采用hip烧成,除此以外,与实验例1同样地制作氧化铝烧结体。常压大气烧成的条件:于1350℃保持4小时。另外,hip烧成的条件:以ar为压力介质,于压力185mpa、1800℃保持2小时。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例3]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,使用板状氧化铝粉末1.5质量份、微细粒状氧化铝粉末98.5质量份,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例4]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,使烧成保持时间为2小时,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例5]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,使烧成保持时间为8小时,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例6]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中,作为烧结助剂,除了加入氧化镁粉末以外,还加入sio2粉末60质量ppm、cao粉末60质量ppm,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例7]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中,作为烧结助剂,除了加入氧化镁粉末以外,还加入sio2粉末120质量ppm、cao粉末120质量ppm,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例8]

在制作氧化铝烧结体时,使用市场上销售的板状氧化铝粉末(yfa10030、kinseimatec制)来代替实验例1的1.(1)中制作的板状氧化铝粉末,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例9]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,使烧成温度为1700℃,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例10]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,在常压大气中使烧成温度为1700℃,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例11]

在制作氧化铝烧结体时,实验例1的1.(3)的烧成中,使烧成温度为1900℃,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例12]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中添加氧化镁0.25质量份,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例13]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中添加石墨粉末0.015质量份,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例14]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中添加石墨粉末0.005质量份,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[实验例15]

在制作氧化铝烧结体时,实验例1的1.(2)的流延成型中,在混合氧化铝粉末100质量份中添加石墨粉末0.02质量份,除此以外,与实验例1同样地制作氧化铝烧结体。对得到的氧化铝烧结体求出上述2.(1)~(7)的特性。将其结果示于表1。

[评价]

实验例1~6的氧化铝烧结体的c晶面取向度为90%以上,气孔数为0个,mg、c以外的杂质元素的合计为100ppm以下。另外,c的含量为30~70ppm,mg的含量为125ppm以下,na助熔剂浸渍前在350~1000nm处的直线透过率为70%以上。此外,na助熔剂浸渍前后在350~1000nm处的直线透过率的最小值的减少量为5%以下。也几乎没有发现脱粒。

实验例7的氧化铝烧结体的c晶面取向度为90%以上,c的含量为30~70ppm,mg的含量为125ppm以下,但确认有气孔,mg、c以外的杂质元素的合计超过100ppm,na助熔剂浸渍前在350~1000nm处的直线透过率为25.6%以上。认为这是因为sio2、cao的添加量过多。

实验例8的氧化铝烧结体的c晶面取向度为90%以上,c的含量为30~70ppm,mg的含量为125ppm以下,气孔为0个,但mg、c以外的杂质元素的合计超过100ppm,na助熔剂浸渍前在350~1000nm处的直线透过率为1.1%以上。认为这是因为使用了市场上销售的板状氧化铝粉末。

实验例9、10的氧化铝烧结体的c晶面取向度低至30.7~70.7%,na助熔剂浸渍前在350~1000nm处的直线透过率低至0%。认为这是因为流延成型后的烧成温度不适当。

实验例11~13的氧化铝烧结体的c晶面取向度为90%以上,气孔数为0个,不含有mg、c以外的杂质元素。另外,c的含量为30~70ppm,na助熔剂浸渍前在350~1000nm处的直线透过率为60%以上(实验例11、13中为70%以上),也几乎没有发现脱粒。但是,实验例12的氧化铝烧结体的mg的含量多达1132ppm,因此,na助熔剂浸渍后在350~1000nm处的直线透过率为零。

实验例14、15的氧化铝烧结体的c晶面取向度为90%以上,气孔数为0个,不含有mg、c以外的杂质元素。另外,mg的含量为125ppm以下,na助熔剂浸渍前的直线透过率为70%以上。此外,na助熔剂浸渍前后的直线透过率的减少量为5%以下。但是,由于c的含量为20ppm及80ppm,所以看到较多脱粒。

应予说明,实验例1~15中,实验例1~6、11~15相当于本发明的实施例。本发明并不受这些实施例任何限定,只要属于本发明的技术范围,就可以以各种方案进行实施。

本申请以2014年11月28日所申请的日本专利申请第2014-241683号为主张优先权的基础,其所有内容通过引用包含在本说明书中。

产业上的可利用性

本发明可用于例如光学元件用基底基板。作为光学元件,可以举出例如led、ld、太阳能电池、传感器、光电二极管、光学部件、窗部件等。

符号说明

10发光元件、12基底基板、14发光功能层、14ap型层、14b活性层、14cn型层、16安装基板、20横型发光元件、22阴极电极、24透光性阳极电极、25阳极电极焊盘、30纵型发光元件、32阳极电极、34阴极电极。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1