可钢化高透低辐射镀膜玻璃及其制造方法与流程

文档序号:12238491阅读:194来源:国知局

本发明涉及镀膜玻璃技术领域,具体涉及一种可钢化高透低辐射镀膜玻璃及其制造方法。



背景技术:

LOW-E镀膜玻璃又称低辐射镀膜玻璃,是在普通浮法玻璃表面镀制一层或多层具有红外反射特性的纳米功能薄膜而构成的节能建筑产品。该镀膜玻璃产品可见光透过率高,具备很强地阻隔红外线的特点,能发挥自然采光和隔热节能的双重功效。可以有效地减少冬季室内热量的外散流失,在夏季能阻隔室外物体受太阳光照射变热后的二次辐射,从而发挥节能降耗的作用。

高透型单银LOW-E镀膜玻璃具有较高的可见光透过率和太阳能透过率特性,使得采光自然,效果通透,使用率越来越高。由于高透LOW-E镀膜玻璃一般选用掺杂的ZnO(如AZO、GZO、IZO)透明导电氧化物作为生长层,在镀制过程中需要通入适量O2保证ZnO的晶体结构完整,以获得高质量的的Ag层。但是通入的O2往往会串至金属区造成金属保护层和银层的氧化,造成膜层机械加工性不好,不利于加工厂商使用。

鉴于此,克服以上现有技术中的缺陷,提供一种新的可钢化高透低辐射镀膜玻璃及其制造方法成为本领域亟待解决的技术问题。



技术实现要素:

本发明的目的在于针对现有技术的上述缺陷,提供一种可钢化高透低辐射镀膜玻璃及其制造方法。

本发明的目的可通过以下的技术措施来实现:

一种可钢化高透低辐射镀膜玻璃,与现有技术相比,其不同之处在于,该玻璃包括玻璃基底和沉积于所述玻璃基底表面的镀膜层,所述镀膜层包括从内向外依次层叠的第一介质层、第一生长层、第一保护层、银层、第二保护层、第二生长层和第二介质层,其中,所述第一生长层和第二生长层均为第三主族金属与H共掺的ZnO膜层,所述第三主族金属为Al、Ga或In。

优选地,所述第一介质层和第二介质层均为Si3N4层,所述第一介质层和第二介质层的厚度均为25~60nm。

优选地,所述第一生长层和第二生长层的厚度均为5~40nm。

优选地,所述第一生长层和/或第二生长层为2wt%掺杂的AZO膜层、5wt%掺杂的GZO膜层或10wt%掺杂的IZO膜层。

优选地,所述第一生长层和/或第二生长层由溅射形成,其中,溅射的靶材为掺杂第三主族金属的ZnO,溅射在氩气和氢气的混合气体气氛中进行,所述第三主族金属为Al、Ga或In。

优选地,所述第一保护层和第二保护层均为NiCr层,所述第一保护层和第二保护层的厚度均为0.5~2nm。

优选地,所述银层的厚度为8~20nm。

本发明还提供了一种制造如权利要求1所述的可钢化高透低辐射镀膜玻璃的方法,包括如下步骤:

(1)提供玻璃基底;

(2)在玻璃基底上沉积第一介质层;

(3)在第一介质层上沉积第一生长层;

(4)在第一生长层上沉积第一保护层;

(5)在第一保护层上沉积银层;

(6)在银层上沉积第二保护层;

(7)在第二保护层上沉积第二生长层;

(8)在第二生长层上沉积第二介质层;

其中,步骤(3)和步骤(7)中的第一生长层和第二生长层由溅射形成,其中,溅射的靶材为掺杂第三主族金属的ZnO,溅射在氩气和氢气的混合气体气氛中进行,所述第三主族金属为Al、Ga或In。

优选地,所述氩气和氢气的混合气体中氢气的流量占比为1~12%。

本发明的镀膜玻璃包括生长层、银层和保护层,采用Ar和H2为混合溅射气体取代原有的Ar和O2混合溅射气体,减少了溅射过程中O的引入避免保护层及银层的氧化,使得膜层的结合力大大提高,有助于低辐射镀膜玻璃的进一步加工;此外,H的掺入形成稳定的AZO:H(或GZO:H、IZO:H)透明导电氧化物使得低辐射膜层电阻率进一步下降,红外反射增强,光热性能进一步提高。

附图说明

图1是本发明的镀膜玻璃的结构示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本发明的镀膜玻璃包括玻璃基底和沉积于所述玻璃基底表面的镀膜层,所述镀膜层包括从内向外依次层叠的第一介质层、第一生长层、第一保护层、银层、第二保护层、第二生长层和第二介质层,其中,所述第一生长层和第二生长层均为第三主族金属与H共掺的ZnO膜层,所述第三主族金属为Al、Ga或In。

H在AZO的晶格中以氢间隙(Hi)的形式存在提供自由电子,另外H可以消除晶界的缺陷,促进晶体的结晶。AZO结晶性随着H流量的增加而变好,同时电阻率下降,当H2流量达到6%时最优,当H2流量进一步增加时,H等离子体对AZO晶体造成腐蚀,结晶性能反而变差。在本发明的一个实施方式中,第一生长层和第二生长层的厚度均为5~40nm。在本发明的一个优选实施方式中,第一生长层和/或第二生长层为2wt%掺杂的AZO膜层、5wt%掺杂的GZO膜层或10wt%掺杂的IZO膜层;AZO为掺铝(Al)氧化锌(ZnO),2wt%掺杂的AZO膜层表示铝(Al)的掺杂量为2wt%;GZO为掺镓(Ga)氧化锌(ZnO),5wt%掺杂的GZO膜层表示镓(Ga)的掺杂量为5wt%;IZO为掺铟(In)氧化锌(ZnO),10wt%掺杂的IZO膜层表示铟(In)的掺杂量为10wt%。在本发明的一个更优选实施方式中,第一生长层和/或第二生长层由溅射形成,其中,溅射的靶材为掺杂第三主族金属的ZnO,溅射在氩气和氢气的混合气体气氛中进行,所述第三主族金属为Al、Ga或In。在本发明的一个最优选实施方式中,氩气和氢气的混合气体中氢气的流量占比为1~12%。

在本发明的一个实施方式中,第一保护层和第二保护层均为NiCr层,第一保护层和第二保护层的厚度均为0.5~2nm。

在本发明的一个实施方式中,银层的厚度为8~20nm。

在本发明的一个实施方式中,第一介质层和第二介质层均为Si3N4层,另外,第一介质层和第二介质层的厚度均为25~60nm。

本发明相应地提供了上述的可钢化高透低辐射镀膜玻璃的制造方法方法,包括如下步骤:

(1)提供玻璃基底;

(2)在玻璃基底上沉积第一介质层;

(3)在第一介质层上沉积第一生长层;

(4)在第一生长层上沉积第一保护层;

(5)在第一保护层上沉积银层;

(6)在银层上沉积第二保护层;

(7)在第二保护层上沉积第二生长层;

(8)在第二生长层上沉积第二介质层。

其中,步骤(3)和步骤(7)中的第一生长层和第二生长层由溅射形成,其中,溅射的靶材为掺杂第三主族金属的ZnO,溅射在氩气和氢气的混合气体气氛中进行,所述第三主族金属为Al、Ga或In。

进一步地,所述氩气和氢气的混合气体中氢气的流量占比为1~12%。

具体地,第一生长层和第二生长层通过脉冲直流磁控溅射掺杂第三主族金属的ZnO(如AZO、GZO、IZO)陶瓷靶镀制,靶材致密度大于99.5%,溅射气氛为Ar/H2=1-12%。溅射过程中H2电离为H等离子体,在薄膜生长过程中掺入ZnO晶格中与掺杂金属共同形成AZO:H、(或GZO:H、IZO:H)透明导电氧化物,提高其导电性及稳定性。

在本发明中,对于介质层、保护层和银层的沉积工艺和沉积工艺的工艺参数没有具体的限制,优选地,在本发明中,第一介质层、第一保护层、银层、第二保护层和第二介质层均可以使用溅射方法沉积。对于现有技术中的多种沉积方法,本领域技术人员根据目标膜层的组成和厚度选择合适或优选的沉积工艺参数,其中,工艺参数包括可能涉及到的溅射气氛、靶材材质、溅射时间。

在本发明的一个实施方式中,第一介质层和第二介质层通过交流磁控溅射硅铝合金靶镀制,靶材中重量比Si/Al=90/10,溅射气氛为Ar与N2,气体流量比Ar/N2=5/6。

在本发明的一个实施方式中,二保护层通过直流磁控溅射镍铬合金靶镀制,靶材中重量比Ni/Cr=80/20,溅射气氛为Ar。

在本发明的一个实施方式中,金属银层通过直流磁控溅射金属银靶镀制,靶材纯度大于99.9%。

实施例1:

本实施例提供了一种镀膜玻璃,该镀膜玻璃为单银LOW-E镀膜玻璃,包括玻璃基底以及其上镀制的各种膜层,膜层由内到外有7个膜层,依次为第一介质层Si3N4,厚度为50nm,主要起阻止浮法玻璃基底中的Na+,Ca2+等杂质离子向膜层中的扩散的作用;第一生长层为AZO:H,(H2流量比为6%),Al的掺杂量为2wt%,厚度为35nm,为银层生长提供较好的生长缓冲层;第一保护层为NiCr,厚度为1.5nm,避免银膜在溅射过程受到浸蚀;银层厚度为12nm、是LOW-E膜的主要功能层;第二保护层为NiCr,厚度为2nm、防止后续加工钢化过程中的氧对银层的破坏,对于镀层具有非常良好的抗化学和机械性能第二生长层为AZO:H,厚度为35nm,主要是与第一生长层形成对称结构,减小膜层应力、第二介质层为Si3N4,厚度为55nm,它确保了整个LOW-E膜层具有良好的机械加工性能。

该可钢高透低辐射镀膜玻璃制品的结构为:

Glass/Si3N4/AZO:H/NiCr/Ag/AZO:H/NiCr/Si3N4

表1-1.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

表1-2.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

实施例2:

本实施例提供了一种镀膜玻璃,该镀膜玻璃为单银LOW-E镀膜玻璃,包括玻璃基底以及其上镀制的各种膜层,膜层由内到外有7个膜层,依次为第一介质层Si3N4,厚度为50nm,主要起阻止浮法玻璃基底中的Na+,Ca2+等杂质离子向膜层中的扩散的作用;第一生长层为GZO:H,(H2流量比为6%),Ga的掺杂量为5wt%,厚度为35nm,为银层生长提供较好的生长缓冲层;第一保护层为NiCr,厚度为1.5nm,避免银膜在溅射过程受到浸蚀;银层厚度为12nm、是LOW-E膜的主要功能层;第二保护层为NiCr,厚度为2nm、防止后续加工钢化过程中的氧对银层的破坏,对于镀层具有非常良好的抗化学和机械性能第二生长层为GZO:H,厚度为35nm,主要是与第一生长层形成对称结构,减小膜层应力、第二介质层为Si3N4,厚度为55nm,它确保了整个LOW-E膜层具有良好的机械加工性能。

该可钢高透低辐射镀膜玻璃制品的结构为:

Glass/Si3N4/GZO:H/NiCr/Ag/GZO:H/NiCr/Si3N4

表2-1.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

表2-2.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

实施例3:

本实施例提供了一种镀膜玻璃,该镀膜玻璃为单银LOW-E镀膜玻璃,包括玻璃基底以及其上镀制的各种膜层,膜层由内到外有7个膜层,依次为第一介质层Si3N4,厚度为50nm,主要起阻止浮法玻璃基底中的Na+,Ca2+等杂质离子向膜层中的扩散的作用;第一生长层为IZO:H,(H2流量比为6%),In的掺杂量为10wt%,厚度为35nm,为银层生长提供较好的生长缓冲层;第一保护层为NiCr,厚度为1.5nm,避免银膜在溅射过程受到浸蚀;银层厚度为12nm、是LOW-E膜的主要功能层;第二保护层为NiCr,厚度为2nm、防止后续加工钢化过程中的氧对银层的破坏,对于镀层具有非常良好的抗化学和机械性能第二生长层为IZO:H,厚度为35nm,主要是与第一生长层形成对称结构,减小膜层应力、第二介质层为Si3N4,厚度为55nm,它确保了整个LOW-E膜层具有良好的机械加工性能。

该可钢高透低辐射镀膜玻璃制品的结构为:

Glass/Si3N4/IZO:H/NiCr/Ag/IZO:H/NiCr/Si3N4

表3-1.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

表3-2.产品6mm单片钢化后及中空成6LOW-E+12A+6产品光学性能

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1