一种用于增韧氧化锆的非球形镍粉及其制备方法和应用与流程

文档序号:25544017发布日期:2021-06-18 20:41
一种用于增韧氧化锆的非球形镍粉及其制备方法和应用与流程

本发明属于陶瓷材料范畴,关联到一种氧化锆材料,具体涉及金属镍颗粒与陶瓷基体界面反应能力与结合强度以提升陶瓷韧性。



背景技术:

延性金属不仅包含硬质颗粒的增韧机制外,还包括由于塑性变形区导致的裂纹尖端屏蔽效应,同时塑性相的变形、桥连和断裂可以吸收大部分扩展裂纹的断裂能(gutierrez-gonzalezcf,bartolomejf.damagetoleranceandr-curvebehaviorofal2o3–zro2–nbmultiphasecompositeswithsynergistictougheningmechanism[j].journalofmaterialsresearch,2008,23(2):570-578.)。因此,金属增韧陶瓷基复合材料被认为是最有希望改善陶瓷断裂韧性的方法之一。金属镍具有良好的延展性,并且作为一种存量较大的金属增韧剂一直都是众多研究人员增韧陶瓷的首选材料。

金属镍与氧化锆具有相似的弹性模量及相似的晶体结构参数,相似的弹性模量(ni:210gpa,3ysz:186gpa)不会导致镍/氧化锆复合材料的抗弯强度大幅下降,相似的晶格参数有利于镍与氧化锆陶瓷的界面结合,理论上能有效提高氧化锆陶瓷的断裂韧性。但研究发现,在3ysz/ni复合材料中,金属镍与氧化锆的界面结合性能较差,一方面是因为镍与氧化锆不发生界面反应(lopez-estebans.,rodriguez-suarezt.,esteban-betegnf.,etal..mechanicalpropertiesandinterfacesofzirconia/nickelinmicro-andnanocomposites[j].journalofmaterialsscience,2006,41(16):5194-5199.),另一方面是因为在真空烧结过程中,3ysz中氧空位增多,导致ni-o键缺失,结合强度降低(pecharromnca,beltrnj.,estebanb.,etal.zirconia/nickelinterfacesinmicro-andnanocomposites[j].zeitschriftfürmetallkunde,2005,96(5):507-514.)。这些原因使得球形镍与3ysz基体结合作用差,从而在断裂过程中,镍颗粒与基体过早脱离导致金属强化机制不能有效发挥,无明显的增韧作用。



技术实现要素:

本发明要解决的技术问题是:球形镍与氧化锆(包括3ysz)基体因弱界面,导致金属与陶瓷两相过早分离,镍对氧化锆基体无明显增韧效果。随着镍含量的增加,基体中m相与c相持续增多,导致复合材料抗弯强度与断裂韧性持续降低。

为解决上述技术问题,本发明设计了一种增韧氧化锆的非球形镍粉,所述非球形镍粉的内核为镍或镍合金;外壳为氧化层。

本发明一种增韧氧化锆的非球形镍粉,以雾化镍粉为原料,通过球磨氧化得到所述非球形镍粉。

本发明一种增韧氧化锆的非球形镍粉,所述非球形镍粉镍粉平均粒度为0.5-10μm,长短轴比为1.5~3.5:1、优选为1.5~1.6:1。

本发明一种增韧氧化锆的非球形镍粉,所用的雾化镍粉得平均粒度为30~50μm,长短轴比1.05~1.1,镍含量大于99.8wt.%。

本发明一种增韧氧化锆的非球形镍粉,所述非球形镍粉中氧化层厚度为5~100nm。

本发明一种增韧氧化锆的非球形镍粉,将雾化镍粉加入球磨机中进行球磨;然后再对球磨后的粉末进行氧化;得到所述非球形镍粉。

本发明一种增韧氧化锆的非球形镍粉,球磨时控制球料质量比为4-20:1、优选为5~8:1、进一步优选为5:1;球磨转速为150~250rpm;球磨时间为1-2h;球磨后得到的非球形ni粉长短轴为1.5~3.5:1;球磨后的粉末经300~650℃、优选为500~620℃、进一步优选为580~620℃,0.5~6h、优选为0.5~2h氧化,获得粗糙的表面氧化层,粒径分布处于0.5μm-10μm之间。

本发明一种增韧氧化锆的非球形镍粉的应用法,将非球形镍粉与氧化锆粉混合均匀后,压制成形,最后经烧结得到产品。

本发明一种增韧氧化锆的非球形镍粉的应用法,压制成形的压力为10-200mpa、烧结的温度为1300-1450℃。

本发明一种增韧氧化锆的非球形镍粉的应用法,混合均匀后,非球形镍粉占混合粉末总质量的0.1~20%、优选为4~6%、进一步优选为5%。

本发明一种增韧氧化锆的非球形镍粉的应用法,所述氧化锆粉优选为3ysz。氧化锆粉颗粒的粒径为0.01-800微米,优选为10~50微米。

在本发明中,当混合粉末中非球形镍粉添加5wt.%时,制备出ni/3ysz复合材料基体中t相含量高于94vol%,而m相与c相含量低于6vol%;非球形镍粉增加了金属镍与氧化锆基体的界面接触面积,断裂模式由沿晶断裂改变为沿晶-穿晶混合断裂模式,抗弯强度与断裂韧性最高可达893mpa与15.44mpa.m1/2

本发明一种增韧氧化锆的非球形镍粉的应用,其最为明显的效果就是能实现对氧化锆陶瓷的增韧。在本发明的技术开发过程中发现:

复合材料以3ysz和非球形核壳结构镍粉为原料,以质量比3ysz:ni=100-x:x(x=0,5,15,20)的比例进行粉末配置。选择合适的ni粉添加量,可以增大基体中t相含量,减少金属镍的偏聚。通过成型预压,将预压成型的生坯进行冷等静压复压,最后在1300℃烧结得到密度在97%以上的烧结坯。

本发明利用非球形金属镍颗粒与氧化锆基体界面的物理和化学结合,在拔出的过程中颗粒与氧化锆基体存在啮合效应而增大其拔出难度,消耗了裂纹扩展能量,增大断裂韧性使得复合材料的力学性能升高。

本发明一种增韧氧化锆的非球形镍粉的应用;通过球磨雾化镍粉得到的、粒径为0.5μm-10μm、长短轴比为1.5~3.5:1、表面粗糙的核壳结构非球形雾化镍粉在加入后,使氧化锆粉体在烧结前嵌入到镍颗粒中,阻碍了镍的烧结球化,在烧结过程中形成锯齿状的界面结构,增加了金属与陶瓷的界面结合强度。多枝状的表面可以有效的啮合氧化锆基体,使复合材料在断裂过程中金属增韧相发生塑性变形。同时镍粉表面纳米级别厚度的氧化镍层,能够防止ni-o键缺失,有利于形成ni—o—zr结合键,有利于延性相的桥连与拔出增韧机制的发挥。

本发明一种增韧氧化锆的非球形镍粉的应用;所得ni/3ysz复合材料中,由于加入核壳结构的非球形镍粉,在断裂过程中,利用锯齿状界面结构的物理结合和ni—o—zr化学键结合,镍颗粒与基体具有足够的结合力而不发生滑脱,复合材料的断裂模式由沿晶断裂改变为沿晶-穿晶混合断裂模式,通过延性裂纹桥-环状微裂纹复合增韧及异形颗粒拔出效应,能够使得复合材料力学性能提高。经过优化后,所制备的复合材料抗弯强度与断裂韧性由纯3ysz的747mpa与9.51mpa.m1/2升高至893mpa与15.44mpa.m1/2,分别提高了19.54%与62.3%。

本方法成本较低,工艺简单,便于大规模的工业化应用。

附图说明

图1是原始雾化球形镍粉的形貌图。

图2是本发明实例1所得的非球形雾化镍粉形貌图。

图3是本发明实例1所得的氧化镍粉氧化层形貌图。

图4是本发明实施例1与实施例1-1、实施例1-2所得复合材料相变化示意图。

图5是本发明实施例1,2所得复合材料扫描电镜下断口形貌图。图6是本发明于扫描电镜下观察到5wt.%ni含量断口形貌图。

图7是本发明实例3与实施例3-1所得复合材料相变化示意图。

图8是本发明复合材料的裂纹扩展图。

从图1中可以看出原始雾化球形镍粉的形貌;

从图2中可以看出球磨后表面粗糙的非球形雾化镍粉的形貌;

从图3中可以看出氧化后雾化镍粉氧化层的形貌;

从图4中可以看出不同非球形镍粉含量下,各相在成品中所占体积分数。

从图5中可以看出镍在基体中主要是以两种增韧形式存在,即拔出与桥架。

从图6中可以看出5wt.%非球形镍粉加入后,弥散的3ysz将非球形镍粉包裹起来并嵌入枝杈,烧结后镍颗粒以多枝状的结构存在,与球形镍相比,有更大的界面接触面积。

从图7中可以看出不同氧化时间,5wt.%非球形镍粉含量下ni/3ysz复合材料中各相的变化情况。

从图8中可以看出复合材料发生断裂后,在延性金属颗粒周边残留有大量的裂纹环。通过图8可以明显看出其裂纹扩展方式。

具体实施方式

实施案例1

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形核壳结构镍粉组成。其中镍粉添加量占总质量的5%,长短轴比为1.5:1,氧化层厚度为10nm。

上述非球形核壳结构镍粉的制备方法包括以下步骤:称取球形雾化镍粉装入容积为1l的不锈钢球磨罐中,在球磨罐中装入直径为5mm的不锈钢钢球1000g,采用5∶1的球料比,以硬脂酸为球磨助剂(用量为1wt.%),通入ar气作为保护气氛,球磨机转速150rpm,球磨2h,完全冷却后取出球磨粉末放入马弗炉中,经5℃/min升温到600℃进行2h氧化,即得到本实施例中的非球形核壳结构镍粉。

图2与图3为本实施例中制备得到的非球形雾化镍粉sem图,由图2可知,通过高能球磨后,球形雾化镍粉粉末发生变形为异形。

利用上述非球形镍粉粉末与3ysz制备复合材料,包括以下步骤:

第一步:取上述非球形镍粉加入3ysz基体中(3ysz粉末颗粒的粒径为45微米),非球形镍粉为粉末总质量的5%。按照粉末烧结工艺对粉坯的要求,采用10吨压力机完成金属/氧化锆陶瓷基复合材料的成型预压工艺,压制压力为80~100mpa,保压时间20s,将预压成型的生坯进行冷等静压复压(复压的压力为300mpa、保压时间为30秒)。第二步:将复压后的粉坯置于硬质合金炉中进行烧结,炉膛真空度保持在10-1pa,烧结炉以5℃/min的速度进行升温,最终在1300℃下保温2h,以得到相对密度较高的烧结坯。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性数据采集方法为取5个样品进行测量。5个样品致密度约为96.9-97.4%之间,抗拉强度为890-899mpa之间,断裂韧性在15.34-15.49mpa之间;5个样品平均致密度为97.1%,平均抗拉强度为893mpa,平均断裂韧性为15.44mpa.m1/2

实施例1-1

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的10%,长短轴比为1.5:1,氧化层厚度为10nm。

本实例中制备非球形镍粉粉末的制备方法及利用上述非球形镍粉与3ysz制备复合材料方法与实施例1相同。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为96.4-97.1%之间,抗拉强度为759-770mpa之间,断裂韧性在13.38-13.52mpa之间;5个样品平均致密度为96.8%,平均抗拉强度为785mpa,平均断裂韧性为13.46mpa.m1/2

实施例1-2

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的20%,长短轴比为1.5:1,氧化层厚度为10nm。

本实例中制备非球形镍粉粉末的制备方法及利用上述非球形镍粉与3ysz制备复合材料方法与实施例1相同。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为96.5-97.2%之间,抗拉强度为766-781mpa之间,断裂韧性在12.38-12.52mpa之间;5个样品平均致密度为96.1%,平均抗拉强度为770mpa,平均断裂韧性为12.44mpa.m1/2

实施案例2

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的5%,长短轴比为2.5:1,氧化层厚度为5nm。

上述非球形雾化镍粉的制备方法包括以下步骤:称取球形雾化镍粉装入容积为1l的不锈钢球磨罐中,在球磨罐中装入直径为5mm的不锈钢钢球1000g,采用5∶1的球料比,以硬脂酸为球磨助剂(用量为1wt.%),通入ar气作为保护气氛,球磨机转速200rpm,球磨1h,完全冷却后取出球磨粉末放入马弗炉中,经5℃/min升温到600℃进行0.5h氧化,即得到本实施例中的非球形雾化镍粉。

本实例中利用上述非球形镍粉与3ysz制备复合材料方法与实施例1相同。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为97.1-97.5%之间,抗拉强度为820-832mpa之间,断裂韧性在14.58-14.62mpa之间;5个样品平均致密度为97.2%,平均抗拉强度为825mpa,平均断裂韧性为14.60mpa.m1/2

实施例2-1

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的5%,长短轴比为3.5:1,氧化层厚度为5nm。

上述非球形雾化镍粉的制备方法包括以下步骤:称取球形雾化镍粉装入容积为1l的不锈钢球磨罐中,在球磨罐中装入直径为5mm的不锈钢钢球1000g,采用5∶1的球料比,以硬脂酸为球磨助剂(用量为1wt.%),通入ar气作为保护气氛,球磨机转速200rpm,球磨2h,完全冷却后取出球磨粉末放入马弗炉中,经5℃/min升温到600℃进行0.5h氧化,即得到本实施例中的非球形雾化镍粉。

本实例中利用上述非球形镍粉与3ysz制备复合材料方法与实施例1相同。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为96.1-97.5%之间,抗拉强度为795-801mpa之间,断裂韧性在13.88-13.92mpa之间;5个样品平均致密度为96.5%,平均抗拉强度为799mpa,平均断裂韧性为13.90mpa.m1/2

实施案例3

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的5%,长短轴比为1.5:1,氧化层厚度为5nm。

上述非球形雾化镍粉的制备方法包括以下步骤:称取球形雾化镍粉装入容积为1l的不锈钢球磨罐中,在球磨罐中装入直径为5mm的不锈钢钢球1000g,采用5∶1的球料比,以硬脂酸为球磨助剂(用量为1wt.%),通入ar气作为保护气氛,球磨机转速150rpm,球磨2h,完全冷却后取出球磨粉末放入马弗炉中,经5℃/min升温到600℃分别进行0.5h氧化,即得到本实施例中的非球形雾化镍粉。

利用上述非球形镍粉粉末与3ysz制备复合材料方法与实施案例1相同。

在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为96.2-97.2%之间,抗拉强度为791-798mpa之间,断裂韧性在13.81-13.83mpa之间;5个样品平均致密度为96.5%,平均抗拉强度为793mpa,平均断裂韧性为13.82mpa.m1/2

实施例3-1

一种用于增韧氧化锆的金属镍粉及其制备方法,复合材料由基体3ysz与非球形镍粉组成。其中镍粉添加量占总质量的5%,长短轴比为1.5:1,氧化层厚度为100nm。

上述非球形雾化镍粉的制备方法包括以下步骤:称取球形雾化镍粉装入容积为1l的不锈钢球磨罐中,在球磨罐中装入直径为5mm的不锈钢钢球1000g,采用5∶1的球料比,以硬脂酸为球磨助剂(用量为1wt.%),通入ar气作为保护气氛,球磨机转速150rpm,球磨2h,完全冷却后取出球磨粉末放入马弗炉中,经5℃/min升温到600℃分别进行6h氧化,即得到本实施例中的非球形雾化镍粉。

利用上述非球形镍粉粉末与3ysz制备复合材料方法与实施案例1相同。在同一炉样品中随机选取5个试样待测,其致密度、抗拉强度与断裂韧性的数据采集方法为取5个样品进行测量。5个样品致密度约为95.1-95.8%之间,抗拉强度为741-747mpa之间,断裂韧性在12.21-12.33mpa之间;5个样品平均致密度为95.6%,平均抗拉强度为745mpa,平均断裂韧性为12.27mpa.m1/2。

再多了解一些
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1