一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法与流程

文档序号:11270492阅读:397来源:国知局
一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法与流程

本发明属于无机非金属陶瓷制备领域,更具体地,涉及一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法。



背景技术:

多孔陶瓷材料具有极高的比表面积、化学稳定性好、耐腐蚀性高、硬度高、耐磨损、耐高温、无毒无害等优点,被广泛用作催化剂载体、过滤材料、保温隔热材料、吸音材料等。随着科学技术的发展要求,航空航天、军事装备、金属陶瓷复合材料等新的应用领域对多孔陶瓷材料的需求也更加迫切,并且对其性能及形状复杂度提出了更高的要求。目前制备多孔陶瓷的传统方法包括挤压成型、气体发泡法和添加造孔剂法等普遍存在难以成型高性能、高复杂度的多孔陶瓷等问题。

直接凝固注模成型工艺(directcoagulationcasting,dcc)是一种新型的近净尺寸陶瓷原位成型技术,其通过生物酶或底物的催化反应来增加浆料中的离子强度或调节浆料中的ph值使陶瓷浆料完成液固转变,实现陶瓷浆料的原位固化。该工艺相比于传统的胶态成型工艺如流延成型、注浆成型和注射成型等,具有坯体密度均匀、有机添加剂少、成型素坯无需脱脂、环境友好无毒性、可成型复杂形状高性能致密陶瓷部件等优点,但该方法制备的陶瓷湿坯强度较低(~10kpa),在脱模时易产生裂纹而导致脱模困难,一定程度上限制了该工艺的进一步发展,使得dcc工艺目前多适用于制备复杂形状的致密陶瓷,而在制备多孔陶瓷方面的研究还比较少。

由于存在上述缺陷和不足,本领域亟需做出进一步的完善和改进,设计一种多孔陶瓷的制备方法,使其能够上述问题,以便满足生产复杂形状多孔陶瓷的生产需要。



技术实现要素:

针对现有技术的以上缺陷和改进需求,本发明提供了一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法,通过直接凝固注模成型工艺结合熔盐法、增材制造技术和消失模成型工艺,可制备出高性能、高复杂度的高孔隙率全纤维复杂多孔陶瓷,该方法采用增材制造技术快速制备复杂形状的用于消失模成型的模具,有效避免直接凝固注模成型素坯强度低、难脱模的问题,采用熔盐高温下易熔融成液相的特性,通过高温熔融下物质间的扩散作用实现纤维间的扩散结合,以解决现有直接凝固注模成型工艺难以制备多孔陶瓷、模具制备成本高、周期长和传统制备工艺难以成型高性能、高复杂度的多孔陶瓷等问题。

为实现上述目的,本发明提出了一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法,包括如下步骤:

(1)将陶瓷纤维、分散剂和去离子水通过球磨混合均匀,制备出纤维表面带负电的陶瓷浆料,并且,各组分的含量设定如下:陶瓷纤维的固相体积分数为25%~45%,分散剂的质量为陶瓷纤维质量的0.2%~3.0%,其余为去离子水;

(2)在步骤(1)中得到的陶瓷浆料中添加熔盐并充分球磨,然后加入酯类ph调节剂搅拌均匀,其中,酯类ph调节剂添加的体积为陶瓷浆料体积的0.5%~2.5%;

(3)将步骤(2)中得到的浆料注入增材制造的无孔模具中,然后使浆料固化并干燥为陶瓷干坯;

(4)将步骤(3)中未经脱模的陶瓷干坯与无孔模具一起进行高温烧结,在高温烧结时无孔模具发生分解或溃散实现自动脱模,最终得到高孔隙率全纤维复杂的多孔陶瓷。

具体地,本发明通过采用直接凝固注模成型工艺,开创性地结合熔盐法、增材制造技术和消失模成型工艺可制备出高性能、高复杂度的高孔隙率全纤维复杂多孔陶瓷,该方法采用增材制造技术快速制备复杂形状的用于消失模成型的模具,有效避免直接凝固注模成型素坯强度低、难脱模的问题,采用熔盐高温下易熔融成液相的特性,通过高温熔融下物质间的扩散作用实现纤维间的扩散结合,以解决现有直接凝固注模成型工艺难以制备多孔陶瓷、模具制备成本高、周期长和传统制备工艺难以成型高性能、高复杂度的多孔陶瓷等问题。

进一步优选地,所述步骤(1)中的陶瓷纤维优选为氧化铝纤维、氧化锆纤维、二氧化硅纤维、氮化硅纤维、碳化硅纤维和莫来石纤维中的一种或多种;且陶瓷纤维的长度为10μm~90μm,长径比范围为3~10;所述分散剂为柠檬酸铵、聚丙烯酸铵、四甲基氢氧化铵、三聚磷酸钠、多聚磷酸铵和三甲基氯化铵的一种或多种。

较多的比较试验表明,上述种类的陶瓷纤维具有良好的耐高温性能,且具有较高的强度,能够满足制模工艺的要求和后期的使用需求。而选择合适规格参数的陶瓷纤维作为增强材料,则能够使得最终制得的多孔陶瓷具有良好的强度。

优选地,所述步骤(1)中的球磨速率为250r/min~400r/min,球磨时间为50min~150min。

优选地,所述步骤(2)中的熔盐为氯化钾、氯化钠、硫酸钾和硫酸钠中的一种或多种,其熔盐加入量为陶瓷纤维质量的5%~40%;所述酯类ph调节剂为二乙酸甘油酯、三乙酸甘油酯、乳酸乙酯和乙酸乙酯中的一种或多种。

采用熔盐高温下熔融成液相,有利于陶瓷纤维间的扩散结合,既可以提高多孔陶瓷烧结件的抗压强度,又可以有效降低烧结温度。较多的比较试验表明,将熔盐的种类、成分和酯类ph调节剂等关键工艺参数进行限定和设计,则能够保证熔盐在高温下顺利的扩散至陶瓷纤维间使其结合,从而提高最终烧结体的质量。

优选地,所述步骤(2)中的球磨速率为250r/min~400r/min,球磨时间为10min~20min,搅拌时间为15s~45s,缓慢搅拌至分散均匀且不带入气泡到浆料中。

优选地,所述步骤(3)中的增材制造技术为三维打印、选区激光烧结、熔融沉积造型和光固化成型中的一种或多种;采用增材制造技术快速制备复杂形状的用于消失模成型的浆料浇注模具,模具形状可设计,制造成本低,周期短,操作简单。

优选地,所述步骤(3)中的无孔模具为覆膜砂模具、尼龙模具、聚乳酸模具、聚丙烯模具、聚苯乙烯模具和光敏树脂模具中的一种或多种。

优选地,所述步骤(3)中的浆料固化和干燥的条件如下:温度为45℃~85℃,保温时间为12h~24h。

优选地,所述步骤(4)中的高温烧结处理过程具体如下:先升温至400℃~800℃保温2h~4h;再升温至1250℃~1750℃保温2h~6h;升温速率为每分钟3℃~10℃。

采用消失模成型技术可使模具高温烧结时分解或溃散,实现自动脱模,故陶瓷素坯无需脱模,可有效避免裂纹和开裂的产生。而较多的比较试验表明,将高温烧结处理的条件参数限定在上述范围内,并对模具的材质进行选择和设计,能够保证脱模的顺利进行,同时避免过烧对坯体造成损伤。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:

1.本发明通过采用直接凝固注模成型工艺开创性地结合熔盐法、增材制造技术和消失模成型工艺,并通过对陶瓷浆料中的组分和配料专门进行配比,可制备高孔隙率全纤维复杂的多孔陶瓷,由于成型素坯均匀性较好,可制备出复杂形状高性能、高孔隙率的多孔陶瓷烧结件。

2.本发明采用熔盐高温下熔融成液相,有利于陶瓷纤维间的扩散结合,既可以提高多孔陶瓷烧结件的抗压强度,又可以有效降低烧结温度;采用增材制造技术快速制备复杂形状的用于消失模成型的浆料浇注模具,模具形状可设计,制造成本低,周期短,操作简单;采用消失模成型技术可使模具高温烧结时分解或溃散,实现自动脱模,故陶瓷素坯无需脱模,可有效避免裂纹和开裂的产生。

3.本发明通过对浆料的组分和比值、熔盐的种类和含量、酯类ph调节剂的种类和含量进行专门的设计,对增材制造技术和模具材质进行选择,还针对直接凝固注模成型工艺中的重要工艺参数,如球磨速率和时间、烧结处理条件等进行研究和对比测试,相应可以保证可以制备出均匀一致、复杂形状高性能、高孔隙率的多孔陶瓷烧结件。

4.本发明的制备方法制得的陶瓷烧结体孔隙率较高,可适用于不同陶瓷纤维体系的直接凝固注模成型,普适性较强,该方法还具有加工快速、可控性强、生产周期短、成本低廉等特点,因而尤其适用于高孔隙率全纤维复杂多孔陶瓷的批量化大规模生产。

附图说明

图1是本发明高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法的流程图;

图2(a)-(b)是本发明制备氧化铝高孔隙率全纤维复杂多孔陶瓷显微图,其中,(a)低倍、(b)高倍。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明提供了一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法,具体为一种结合熔盐法、增材制造技术、消失成型技术和直接凝固注模成型工艺制备高性能、复杂形状的高孔隙率全纤维复杂多孔陶瓷的方法,其中熔盐在较高温度时由固相熔融为液相,有利于物之间的扩散,实现陶瓷纤维间的扩散结合,既可增强陶瓷纤维间的结合以提高最终力学性能,又可降低陶瓷的烧结温度。采用增材制造技术快速制备形状复杂的无孔模具,浇注浆料后无需脱模直接固化和干燥,可有效避免直接凝固注模成型工艺中素坯强度低、难脱模的问题,在成型大尺寸、厚截面、复杂形状陶瓷部件方面具有明显优势。增材制造的模具在烧结过程中会分解或溃散以实现自动脱模。本发明采用的方法具有操作简单,模具形状可设计且制备周期短、成本低,陶瓷坯体无需脱模,加入熔盐可有效降低烧结温度,制得陶瓷烧结体孔隙率高,具有适合任何带负电的陶瓷浆料等优点。

本发明主要包括以下步骤:

(1)将陶瓷纤维、分散剂和去离子水通过球磨混合均匀,以制备纤维表面带负电的陶瓷浆料,其中,陶瓷纤维的固相体积分数为25%~45%,分散剂的质量为陶瓷纤维质量的0.2%~3.0%。

具体的,陶瓷纤维优选为氧化铝纤维、氧化锆纤维、二氧化硅纤维、氮化硅纤维、碳化硅纤维和莫来石纤维中的一种或多种;陶瓷纤维的长度优选为10~90μm,长径比优选为3~10;分散剂优选为柠檬酸铵、聚丙烯酸铵、四甲基氢氧化铵、三聚磷酸钠、多聚磷酸铵和三甲基氯化铵的一种或多种;球磨速率优选为250~400r/min,球磨时间优选为50~150min。

(2)在步骤(1)中得到的陶瓷浆料中添加熔盐并充分球磨,然后加入酯类ph调节剂,并用玻璃棒搅拌均匀,其中,酯类ph调节剂添加的体积为陶瓷浆料体积的0.5%~2.5%。

具体的,熔盐优选为氯化钾、氯化钠、硫酸钾和硫酸钠中的一种或多种,熔盐加入量优选为陶瓷纤维质量的5%~40%,其在高温下会熔融成液相,有利于物质间的扩散反应和纤维间的扩散结合和降低烧结温度;酯类ph调节剂优选为二乙酸甘油酯、三乙酸甘油酯、乳酸乙酯和乙酸乙酯中的一种或多种,其分解速率随温度的升高而加快;球磨速率优选为250~400r/min,球磨时间优选为10~20min,玻璃棒搅拌时间优选为15~45s,缓慢搅拌至分散均匀且不带入气泡到浆料中。

(3)将步骤(2)中得到的浆料注入增材制造的无孔模具中,然后置于烘箱中使浆料固化并干燥为陶瓷干坯;

具体的,增材制造技术优选为三维打印、选区激光烧结、熔融沉积造型和光固化成型中的一种或多种;无孔模具优选为覆膜砂模具、尼龙模具、聚乳酸模具、聚丙烯模具、聚苯乙烯模具和光敏树脂模具中的一种或多种,其在高温烧结时会发生分解或溃散;浆料的固化和干燥温度优选为45℃~85℃,保温时间优选为12~24h。

(4)将步骤(3)中未经脱模的陶瓷干坯与无孔模具一起置于烧结炉中,高温烧结时无孔模具会发生分解或溃散实现自动脱模,最终得到高孔隙率全纤维复杂的多孔陶瓷。

具体的,上述烧结处理是先升温至400℃~800℃保温2~4h;再升温至1250℃~1750℃保温2~6h;优选的,所述升温速率为每分钟3℃~10℃。

为更好地解释本发明,以下结合具体实施例进行解释:

实施例1:

2.5vol%二乙酸甘油酯固化0.2wt%柠檬酸铵分散的含40wt%硫酸钾的45vol%氧化铝纤维浆料,氧化铝纤维长度为90μm,长径比为4。

将100g氧化铝纤维、0.2g柠檬酸铵和31.3g去离子水混合,在250r/min的球磨速率下球磨150min后制得固相体积分数为45vol%表面带负电的陶瓷浆料,然后加入40g硫酸钾后继续以250r/min的速率球磨20min,再加入0.78ml二乙酸甘油酯,玻璃棒搅拌45s后注入选区激光烧结技术制备的尼龙模具中,在85℃温度下放置12h后置于烧结炉中,先以3℃/min升温至400℃保温4h,再以10℃/min升温至1450℃保温2h得到高孔隙率全纤维复杂的氧化铝陶瓷烧结件,其孔隙率可达68%。

如图2(a)-(b)所示,是本实施例制备氧化铝高孔隙率全纤维复杂多孔陶瓷在低倍和高倍显微镜下的显微图。

实施例2:

0.5vol%三乙酸甘油酯固化1.0wt%聚丙烯酸铵分散的含5wt%硫酸钠的25vol%氧化锆纤维浆料,氧化锆纤维长度为10μm,长径比为3。

将100g氧化锆纤维、1g聚丙烯酸铵和50.9g去离子水混合,在400r/min的球磨速率下球磨50min后制得固相体积分数为25vol%表面带负电的陶瓷浆料,然后加入5g硫酸钠后继续以300r/min的速率球磨10min,再加入0.26ml三乙酸甘油酯,玻璃棒搅拌15s后注入光固化成型技术制备的光敏树脂模具中,在45℃温度下放置24h后置于烧结炉中,先以3℃/min升温至600℃保温2h,再以8℃/min升温至1500℃保温6h得到高孔隙率全纤维复杂的氧化锆陶瓷烧结件,其孔隙率可达82%。

实施例3:

1.5vol%乳酸乙酯固化0.5wt%三聚磷酸钠分散的含20wt%硫酸钾的30vol%氮化硅纤维浆料,氮化硅纤维长度为50μm,长径比为5。

将100g氮化硅纤维、0.5g三聚磷酸钠和68.6g去离子水混合,在300r/min的球磨速率下球磨80min后制得固相体积分数为30vol%表面带负电的陶瓷浆料,然后加入20g硫酸钾后继续以400r/min的速率球磨10min,再加入1.03ml乳酸乙酯,玻璃棒搅拌20s后注入三维打印技术制备的覆膜砂模具中,在75℃温度下放置16h后置于氮气气氛烧结炉中,先以5℃/min升温至800℃保温3h,再以8℃/min升温至1750℃保温4h得到高孔隙率全纤维复杂的氮化硅陶瓷烧结件,其孔隙率可达70%。

实施例4:

2.0vol%二乙酸甘油酯固化3.0wt%四甲基氢氧化铵分散的含35wt%氯化钠的40vol%二氧化硅纤维浆料,二氧化硅纤维长度为30μm,长径比为9。

将100g二氧化硅纤维、3.0g四甲基氢氧化铵和56.6g去离子水混合,在250r/min的球磨速率下球磨120min后制得固相体积分数为40vol%表面带负电的陶瓷浆料,然后加入35g氯化钠后继续以300r/min的速率球磨15min,再加入1.13ml二乙酸甘油酯,玻璃棒搅拌30s后注入选区激光烧结技术制备的聚丙烯模具中,在80℃温度下放置14h后置于烧结炉中,先以3℃/min升温至450℃保温4h,再以10℃/min升温至1250℃保温3h得到高孔隙率全纤维复杂的二氧化硅陶瓷烧结件,其孔隙率可达74%。

实施例5:

1.0vol%乙酸乙酯固化0.5wt%三甲基氯化铵分散的含25wt%氯化钾的30vol%莫来石纤维浆料,莫来石纤维长度为20μm,长径比为5。

将100g莫来石纤维、0.5g三甲基氯化铵和73.8g去离子水混合,在400r/min的球磨速率下球磨60min后制得固相体积分数为30vol%表面带负电的陶瓷浆料,然后加入25g氯化钾后继续以350r/min的速率球磨15min,再加入0.74ml乙酸乙酯,玻璃棒搅拌15s后注入熔融沉积造型技术制备的聚乳酸模具中,在60℃温度下放置18h后置于烧结炉中,先以3℃/min升温至500℃保温2h,再以10℃/min升温至1650℃保温2h得到高孔隙率全纤维复杂的莫来石陶瓷烧结件,其孔隙率可达78%。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1