冠状病毒、核酸、蛋白质及用于产生疫苗、药物和诊断剂的方法

文档序号:3556005阅读:1804来源:国知局
专利名称:冠状病毒、核酸、蛋白质及用于产生疫苗、药物和诊断剂的方法
技术领域
本发明涉及病毒学和医学领域。更特别地,本发明涉及新的冠状病毒的鉴别及与病毒相关的方式和方法,如用于确定各种样品中病毒类型及诊断疾病的方式和方法,开发用于治疗被感染的对象或者处于被感染的危险中的对象的疫苗和药物的方式和方法。
冠状病毒属是冠状病毒科的一个属,其是大的有包膜的正链RNA病毒。基因组RNA的大小为27-32kb,是加帽及聚腺苷酸化的。已经鉴别了三组血清学截然不同的冠状病毒。在每组内,病毒是通过宿主范围及基因组序列而鉴别的。冠状病毒已经在小鼠、大鼠、鸡、火鸡、猪、狗、猫、兔、马、牛和人中鉴别(39,40)。大多数冠状病毒仅感染一种宿主物种并可导致严重疾病,包括胃肠炎和呼吸道疾病。在人体中,已经详细研究了3种冠状病毒。HCoV-229E和HCoV-OC43在60年代中期鉴别并已知其导致普通感冒(13-17,19,41,42)。除了普通感冒之外,还提示HCoV-229E在婴儿中可能导致更严重的疾病,因为从患有下呼吸道疾病的婴儿中已经分离出HCoV-229E病毒(28)。第三种也是最近才鉴别的冠状病毒SARS-CoV具有导致危及生命的肺炎的能力(43),是迄今为止鉴别出的致病性最强的人类冠状病毒。推测SARS-CoV是第四组冠状病毒的第一个成员,或者该病毒是第二组冠状病毒的异常者(outlier)(27,44)。
冠状病毒的基因组编码4种结构蛋白刺突蛋白、膜蛋白、包膜蛋白及核壳蛋白。一些非结构蛋白参与复制和转录,其由在基因组5’末端的两个长的重叠可读框(ORF)编码(1A和1B)。这两个ORF通过核糖体移码(frame shift)而连接。由ORF 1A和1B编码的多肽通过病毒编码的蛋白酶而被翻译后加工。另外,额外的非结构蛋白是在S和E基因之间或者在M和N基因之间或者在N基因的下游编码的。已经发现一些这种“辅助的非结构蛋白基因”对于病毒增殖不是必需的(45,46)。1A和1B的冠状病毒基因产物是从基因组RNA中翻译的,但是其余的病毒蛋白是从各自具有衍生自基因组5’部分的5’末端的亚基因组mRNA(sg mRNA)中翻译的。所述sg mRNA是通过很可能在负链合成期间发生的不连续的转录过程产生的(47)。不连续的转录需要顺式激活元件转录相关序列(TRS)之间的碱基配对,其中一个位于基因组的5’部分(前导TRS),其它的位于ORF的上游(主体TRS)(48)。
本发明揭示的新的冠状病毒分离自患有细支气管炎的儿童。这一病毒的感染不是一个孤立的事件,因为我们发现7个以上的患有呼吸道疾病的患者携带该病毒。另外,我们在此示出完整的基因组序列,其提供了关于所述新的冠状病毒的基因组结构的关键信息。
迄今为止,许多人类疾病的病因学未知。对于许多这样的疾病,提示是病毒起源的,这强调了持续研究新病毒的重要性(22,23,24)。当搜寻新病毒时遇到严重困难,首先,一些病毒在体外,至少在病毒诊断中常用的细胞中不复制。其次,对于在体外复制并导致致细胞病变(CPE)的那些病毒而言,随后的病毒鉴别方法也可能会失败。针对已知病毒产生的抗体可能不识别培养的病毒,以及病毒特异性PCR方法可能不扩增新的病毒的基因组。我们已经开发出基于cDNA扩增的限制片段长度多态性技术(cDNA-AFLP)发现病毒的方法。使用这个技术,RNA或DNA是可增殖性扩增的。预先不需要知道靶基因的序列1。通常使用cDNA-AFLP方法监测差异基因表达,然而我们修改了这种方法,从而其可以从患者血液-血浆/血清样品中直接或者从CPE阳性病毒培养物中间接扩增病毒序列(

图1)。在修改的发现病毒的cDNA-AFLP(VIDISCA)方法中,扩增之前的mRNA分离步骤由选择性富集病毒核酸的处理步骤代替。与纯化相关的是一个离心步骤,以除去残余细胞和线粒体。另外,可以使用DNA酶(DNAse)处理以从降解的细胞中除去干扰性的染色体和线粒体DNA,而病毒核酸则保护在病毒颗粒内。最后,通过选择频繁切割的限制酶,可以对所述方法进行精细调节,由此大多数病毒可以得到扩增。
在2003年1月,一个7个月大的儿童在医院中出现鼻炎、结膜炎和发热。胸片示出细支气管炎的典型特征,在疾病发生后5天收集鼻咽部抽吸样品(样品nrNL63)。对该样品进行的对于呼吸道合胞病毒(RSV)、腺病毒、流感A和B病毒、副流感病毒1、2和3型、鼻病毒、肠道病毒、HCoV-229E和HCoV-OC43的所有诊断测试均呈阴性。在病毒培养物中检测RSV、腺病毒、流感A和B病毒及副流感病毒1、2和3型的免疫荧光分析也呈阴性。酸不稳定性和氯仿敏感性测试表明该病毒很可能是有包膜的并且不是小RNA病毒(Picornavirus)类群的成员。事实上,它是一种新的冠状病毒。
在本发明中,我们详细描述了一种新的人类冠状病毒。冠状病毒特征在于大约27-31kb的非常长的不分节段的单链(+)有义RNA。这是已知RNA病毒中最长的基因组。该基因组具有5’甲基化的帽和3’polyA,并且直接发挥mRNA功能。迄今为止仅鉴别了3种人类冠状病毒,因此挑选出第4种人类冠状病毒的特性对于人类冠状病毒之间的变异提供了引人注目的信息。这种新的病毒是冠状病毒1类群的一个成员,与HCoV-229E最相关,尽管差别明显。在核苷酸水平的相似性不超过85%,HCoV-229E的4A和4B基因的位置只有一个ORF存在于HCoV-NL63(ORF 3)中,HCoV-NL63的S基因的5’区域含有一个独特的符合读框的537个核苷酸的插入体。由于受体的结合已经定位于蛋白质的N末端部分,因此由所述插入体编码的179个氨基酸很可能参与受体结合。在刺突蛋白N末端的这个独特部分可以解释细胞培养物中该病毒的扩大的宿主范围。虽然HCoV-229E对细胞培养比较苛求,其具有较小的宿主范围,但是HCoV-NL63在猴肾细胞中有效复制。除了HCoV-NL63之外,SARS-CoV也能在猴肾细胞(对于SARS-CoV为Vero-E6细胞和NCI-H292细胞(21))中复制。
然而,对比推定的刺突基因,未鉴别出这两个病毒共有的蛋白质区域以阐明在体外这些病毒的共有宿主范围。HCoV-NL63的S基因中的插入体在SARS S基因中也不存在。或者,其它病毒蛋白可能参与病毒的细胞向性,然而我们未鉴别出在蛋白质水平和与HCoV-229E的相似性相比具有与SARS-CoV更高相似性的任何HCoV-NL63基因。
HCoV-229E和HCoV-NL63之间的两个主要差异S基因中的插入体与改变的非结构辅助蛋白质基因,与猪冠状病毒PRCoV与TGEV之间的明显差异相当。尽管这两种猪病毒在抗原性和遗传方面是相关的,但其致病原性非常不同。TGEV在新生的猪中导致具有高死亡率的严重腹泻。其在小肠的肠细胞中复制并破坏该细胞,而PRCoV具有对于呼吸道组织的选择性向性,在小肠组织中非常少地甚至不复制。TGEV与PRCoV之间在S、3A和3B基因中的基因组差异与HCoV-NL63和HCoV-229E之间的差异相当。与HCoV-NL63相似,TGEV在S基因的5’部分具有符合读框的672-681个核苷酸的插入体(53)。另外,在TGEV中完整的辅助蛋白质基因3A和3B在PRCoV中通常是突变或失活的。根据这些数据对人类冠状病毒进行推测,提示HCoV-NL63与HCoV-229E相比可能是致病原性更高的人类病毒。然而,没有流行病学数据支持这个观点。基于我们的数据,似乎HCoV-NL63和HCoV-229E呈现相同的致病原性。普通感冒病毒HCoV-229E在婴儿中可以导致更严重的疾病(28),这与我们提示HCoV-NL63仅在婴儿和免疫缺陷的患者中导致呼吸系统疾病的数据相一致。
迄今为止,在相当一部分(平均20%,59)人类呼吸系统疾病中不能鉴别出病毒病原体,我们的数据表明在一部分这些情况中包含HCoV-NL63。在患有呼吸系统疾病的患者中检测出HCoV-NL63的频率在2003年1月高至5%。在2003年春季或夏季收集的任何样品中均未检测到该病毒,这与具有主要在冬季传播的倾向的人类冠状病毒的流行病学一致(15)。我们的诊断PCR的引物位于1B基因,可以使用基因组RNA作为模板。使用在核壳基因或3′UTR中退火的引物提供了PCR的更多模板,因为除了基因组RNA之外,感染的细胞中所有sg mRNA均可以作为扩增的模板。我们发现的HCoV-NL63阳性的患者数也许低于携带HCoV-NL63的患者的精确数目。
对新发现的冠状病毒(称为HCoV-NL63)进行鉴定和测序。原型(prototype)HCoV-NL63的序列如图19所示,其部分示于表3。因此本发明的一方面提供了包含图19和/或表3所示序列的分离的和/或重组的核酸,或其功能部分、衍生物和/或类似物。病毒HCoV-NL63由其原型表征,然而存在许多天然变体,例如图16所示ORF 1a区域中的多态性。这些天然变体的存在对于例如通过拷贝基因组的聚合酶导入错配而经历频繁突变的RNA病毒而言是正常的。本发明因此也提供了具有略为不同核酸序列的HCoV-NL63病毒。这些病毒被认为是具有原型核酸序列的核酸的衍生物。所述变体非必须是天然变体。非常可能通过重组方式产生变体。例如,病毒的许多部分可以利用特定氨基酸的三联体遗传密码的冗余性通过核苷酸取代而改变。由此不改变所编码的蛋白质的氨基酸序列。然而,甚至可以典型地导入氨基酸改变而不影响病毒的复制和编码潜力。例如通常耐受保守氨基酸取代。原型病毒中的变化可以是多至70%的核酸序列而不改变所述病毒的复制潜力。因此,本发明的一个实施方案提供了一种分离的和/或重组的核酸,其与原型HCoV-NL63的核酸至少70%同源。然而大多数存活变体与原型HCoV-NL63的核酸至少95%同源,更优选至少99%同源。不同的冠状病毒之间UTR区域的同源性典型地高,为此本申请书中的同源是在UTR区域之外的区域优选在蛋白质编码区中测定。因此,本发明提供了HCoV-NL63病毒的一种衍生物,其在图20,21,22,23或表3所示的至少一个蛋白质编码区中包含至少95%同源性,优选至少99%同源性(在核酸水平)。病毒的核酸或其部分可以克隆并用作探针以检测样品中的病毒。因此本发明进一步提供了一种分离的和/或重组的核酸,其包含原型病毒核酸的一段100个连续核苷酸,或者与所述100个连续核苷酸有至少95%优选至少99%同源的区域(当在UTR区域之外的核酸水平测定时)。一段100个连续核苷酸的序列被认为是本发明的病毒的功能部分。本发明进一步提供一种细菌载体,其包含HCoV-NL63的核酸或其功能部分、衍生物和/或类似物。本发明进一步提供了包含所述细菌载体的一种细菌。HCoV-NL63的序列或其一部分可用于产生特异于HCoV-NL63的引物,并因此能特异性复制HCoV-NL63核酸。相似地,可以产生在严格条件下特异性杂交HCoV-NL63核酸的探针。因此,本发明进一步提供了一种引物和/或探针,其能与HCoV-NL63病毒的核酸或其功能部分、衍生物和/或类似物特异性杂交。优选地,所述引物或探针在严格条件下能与所述核酸杂交。在一个特别优选的实施方案中,所述引物和/或探针包含表3、7、10或图16-18所示的一种序列。
原型病毒的核酸编码各种蛋白质和多蛋白(polyprotein)。这些蛋白质在例如产生所述病毒或者用编码所述(多)蛋白的核酸转化的细胞中表达。本发明因此进一步提供了一种包含图20、21、22、23或表3所示序列的分离的和/或重组的蛋白质样分子(proteinaceousmolecule),或其功能部分、衍生物和/或类似物。如上所述,在性质上而非必需在数量上具有相同功能的蛋白质的许多不同变体是天然存在的,并且可以通过人工产生,因此本发明进一步提供了一种分离的和/或重组蛋白质样分子,其与上述蛋白质样分子具有至少70%同源性。这些同源蛋白质被认为是原型病毒编码的蛋白质的衍生物。优选地,衍生物蛋白质与原型HCoV-NL63编码的蛋白质具有至少95%优选至少99%同源性。可以产生由原型病毒编码的蛋白质样分子的片段和部分,本发明因此也提供了这种部分。在一个优选的实施方案中,本发明提供了一种分离的和/或重组的蛋白质样分子,其包含原型病毒编码的蛋白质样分子的一段至少30个连续氨基酸。由原型病毒编码的蛋白质可以使用遗传密码的冗余性通过各种不同的核酸序列编码。因此,本发明进一步提供了编码图20,21,22,23或表3所示的蛋白质的核酸。
HCoV-NL63病毒可以使用在体外生长的细胞系复制。该病毒可以从这种培养物中收获并用于各种不同的应用中,包括但非限于在对象体内产生免疫应答。本发明因此进一步提供了一种分离的或重组的病毒,其包含HCoV-NL63核酸序列或其功能部分、衍生物和/或类似物。本发明还提供了一种分离的或重组的病毒,其包含图20,21,22,23或表3所示蛋白质样分子,或其功能部分、衍生物和/或类似物。已经感染HCoV-NL63的对象可以出现许多不同的临床和/或亚临床症状。因此本发明进一步提供了能诱导HCoV-NL63相关疾病的一种分离的或重组的病毒或其功能部分、衍生物或类似物。
本发明的病毒包含可用于产生能特异性结合所述病毒的物质的特异性结合配体的物质。结合配体可以通过将所述病毒注射进免疫感受态对象体内而产生。作为免疫的结果,得自该对象的血清典型地含有特异于该病毒或其免疫原性部分、衍生物和/或类似物的许多不同抗体。特异性结合配体当然可以通过许多不同技术产生。例如通过噬菌体展示技术产生。产生所述特异性结合配体的方法非限于本发明所述这些技术。所述结合典型地特异于病毒的蛋白质样部分。但是当然也可以特异于病毒中含有的蛋白质的病毒特异性翻译后修饰。因此本发明进一步提供了一种分离的结合分子,其能与HCoV-NL63病毒的蛋白质样分子,优选针对由原型HCoV-NL63的核酸编码的蛋白质样分子特异性结合。优选图20,21,22,23或表3所示蛋白质样分子或其功能部分、衍生物和/或类似物。所述结合分子可以能够与HCoV-NL63的核酸序列特异性结合,优选图19或表3所示核酸序列。所述结合分子优选是一种蛋白质样分子。然而,其它结合分子也在本发明的范围内。例如,可以产生与蛋白质在性质上而非必须在数量上具有相同结合性质的蛋白质模拟物或类似物。本发明进一步提供了一种产生本发明的结合分子的方法,包括-产生能与HCoV-NL63病毒或其功能部分、衍生物或类似物的分子或者由HCoV-NL63的原型核酸编码的分离的和/或重组的蛋白质样分子结合的分子;以及-选择特异于所述病毒和/或所述蛋白质样分子的蛋白质样结合分子。
HCoV-NL63病毒与其它人类冠状病毒的整体同源性不是非常高。因此,可以产生能特异性结合HCoV-NL63病毒的许多不同的结合分子。这些结合分子可用于检测样品中的HCoV-NL63病毒。本发明因此进一步提供了一种分离的或重组的病毒,其与能与HCoV-NL63病毒特异性结合的结合分子具有免疫反应性。相似地,本发明提供了图20,21,22,23或表3所示分离的和/或重组的蛋白质样分子或其功能部分、衍生物和/或类似物在检测样品中能与HCoV-NL63病毒或其功能部分、衍生物或类似物特异性结合的结合分子中的应用,HCoV-NL63可用于检测样品中能与所述病毒特异性结合的分子。HCoV-NL63病毒与易感靶细胞的结合通过特异性受体发生。这种受体可用作本发明的结合分子。优选地,所述结合分子包含抗体或其功能等价物。所述检测方法可用于诊断对象的HCoV-NL63相关疾病。因此本发明提供了一种检测样品中HCoV-NL63病毒或其功能部分、衍生物或类似物的方法,包括用HCoV-NL63特异性引物和/或探针杂交和/或扩增所述病毒或其功能部分、衍生物或类似物的核酸,检测杂交和/或扩增的产物。本发明进一步提供了一种试剂盒,优选诊断试剂盒,其包含HCoV-NL63病毒或其功能部分、衍生物或类似物、本发明的结合分子、和/或本发明的HCoV-NL63病毒特异性引物/探针。
在一个特别优选的实施方案中,本发明提供了能特异性杂交HCoV-NL63病毒的核酸或其功能部分、衍生物或类似物的引物或探针或者能特异性结合图20,21,22,23或表3所示蛋白质样分子或者HCoV-NL63病毒的结合分子和/或原型HCoV-NL63的核酸或功能部分、衍生物或类似物在检测和/或鉴别样品中HCoV-NL63冠状病毒中的应用。优选地,所述核酸包含表3所示序列。
本发明进一步提供了一种疫苗,其包含HCoV-NL63病毒或其功能部分、衍生物或类似物。本发明进一步提供了一种疫苗,其包含图20,21,22,23或表3所示蛋白质样分子或其功能部分、衍生物和/或类似物。本发明的蛋白质样分子可以自身作为疫苗提供,或者作为蛋白质的一部分或者作为其衍生物或类似物而提供。合适的类似物是编码HCoV-NL63病毒蛋白质样分子或其功能部分或衍生物的核酸。所述核酸可以用于也是由本发明提供的DNA疫苗方案中。作为DNA疫苗的载体,其通常适于将一个可表达的HCoV-NL63病毒核酸掺入病毒复制子中,使得所述HCoV-NL63病毒核酸在靶细胞中复制,从而可以加强所提供的免疫应答。适于这种DNA疫苗方案的HCoV-NL63病毒编码的蛋白质是图22所示S蛋白或其功能部分、衍生物和/或类似物。一部分S蛋白与HCoV-229E病毒相比优选包含符合读框插入体的537个核苷酸的免疫原性部分。优选所述部分基本上包含所述537个核苷酸的插入体。所述537个核苷酸的插入体是指相应于图19所示序列的第20472-21009位核苷酸的序列。
其它合适的候选物是M和/或N蛋白或其功能部分、衍生物和/或类似物。典型地,疫苗包括一种合适的佐剂。除了在疫苗中使用之外,所述病毒和/或蛋白质样分子也可以用于产生和/或加强对象体内的HCoV-NL63病毒特异性免疫应答。所述免疫应答可以是细胞或体液应答。因此本发明进一步提供了一种分离的T细胞,其包含特异于HCoV-NL63病毒或者特异于由原型HCoV-NL63病毒编码的蛋白质样分子的T细胞受体。本发明进一步提供了一种分离的B细胞,其产生特异于HCoV-NL63病毒或者特异于HCoV-NL63病毒编码的蛋白质样分子的抗体。可以克隆所述抗体或者T细胞受体,由此可以提供具有包含所述克隆的受体或抗体的表达盒的细胞系。因此,本发明进一步提供了产生这种受体或抗体的细胞。这种细胞优选是适于大规模生产所述蛋白质的细胞,如CHO细胞。
本发明还可以提供对HCoV-NL63病毒具有被动免疫性的对象。为此,可以为所述对象提供本发明的HCoV-NL63特异性结合分子。这种免疫性可用于为所述对象提供针对HCoV-NL63病毒(进一步)感染的屏障,因此本发明进一步提供了包含本发明的HCoV-NL63病毒特异性结合分子的疫苗。在一个优选的实施方案中,被动免疫性是由能特异性结合本发明的HCoV-NL63病毒的人或人化抗体提供的。所述屏障不需要是完美的。结合分子的存在至少降低了病毒传播至对象的其它靶细胞中。被动免疫性可以作为预防剂给予对象,当所述对象暴露于HCoV-NL63病毒时至少降低该病毒在对象体内的传播。或者,所述被动免疫性可以提供给已经感染该病毒的对象。在后者情况中,本发明的一或多种HCoV-NL63病毒特异性结合分子用作药物以至少降低所述病毒在对象体内的传播,并从而至少部分对抗所述病毒感染。本发明因此进一步提供了包含本发明的HCoV-NL63病毒特异性结合分子的药物。本发明进一步提供了本发明的病毒或其功能部分、衍生物或类似物,或者本发明的蛋白质样分子或者本发明的HCoV-NL63病毒特异性结合分子在制备针对冠状病毒属相关疾病的疫苗中的应用。本发明进一步提供了治疗患有HCoV-NL63相关疾病或者处于患有HCoV-NL63相关疾病危险中的个体的方法,所述方法包括给予所述个体本发明的疫苗或药物。在另一个实施方案中,本发明提供了确定个体是否患有HCoV-NL63相关疾病的方法,所述方法包括从所述个体获得样品并检测所述样品中HCoV-NL63病毒或其功能部分、衍生物或类似物的存在情况。
在另一个实施方案中,本发明提供了包含HCoV-NL63病毒或其功能部分、衍生物和/或类似物的一种分离的细胞或重组体或细胞系。优选所述细胞是灵长类动物细胞,优选是猴细胞。在一个优选的实施方案中,所述细胞是复制本发明的HCoV-NL63病毒的细胞。在一特殊的实施方案中,所述细胞是肾细胞。所述细胞可用于产生本发明的HCoV-NL63病毒,或者用于HCoV-NL63减毒使得其致病原性降低。病毒减毒是病毒在所述优选的细胞系上持续培养自发产生的。减毒的HCoV-NL63病毒可用作疫苗。
HCoV-NL63病毒编码蛋白内切酶。原型HCoV-NL63病毒中蛋白酶的一条序列如图(21)所示。所述蛋白酶对于HCoV-NL63编码的多蛋白的加工是重要的。所述蛋白酶的作用至少部分被本发明进一步描述的病毒蛋白酶抑制剂所抑制。因此本发明进一步提供了至少部分抑制HCoV-NL63病毒复制的化合物。优选的化合物是肌苷一磷酸脱氢酶抑制剂(55)(例如利巴韦林(Ribavirin)(54)和霉酚酸)、乳清酸核苷酸脱羧酶抑制剂(例如6-氮尿苷和吡唑呋喃菌素)、3CL-蛋白酶抑制剂(56)(例如VNSTLQ-AG7088酯,见下述)、帽-甲基化酶抑制剂(58)(羧酸腺苷类似物例如Neoplanocin A和3-deazaneoplancin A)、氧化亚氮合酶诱导化合物(例如甘草皂苷(glycyrrhizin))和干扰素(57)的抑制剂。其中特别优选蛋白酶抑制剂。序列VNSTLQ是用于3Clpro抑制剂VNSTLQ-AG7088中的SARS-3CLpro N末端蛋白酶解加工位点(56)。在这个化合物中,六肽VNSTLQ在C末端与抑制SARS 3CLpro活性的vinylogous乙酯(AG7088,见下述的结构式1)连接。
结构式1六肽VNSTLQ相应于HCoV-NL63中的YNSTLQ。因此,YNSTLQ-AG7088抑制HCoV-NL63 3CLpro直向同源物。因此在一个优选的实施方案中,所述蛋白酶抑制剂包含氨基酸序列VNSTLQ,优选YNSTLQ。本发明也提供了在性质上而非在数量上具有相同活性的这种蛋白酶抑制剂的类似物。这种类似物包括包含具有优选序列的肽的化合物,其中所述肽包含一个修饰。其它类似物包括模拟优选的氨基酸序列的具有蛋白质模拟活性的化合物。
S-腺苷甲硫氨酸依赖性核糖2′-正甲基转移酶在病毒RNA的5’末端帽结构(GpppNm)的甲基化中起作用。抑制这种甲基基团转移反应的抗病毒化合物(羧酸腺苷类似物例如Neoplanocin A和3-deazaneoplancin A)干扰病毒蛋白质的表达。
本发明进一步提供了HCoV-NL63核酸编码的蛋白质样分子,其中所述蛋白质样分子是3CL蛋白酶或其功能等价物。功能等价物包括蛋白酶解活性部分和/或具有一或多个保守氨基酸取代的衍生物。本领域有许多已知方法确定化合物是否具有抗冠状病毒活性,优选抗冠状病毒的蛋白酶解活性。本发明因此进一步提供了确定化合物是否包含抗冠状病毒复制活性的方法,特征在于所述方法利用HCoV-NL63病毒或者参与HCoV-NL63或其功能部分、衍生物和/或类似物复制的HCoV-NL63蛋白。优选地,本发明提供了确定化合物是否能至少部分抑制病毒蛋白酶的方法,特征在于所述蛋白酶是HCoV-NL63或其功能部分、衍生物和/或类似物的3CL蛋白酶。可以测试其3CL抑制性质的优选化合物是位于3Clpro切割位点N末端的六肽。至少部分有效抑制3Cl蛋白酶解活性的化合物可用于制备治疗患有HCoV-NL63病毒感染或者处于患有HCoV-NL63病毒感染危险中的个体的药物。
一或多种优选的抗冠状病毒复制化合物可以用作治疗患有HCoV-NL63病毒感染或者处于患有HCoV-NL63病毒感染危险中的对象的药物。本发明因此进一步提供了一种治疗患有冠状病毒感染或者处于患有冠状病毒感染危险中的个体的药物,其中所述冠状病毒包含HCoV-NL63原型病毒或其功能部分、衍生物和/或类似物的核酸序列。
在本发明中,使用HCoV-NL63病毒核酸作为主链产生了一些不同的重组病毒。这种复制感受态或复制缺陷的重组病毒可例如用作基因输送载体。另一方面,部分HCoV-NL63病毒可用于基于其它方式将遗传物质输送至细胞的基因输送载体中。因此,本发明进一步提供了包含至少部分HCoV-NL63病毒核酸的基因输送载体。优选原型病毒。优选包含编码HCoV-NL63病毒或其功能部分、衍生物和/或类似物的蛋白质的核酸。本发明还揭示了嵌合的冠状病毒,其包含衍生自至少两种冠状病毒的核酸,其中至少一部分衍生自HCoV-NL63病毒。所述HCoV-NL63病毒衍生的部分优选包含蛋白质编码结构域的至少50个核苷酸。更优选地,所述HCoV-NL63衍生的部分包含图19所示序列或其功能衍生物的至少500个核苷酸,更优选至少1000个核苷酸。在一个优选的实施方案中,本发明提供了一种嵌合的冠状病毒,其包含图19所示序列的至少1000个核苷酸及另一种冠状病毒的至少1000个核苷酸,其中所述后者1000个核苷酸包含与图19所示序列具有5%以上序列差异的序列。表3示出了许多HCoV-NL63病毒片段的序列。图5中示出了所述片段在大基因组RNA中的位置。本发明因此一方面提供了包含表3所示核酸序列的分离的或重组的病毒或所述病毒的功能部分、衍生物或类似物。借助于鉴别原型片段,可以对基因组进行进一步测序。所述测序的一种方式是通过基因组上的引物步测法(primer walking)进行。引物针对已知其序列的区域,并且这个引物用于对仍未知的侧翼区域进行测序。随后的引物可以针对新鉴别的序列产生,并且可以对进一步的区域进行测序。可以重复这个程序直至阐明病毒的全部序列。关于病毒的来源,可以求助于Dr.C.van der Hoek,Department of Human Retrovirology,Academic MedicalCenter,University of Amsterdam,Amsterdam,The Netherlands。
对确定的核酸序列进行序列对比揭示了在被发现的序列中使用的读框,因此本发明进一步提供了包含表3所示氨基酸序列的分离的或重组的病毒或者所述病毒的功能部分、衍生物或类似物。根据使用的密码子,可以从很多核酸中产生特定的氨基酸序列。因此本发明进一步提供了编码表3所示氨基酸序列的核酸。本发明进一步提供了包含编码表3所示氨基酸序列的核酸序列的分离的或重组的病毒或者所述病毒的功能部分、衍生物或类似物。
与许多其它类型的病毒一样,基于病毒在对象群体中的传播和/或在回体(ex vivo)培养期间,冠状病毒获得多个自发和选择的突变。另外,在自然界中无已知对应物的人工突变可以导入原型病毒或其衍生物的序列中,而不改变病毒的性质和/或病毒导致疾病的性质。在鉴定了新揭示的亚型的原型的基础上,可以确定这个病毒类群属于相同的亚型。因此本发明进一步提供了一种分离的或重组的病毒,其包含与表3所示序列具有大约80%同源性的核酸序列,或者与表3所示氨基酸序列具有80%同源性。(优选至少90%同源性,更优选至少95%同源性,更优选至少99%同源性。)将各个原型片段与病毒序列的数据库对比,具有特别高度同源性的检索结果(hit)在表5和6中记载。注意所对比的片段与任何目前已知的冠状病毒均不呈现广泛同源性。本发明因此提供了一种分离的和/或重组的病毒,其所包含的氨基酸序列与表3所示的163-2氨基酸序列具有89%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-4氨基酸序列具有60%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-9氨基酸序列具有85%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-10氨基酸序列具有94%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-11氨基酸序列具有50%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-14氨基酸序列具有87%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-15氨基酸序列具有83%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的氨基酸序列与表3所示163-18氨基酸序列具有78%以上的同源性。优选所述同源性为至少90%,更优选为至少95%,更优选为至少99%。本发明进一步提供了一种分离的或重组的病毒,其所包含的核酸序列与表3所示的核酸序列具有至少50%的同源性。优选所述同源性为至少80%,更优选为至少90%,更优选为至少95%,更优选为至少99%。
本发明还提供了分离的和/或重组的HCoV-NL63病毒的功能部分、衍生物和/或类似物。病毒的一部分可以是含有膜的部分、含有核壳的部分、含有蛋白质样片段和/或核酸的部分。所述部分的功能性(functionality)根据对于所述部分所选择的应用而变化,例如所述病毒的一部分可用于免疫目的。在这个实施方案中,所述功能性包含在性质上而非必须在量上与完整病毒相似的免疫原性性质。所述病毒的另一个应用是例如在体外(或体内)培养物中所述病毒的感染性,在这个实施方案中,所述功能性包含在性质上而非必须在量上相似的感染性。可以阐述许多其它功能性,因为病毒有许多不同的应用,非限制性例子包括嵌合病毒的产生(即具有一或多个其它(冠状)病毒),用于免疫接种和/或基因治疗目的的病毒载体的产生。这些病毒和/或载体还含有HCoV-NL63的功能部分,因此也涵盖在本发明的范围内。本发明的病毒的功能衍生物是指已经被改变的病毒,并因此所述化合物的性质在性质上而非必须在量上基本相同。衍生物可以许多方式提供,例如通过核苷酸取代(优选基于变偶(wobble))、通过(保守)氨基酸取代、后续修饰,等等。
病毒的相似化合物也可以使用本领域的方法产生。例如,可以产生嵌合病毒,或者具有嵌合蛋白的HCoV-NL63病毒。例如,HCoV-NL63可以通过产生包含至少部分HCoV-NL63表面蛋白和非HCoV-NL63免疫原性部分的细胞表面相关的融合蛋白而具有更强的免疫原性。包含这种嵌合蛋白的HCoV-NL63病毒可用于在宿主中诱导增强的免疫应答,例如用于免疫接种目的。
如本文所用,术语“本发明的病毒”是指也包含所述病毒的功能部分、衍生物和/或类似物。
这三组冠状病毒与人类和家畜的许多疾病相关,包括胃肠道疾病和上下呼吸道疾病。人类冠状病毒HCoV-229E和HCoV-OC43与轻度疾病(普通感冒)相关,但在儿童中观测到更严重的疾病,尽管发病率非常低(16)。一些冠状病毒在动物中导致严重疾病,SARS-CoV是在人类导致严重疾病的第一个冠状病毒的实例。然而,应强调有很多人类呼吸系统疾病仍未确诊。例如,最近在加拿大对患有细支气管炎的住院儿童进行的呼吸系统病毒检测,在大约20%的患者中未发现病毒病原体(17)。而我们最近在患有细支气管炎的儿童中鉴别了新冠状病毒的事实表明HCoV-NL63是一种致病原性呼吸系统病毒。
当认为HCoV-NL63是能在被感染的儿童中导致细支气管炎的致病原性呼吸系统病毒时,感兴趣的问题是为什么HCoV-NL63先前通过细胞培养未被识别。我们发现该病毒可以在通常用于常规诊断设置中的猴肾细胞(tMK或LLC-MK2细胞)中培养,因此可以推测HCoV-NL63与SARS-CoV相似,是新近从动物传入人群的病毒或者是新近扩大了其宿主细胞范围的人类病毒。无疑地,研究HCoV-NL63感染的流行是重要的,并且使用HCoV-NL63诊断RT-PCR对来自患有呼吸道疾病的患者的样品进行筛选将会对这个问题提供帮助。
所述新的人类冠状病毒从tMK细胞和LLC-MK2细胞中收获具有重要意义,因为冠状病毒典型地对细胞培养比较苛求,其具有较小的宿主范围。然而,SARS-CoV和HCoV-NL63似乎在猴肾细胞中均有效复制(对于SARS-CoV为Vero-E6细胞和NCI-H292细胞)。最近描述的SARS-CoV的基因组具有一些特有的特征,包括可能具有生物学意义的一些独特的可读框(15,18)。我们因此将要分析HCoV-NL63的完整基因组序列以筛选与SARS-CoV的相似之处与不同之处,这样可以确定这些病毒的扩展的宿主细胞范围及增强的致病原性。
HCoV-NL63与感染的对象中的独特表型相关。该表型可涵盖细支气管炎、鼻炎、结膜炎和发热,并且可进一步涵盖其它呼吸系统问题和腹泻。在一个实施方案中,本发明因此进一步提供了本发明的分离的和/或重组的病毒(具有一或多种上述同源性),其中所述病毒或其功能部分、衍生物和/或类似物进一步包含在对象中诱导HCoV-NL63相关疾病或症状的能力。在另一个实施方案中,本发明提供了本发明的分离的和/或重组的病毒,其进一步包含在三级猴肾细胞(tertiarymonkey kidney cell,tMK,Cynomolgus monkey 37)中和/或基于在猴细胞系LLC-MK2(ECCAC85062804,ATCC CCL-7)上传代导致CPE的性质。在一个优选的实施方案中,所述病毒在Vero细胞(ATCCCRL-1586,34)中不产生CPE(34)。
本发明进一步提供了如表3所示核酸及表3所示氨基酸序列,或者这种核酸和/或氨基酸序列的功能部分和/或等价物。所述核酸的功能等价物包含与所述核酸(或其部分)在性质上而非必须在量上相同的杂交性质。本发明的氨基酸序列的功能等价物包含与所述氨基酸序列(或其部分)在性质上而非必须在量上相同的免疫原性。本发明核酸的一部分包含至少15个、优选至少20个、更优选至少30个核苷酸。氨基酸序列的一部分包含彼此以肽键连接的至少5个、更优选至少8个、更优选至少12个、更优选至少16个氨基酸。在一个优选的实施方案中,所述核苷酸和/或氨基酸至少是半连续的,更优选所述核苷酸和/或氨基酸是连续的。本发明的核酸和/或氨基酸序列或其部分的等价物与本发明的核酸和/或氨基酸序列或其一部分具有至少80%同源性,优选至少90%同源性,更优选至少95%同源性,更优选至少99%同源性。
本发明进一步提供了一种引物和/或探针,其能与本发明的病毒的核酸或其功能部分、衍生物和/或类似物特异性杂交,优选能与表3所示的核酸序列特异性杂交的引物和/或探针。更优选地,所述引物和/或探针能在严格条件下与所述核酸杂交。在一个特别优选的实施方案中,提供了包含表7所示序列的引物和/或探针。
本领域已知可以产生针对已鉴别的核酸、脂质和/或氨基酸序列的特异性结合成员的许多方式。这种特异性结合成员可以具有任何性质,但典型具有核酸和/或蛋白质样性质。本发明因此进一步提供了能与本发明的病毒、核酸和/或氨基酸或其功能部分、衍生物或类似物特异性结合的分离的分子。所述分离的分子也称作特异性结合成员。优选所述特异性结合成员能与表3所示核酸序列的至少一部分和/或与表3所示氨基酸序列的至少一部分特异性结合。在一个优选的实施方案中,所述结合成员是蛋白质样分子。优选是抗体或其功能部分、衍生物和/或类似物。与不相关的对照物相比,特异性结合成员优选包含与HCoV-NL63病毒的显著更好的结合性质。然而,例如对于抗体而言,可能在HCoV-NL63中被特异性识别的表位在其它分子中也以有限数目存在。因此,尽管结合成员的结合可以是特异性的,但其也可以识别HCoV-NL63中存在的其它分子。这种交叉反应性应与特异性结合区别,其是抗体的一般性质。
交叉反应性通常不阻碍针对特定目的进行的合适的特异性结合成员的选择。例如,也是肝细胞中的蛋白质的特异性结合成员可以在许多应用中使用,甚至在存在肝细胞的情况中使用,在这种情况中额外的信息如在细胞中的位置通常可用于进行区别。
本发明的抗体的一个来源是筛选本发明病毒的感染对象的血液。可以对得自所述对象的B细胞进行进一步鉴定。可以培养合适的B细胞并收集抗体。或者,抗体可以从这种B细胞中测序并人工产生。本发明的抗体的另一个来源可以通过使测试动物免疫或者使用人工文库筛选纯化的病毒级分而产生。抗体的功能部分与所述抗体在性质上而非必须在量上具有基本相同的性质。所述功能部分优选能特异性结合HCoV-NL63的抗原。然而,所述功能部分与所述完整抗体相比可以不同程度地结合这种抗原。抗体的功能部分或衍生物例如包含FAB片段或单链抗体。抗体的类似物例如包含嵌合抗体。如本文所用,术语“抗体”也是指包含所述抗体的功能部分、衍生物和/或类似物。
一旦获得本发明的抗体,则可以改良希望的性质如其结合能力。这可以例如通过Ala-scan和/或replacement net mapping方法进行。使用这些方法产生许多不同的蛋白质样分子,不同之处在于这些分子基于原始的氨基酸序列但每个分子含有至少一个氨基酸残基取代。所述氨基酸残基可以由丙氨酸取代(Ala-scan)或者任何其它氨基酸残基取代(replacement net mapping)。随后对每个变体筛选所述希望的性质。产生的数据用于设计改良的蛋白质样分子。
有许多可以产生特异性结合成员的不同方式。在一个优选的实施方案中,本发明提供了一种产生特异性蛋白质样结合成员的方法,包括产生能结合本发明的病毒或其功能部分、衍生物或类似物的蛋白质样分子,以及选择特异于所述病毒的蛋白质样分子。如果需要,所述方法可用于产生能结合所述病毒或其功能部分、衍生物和/或类似物的蛋白质样分子集合,并从所述集合中选择能够特异性结合所述病毒或其功能部分、衍生物和/或类似物的一或多个结合成员。
任何特异性结合成员均是本发明的HCoV-NL6病毒特有的性质。因此,与这种结合成员特异性反应的病毒是HCoV-NL63病毒,并因此由本发明提供。因此本发明提供了与本发明的特异性结合成员免疫反应的分离的和/或重组的病毒,优选蛋白质样结合成员。本发明进一步提供了一种组合物,其包含分离的HCoV-NL63病毒,和/或基本相应于HCoV-NL63的病毒。术语“基本相应于HCoV-NL63”是指与上述HCoV-NL63毒株相同的病毒或者包含与所述HCoV-NL63毒株相比具有一或多个突变的HCoV-NL63病毒。这些突变可包括天然突变或人工突变。所述突变当然应该可以使用HCoV-NL63的特异性结合成员检测(非必须是所有特异性结合成员)。所述突变应该可以使得可以使用通用的检测方法如抗体相互作用、扩增和/或杂交方法检测变体。
考虑到所述特异性结合成员对于例如诊断目的是重要的分子,因此本发明进一步提供了本发明的病毒或其功能部分、衍生物和/或类似物在检测能特异性结合样品中所述病毒中的应用。本发明进一步提供了本发明的病毒或其功能部分、衍生物或类似物的核酸和/或氨基酸序列在检测能特异性结合样品中所述病毒或其功能部分、衍生物和/或类似物的分子中的应用。优选所述核酸和/或氨基酸序列包含表3所示序列或其功能部分、衍生物或类似物。优选所述部分的长度为至少30个核苷酸和/或氨基酸,其中所述部分优选包含95%以上序列相同性,优选99%以上序列相同性。在一个优选方面,所述特异性结合成员包含针对所述病毒的特异性配体和/或抗体。
本发明进一步提供了本发明的引物和/或探针、本发明的特异性结合成员、和/或本发明的病毒或其功能部分、衍生物或类似物的核酸在检测和/或鉴别样品中HCoV-NL63冠状病毒或其一部分中的应用。优选所述核酸包含表3所示序列。
HCoV-NL63病毒可用于在对象体内产生免疫应答。这可用于例如免疫接种策略。因此本发明进一步提供了HCoV-NL63病毒或其功能部分、衍生物或类似物用作疫苗或药物的应用。所述药物典型是当对象已经感染病毒时使用,免疫原用于增强针对病毒的免疫应答。本发明进一步提供了用作疫苗或药物的本发明的特异性结合成员。这种应用在当所述特异性结合成员包含蛋白质样分子,优选抗体或其功能部分、衍生物和/或类似物时特别有利。这种抗体可提供被动免疫,但也可以具有主动成分如附着于其的蛋白酶。在用所述特异性结合成员治疗HCoV-NL63病毒感染的对象时,同样可以作为药物应用。
疫苗可以多种方式产生。一种方式是在例如所述猴细胞系上培养HCoV-NL63病毒及使用从培养物中收获的失活的病毒。或者,减毒的病毒可以作为失活的病毒或者作为活疫苗应用。对产生冠状病毒疫苗的方法可以加以调整以产生本发明HCoV-NL63的疫苗。本发明因此进一步提供了HCoV-NL63病毒或其功能部分、衍生物或类似物在制备抗冠状病毒属相关疾病的疫苗中的应用。本发明进一步提供了本发明的特异性结合成员在制备抗冠状病毒属相关疾病的疫苗或药物中的应用。本发明进一步提供了HCoV-NL63病毒或其功能部分、衍生物或类似物、本发明的特异性结合成员、本发明的核酸或者本发明的引物和/或探针在诊断冠状病毒属相关疾病中的应用。优选所述冠状病毒属相关疾病包含HCoV-NL63冠状病毒相关疾病。
本发明进一步提供了一种包含HCoV-NL63病毒或其功能部分、衍生物或类似物和/或本发明的特异性结合成员的疫苗。本发明还提供了包含HCoV-NL63病毒或其功能部分、衍生物或类似物和/或本发明的特异性结合成员的药物。优选所述疫苗或药物用于至少部分预防和/或治疗HCoV-NL63相关疾病。
本发明的一个重要应用是产生一种诊断工具以确定对象是否遭受HCoV-NL63病毒感染或者已经暴露于HCoV-NL63病毒感染。可以预见许多不同的诊断应用。这些应用典型地包括可以确定对象中存在或曾经存在的病毒类型的鉴别成分。针对HCoV-NL63的一种诊断工具是利用该病毒在各种细胞系中的特殊增殖特性。该病毒在所述优选的猴细胞系中复制而在Vero细胞中不复制。这种性质可用于区别HCoV-NL63与其它已知冠状病毒。因此一方面,本发明提供了一种诊断试剂盒,其包含至少一种优选的猴细胞系,优选三级猴肾细胞(tMK;Cynomolgus monkey)或者猴细胞系LLC-MK2。
许多现代诊断试剂盒包含特异性结合成员(以检测病毒或病毒感染的细胞)和/或HCoV-NL63病毒或其功能部分、衍生物和/或类似物和/或本发明的氨基酸或其功能部分、衍生物和/或类似物(以检测诊断的对象血液成分中的抗体)。许多其它现有的诊断试剂盒依赖于样品中HCoV-NL63病毒特异性核酸的鉴别。有许多可以执行这种分析的方式,一种方法是检测样品中HCoV-NL63病毒或其功能部分、衍生物或类似物,包括将所述病毒或其功能部分、衍生物或类似物的核酸用本发明的引物和/或探针杂交和/或扩增,及检测杂交的和/或扩增的产物。本发明因此还提供了一种诊断试剂盒,其包含HCoV-NL63病毒或其功能部分、衍生物或类似物,本发明的特异性结合成员和/或本发明的引物/探针。
本发明进一步提供了一种治疗患有HCoV-NL63相关疾病或者处于患有HCoV-NL63相关疾病危险中的个体的方法,包括给予所述个体本发明的疫苗或药物。本发明还提供了一种确定个体是否患有HCoV-NL63相关疾病的方法,包括从所述个体获得样品,使用本发明的方法和/或诊断试剂盒检测样品中HCoV-NL63病毒或其功能部分、衍生物或类似物。
本发明进一步提供了编码本发明的病毒或其功能部分、衍生物和/或类似物的分离的或重组的核酸,及至少包含表3所示序列的功能部分的本发明的核酸。本发明进一步提供了由本发明的核酸编码的氨基酸序列,及至少包含表3所示序列的功能部分的本发明的氨基酸序列。本发明进一步提供了可通过本发明的方法获得的能特异性结合HCoV-NL63的蛋白质样分子,及这种蛋白质样分子在疫苗或检测HCoV-NL63的诊断方法中的应用。
实施例实施例1用于发现病毒的cDNA-AFLP我们修改了cDNA-AFLP技术,由此其可以从血液—血浆/血清样品中或者从CPE阳性培养上清中扩增病毒序列(图1)。在经修改的方法中,在扩增之前进行的mRNA分离步骤由纯化病毒核酸的处理步骤代替。对于纯化而言重要的是离心步骤以除去残余细胞和线粒体。另外,单一DNA酶处理足以从被破碎的细胞中除去干扰性染色体DNA和线粒体DNA,最后通过选择频繁切割的限制酶,所述方法被精细调节由此大多数病毒得以扩增。使用这种称作“发现病毒的cDNA-AFLP(Virus Discovery cDNA-AFLP,VIDISCA)”技术,我们能从乙型肝炎病毒感染的人和急性Parvo B19感染的人的EDTA血浆中扩增出病毒核酸(结果未示出)。这个技术也可以检测阳性培养物上清中的HIV-1,表明其既可以鉴别RNA病毒又可以鉴别DNA病毒的能力(结果未示出)。
为了消除残余细胞,将110μl病毒培养物上清在Eppendorf微型离心机(13500rpm)中以最大速度离心10分钟。将100μl上清移至一个干净试管中,并用DNA酶在37℃处理45分钟,使用15μl DNA酶缓冲液和20单位DNA酶I(Ambion)进行所述处理。所述DNA酶处理是为了从被破碎的细胞中除去染色体DNA。之后,加入900μl的L6裂解缓冲液和40μl硅石悬浮液,并如Boom4所述提取核酸。将病毒核酸在40μl水中洗脱。使用20μl洗脱液进行逆转录,所述逆转录使用2.5μg随机六聚体(Amersham Bioscience)、200U MMLV-RT(InVitrogen)于含有10mM Tris-HCl pH 8.3、50mM KCl、0.1%TritonX-100、4.8mM MgCl2和0.4mM每种dNTP的缓冲液中进行。将样品在37℃温育90分钟。随后使用26U Sequenase II(AmershamBioscience)、7.5 U RNAse H(Amersham Bioscience)于0.25mM每种dNTP、17.5mM MgCl2和35mM Tris-HCl pH 7.5中进行进行第二链DNA的合成。在37℃温育90分钟后,进行苯酚/氯仿提取,随后进行乙醇沉淀。将沉淀物溶解于30μl水中。基本如Bachem1所述略加修改进行cDNA-AFLP。将dsDNA用HinP I和MseI限制酶(NewEngland Biolabs)根据厂商指导进行消化。在消化后,一起加入MseI接头(adapter)和HinPI接头(如下所述)及5U连接酶(InVitrogen)和连接酶缓冲液,随后在37℃另外温育2小时。所述MseI接头和HinPI接头是预先通过混合MSE和HinPI接头的上链寡聚物(top strandoligo)(表1)与MSE接头和HinPI接头的下链寡聚物(bottom strandoligo)、在65℃温育、随后在存在连接酶缓冲液1∶40稀释液的情况下冷却至室温而制备的。
第一次PCR使用10μl连接混合物作为投料(input),使用2.5UAmpliTaq聚合酶(Perkin-Elmer)、100ng HinPI标准引物和100ng MseI标准引物进行。根据如下模式进行PCR95℃5分钟;20次循环(95℃ 1分钟,55℃ 1分钟,72℃ 2分钟);72℃10分钟。在含有100ngHinPI-N引物和100ng MseI-N(用一个核苷酸扩展的标准引物的序列)以及2 U AmpliTaq聚合酶的第二个“选择性”扩增步骤中,将5μl第一次PCR产物用作投料。所述选择性PCR根据“递降PCR(touchdown PCR)”模式进行扩增10次循环(94℃ 60秒,65℃ 30秒,72℃ 1分钟);之后退火温度从65℃开始每次循环降低1℃;随后进行23次循环(94℃ 30秒,56℃ 30秒,72℃ 1分钟)。最后将样品在72℃温育10分钟。将PCR产物在4% Metaphor凝胶(Cambrex,Rockland,USA)上评估。如果凝胶上的条带非常微弱,则使用60μlPCR产物将所述PCR产物通过真空干燥而浓缩。将感兴趣的PCR片段从凝胶中切离并将DNA使用Qiagen凝胶纯化试剂盒根据厂商指导从凝胶中洗脱。使用pCR2.1-TOPO质粒(InVitrogen)和化学感受态One Shot大肠杆菌(InVitrogen)克隆PCR产物。对该菌落进行PCR并使用这个PCR产物通过Big Dye terminator chemistry(AppliedBiosystems)对插入物测序。不包括逆转录步骤,仅进行HinPI消化和接头连接步骤,第一次PCR进行35次循环代替原来的20次循环,将第一次PCR的片段在琼脂糖凝胶电泳上观测。
DNA测序和分析含有质粒的冠状病毒PCR产物用BigDyeTM终止子循环测序试剂盒(BigDyeTMTerminator Cycle Sequencing Kit,Applied Biosystems,Foster City,Calif.)测序,使用-21 M13RP和T7引物进行。测序反应混合物的电泳使用Applied Biosystems 377自动测序仪根据厂商指导进行。使用Sequence Navigator(version 1.01)和Auto Assembler(version 2.1)软件包(ABI,California,USA)分析所有测序数据。将序列与Genbank数据库中的所有数据进行对比,使用NCBI网页http//www.ncbi.nlm.nih.gov/blast的BLAST工具进行。为了进行系统发生分析,将序列使用ClustalX软件包(34)利用如下设置进行排列对比缺口发生罚分(Gap opening penalties)10.00;缺口延伸罚分(Gapextension penalty)0.20,延迟差异序列转换(Delay divergent sequencesswitch)30%,以及转换权重(transition weight)0.59。系统发生分析使用MEGA程序的相邻连接方法(neighbor-joining method)进行(9)。核苷酸距离矩阵(nucleotide distance matrix)通过Kimura′s 2-参量估计(Kimura′s 2-prameter estimation)或者通过p-距离估计(p-distanceestimation)而产生(5)。采用拔靴再抽样法(Bootstrap resampling)(500个重复)将近似置信限(approximate confidence limits)赋予各个分支。
确定完整HCoV-NL63基因组的核苷酸序列使用位于HCoV-NL63基因组已经测定序列的结构域中的特异性引物组合,及获得专利的PALM-方法(WO 0151661),我们正在对这种新的冠状病毒进行克隆和确定其全长基因组序列。使用位于HCoV-NL63基因组所分析部分中的5’寡核苷酸与3’标记的随机引物(JZH2R)的组合,使用与前述相似的嵌套式RT-PCR方案扩增额外的片段。
SZ 163的分离在2003年1月,一个7个月大的婴儿在医院中出现鼻炎、结膜炎和发热。胸片示出细支气管炎的典型特征,发病4天后收集鼻咽部抽吸样品(样品nrNL63),对该样品进行的腺病毒、呼吸道合胞病毒(RSV)、流感病毒A和B、副流感病毒1、2和3、鼻病毒、HCoV-229E和HCoV-OC43进行的所有测试均为阴性。随后将该临床样品接种于各种细胞上,包括人肺成纤维(HFL)细胞、三级猴肾细胞(tMK;Cynomolgus)和R-HeLa细胞。CPE只在tMK细胞上检测到,在接种后8天首次注意到。CPE在受影响的细胞中以折射形式扩散,随后在7天后细胞脱离。基于在LLC-MK2细胞上传代观测到更显著的CPE。除了整体上的细胞圆形化(cell rounding)之外,还观测到中等程度的细胞增大。另外对人肺部内皮细胞、HFL、横纹肌肉瘤细胞和Vero细胞进行亚培养仍是CPE阴性的。在培养物中检测流感病毒A和B、RSV、腺病毒或1、2或3型副流感病毒的免疫荧光分析仍是阴性的。将感染的LLC-MK2细胞的培养物上清随后通过VIDISCA进行分析。作为对照,我们使用未感染的LLC-MK2细胞的上清。在第二个PCR扩增步骤后,测试样品中存在一些DNA片段,但对照组中没有。将这些片段克隆并测序。对GenBank进行Blast检索表明16个片段中的8个片段与冠状病毒科具有序列相似性,与人类冠状病毒229E具有最高同源性(表4和5)。
对复制酶1B区域的具有270个核苷酸的片段进行系统发生分析提示我们鉴别了冠状病毒1组的一个独特的新成员。使用VIDISCA技术,对8个HCOV-163特异性片段(称为163-2、163-4、163-9、163-10、163-11、163-14、163-15、163-18)进行了分离、克隆、测序及与GenBank中相关序列进行了排列对比。所用序列的Genbank登记号为MHV(小鼠肝炎病毒)AF201929;HCoV-229EAF304460;PEDV(猪流行性腹泻病毒)AF353511;TGEV(传染性胃肠炎病毒)AJ271965;SARS-CoVAY278554;IBV(禽传染性支气管炎病毒)NC_001451;BCoV(牛冠状病毒)NC_003045;FCoV(猫冠状病毒)Y13921和X80799;CCoV(狗冠状病毒)AB105373和A22732;PRCoV(猪呼吸系统冠状病毒)M94097;FIPV(猫传染性腹膜炎病毒)D32044。与HCoV-229E(AF304460)相比HCoV-NL63片段的位置复制酶1AB基因15155-15361,16049-16182,16190-16315,18444-18550,刺突蛋白基因22124-22266;核壳基因25667-25882和25887-259573′UTR27052-27123。分支长度表明每个序列的取代数目。从最密切相关的物种中计算序列相同性分值(表5和6)。
另外将推导的氨基酸序列与相关的冠状(样)病毒的可读框中相应的结构域排列对比(表6)。
成人感冒中10-30%是人类冠状病毒所致(7),但在患有呼吸系统疾病的儿童中发现冠状病毒并不罕见。然而,令人惊讶的是HCoV-NL63病毒是从LLC-MK细胞中获得的。已知人类冠状病毒229E和OC-43在猴肾细胞上不能复制。令人感兴趣地,新鉴别的与SARS相关的人类冠状病毒在猴肾细胞中也能复制(30)。
HCoV-NL63在细胞培养物中的增殖在症状出现后4天收集鼻咽部抽吸样品。使用Virus Respiratory试剂盒(BartelsTrinity Biotech plc,Wicklow Ireland)测试样品中腺病毒、RSV、流感病毒A、流感病毒B和1、2和3型副流感病毒的存在情况。另外,对鼻病毒、偏肺病毒(meta-pneumovirus)和HCoV-OC43及HCoV-229E进行PCR诊断(2,10)。随后将原始的鼻咽部抽吸样品接种在各种细胞培养物上,包括HFL细胞、tMK细胞和R-HeLa细胞。将试管保持在34℃滚动鼓形圆桶中,每3-4天观测一次。每3-4天补充维持培养基。补充两种不同类型的培养基对于tMK细胞使用没有胎牛血清的Optimem I(Gibco),对于其余的细胞类型使用具有3%胎牛血清的MEM Hanks′/Earle′s培养基(Gibco)。使用针对流感病毒A和B、RSV和腺病毒的荧光标记的小鼠抗体集合(Imagen,DAKO)对病毒培养物进行直接染色。对1、2或3型副流感病毒使用小鼠抗体(Chemicon,Brunschwig,Amsterdam Netherlands),随后使用标记的兔抗小鼠抗体(Imagen,DAKO)进行间接染色。
检测鼻咽部擦拭物中HCoV-NL63的方法对于诊断性RT-PCR,通过Boom方法(4)从50μl病毒上清或50μl悬浮的鼻咽部擦拭物中提取核酸。如上述进行逆转录,不同之处是使用10ng逆转录引物repSZ-RT(表7)。将全部的RT混合物加入含有100ng引物repSZ-1和100ng引物repSZ-3的第一次PCR混合物中。根据如下模式进行PCR反应95℃ 5分钟;20次循环(95℃ 1分钟,55℃ 1分钟,72℃ 2分钟);72℃ 10分钟。使用5μl第一次PCR及100ng引物repSZ-2和100ng引物repSZ-4开始进行嵌套PCR。以与第一次PCR相同的模式进行25次PCR循环。将10μl第一次PCR产物和10μl嵌套PCR产物通过琼脂糖凝胶电泳分析(图2)。基本如上所述进行片段的克隆和测序。
产生多克隆抗体的方法可以选择HCoV-NL63表面蛋白(例如S糖蛋白或HE-糖蛋白)内合适的结构域,并使用合适的寡核苷酸和RT-PCR对其进行扩增。相应纯化的病毒抗原可以通过在合适的宿主(例如前述Yarrowialipolytica,38)中表达而获得。将雌性NZW兔(大约4kg)接触0.5-5.0mg病毒蛋白抗原制备物。所述抗原悬浮于0.5ml磷酸盐缓冲盐水(pH 7.3)中并在等体积的完全Freund′s佐剂(CFA)中乳化。Freund′s佐剂是适用于使用少量抗原及抗原的免疫原性(可能)未知的这些实验中的经充分确定的佐剂系统。根据公布的使用指导方针进行,包括在每个部位限制性注射0.1ml,仅使用初始免疫剂量的CFA。将这个抗原制备物(总体积1ml)皮下注射进兔颈部背侧松弛的皮肤内。这种注射途径是免疫学有效的,并且使得发生与单侧或双侧注射相关的局部炎症的可能性降至最低(这种继发的侧面炎症可损伤动物活动性)。在休息3周后,从耳动脉取1ml血液进行测试。如果希望的抗体效价经判断为太低,则对抗体进行加强。具有足够抗体水平的兔经皮下注射CFA中包含的1.0mg抗原而加强免疫。加强免疫的动物在2周后进行引流血液,即使用加热灯扩张血管从耳部动脉中取15ml血液。将该兔置于商购的笼中,用甲苯噻嗪镇静,总共不超过7次,之后在将该兔用甲苯噻嗪/氯胺酮麻醉后通过心脏穿刺抽血。
疫苗的生产方法为了生产亚基疫苗,可以将也许与HE、M和N蛋白组合的S-糖蛋白在合适的真核细胞宿主(例如解脂假丝酵母(Y.lipolytica)或LLC-MK2细胞)中表达,优选使用两个小的亲和性标记(例如His标记或StrepII标记)纯化。在适当纯化后,所得病毒蛋白可以用作亚单位疫苗。
或者,HCoV-NL63病毒可以如上述在合适的细胞系中增殖,随后如Wu(11)所述处理。简而言之,将所述病毒用20%聚乙二醇6000从培养基中沉淀,在80000×g通过不连续的40-65%蔗糖梯度超速离心4小时,随后在120000×g线性5-40%CsCl梯度超速离心4小时进行纯化。所得病毒制备物可以如Blondel(13)所述通过在65℃加热30分钟而失活。
在光学生物传感器中分析与固定的配体(例如抗体)结合的S糖蛋白或任何HCOV-NL63病毒蛋白在20℃在IAsys双通道共振镜面反射生物传感器(AffinitySensors,Saxon Hill,Cambridge,United Kingdom)中略加修改进行结合反应。将平坦的生物素表面(其中600arc s信号相应于1ng结合蛋白/mm2)根据厂商指导用链霉抗生物素蛋白衍生化。对照组示出病毒蛋白与链霉抗生物素蛋白衍生化的生物素表面不结合(结果未示出)。将生物素酰化的抗体固定在平坦的链霉抗生物素蛋白衍生化的表面上,然后用PBS洗涤。生物传感器小管(cuvette)表面上固定的配体与结合的S-糖蛋白的分布通过共振扫描检测,示出在所有时间这些分子均匀地分布在传感器表面上,因此不微量聚集。结合分析在20±0.1℃在终体积30μl PBS中进行。连接物在1-5μl PBS中以已知浓度加入小管(cuvette)中以提供终浓度为14-70nM的S-糖蛋白。为了在解离阶段后除去残余的结合的连接物及因此再生固定的配体,将试管用50μl 2M NaCl-10mM Na2HPO4,pH 7.2洗涤3次,及用50μl 20mMHCl洗涤3次。收集用不同量(0.2、0.6和1.2ng/mm2)的固定的抗体进行的实验数据。为了计算kon,使用低浓度的连接物(S-糖蛋白),而为了测定Koff,应用较高浓度的连接物(1μM)以避免任何再结合假象。结合参数kon和Koff分别在结合反应的缔合及解离阶段计算,使用同设备一起提供的非线性曲线拟合FastFit软件(Affinity Sensors)计算。解离常数(Kd)根据缔合及解离速率常数及接近平衡时观测到的结合程度计算。
实施例2方法病毒分离生活在荷兰阿姆斯特丹的一个儿童经确诊患有鼻炎和结膜炎3天。在确诊时,她具有呼吸困难和吞咽困难。该患者体温是39℃,呼吸频率是50次/分钟,氧饱和度是96%,脉搏为177次/分钟。听诊发现双肺呼气延长(bilateral prolonged expirium)和终末呼气性哮喘(end-expiratory wheezing)。胸片示出细支气管炎典型特征。第一天对这名患儿用沙丁胺醇(salbutamol)和异丙托(ipratropium)治疗,随后仅使用沙丁胺醇治疗5天。在门诊每日观察这名患儿,症状逐渐减少。在症状发生后5天收集鼻咽部抽吸样品。使用Virus Respiratory试剂盒(BartelsTrinity Biotech plc,Wicklow Ireland)测试样品的RSV、腺病毒、流感病毒A和B及1、2和3型副流感病毒的存在情况。另外,对鼻病毒、肠道病毒、偏肺炎病毒和HCoV-OC43及HCoV-229E进行PCR测试(2,10)。将原始的鼻咽部抽吸样品接种于各种细胞上。将培养物保持在34℃滚动的鼓状圆桶中,每3-4天观测一次。每3-4天补充维持培养基。补充两种不同类型的培养基对于tMK细胞使用没有胎牛血清的Optimem l(InVitrogen,Breda,The Netherlands),对于其它的细胞类型使用具有3%胎牛血清的MEM Hanks′/Earle′s培养基(InVitrogen,Breda,The Netherlands)。在温育1周后,对用抽吸样品感染的细胞培养物进行染色以检测呼吸系统病毒的存在情况。用荧光标记的抗RSV和流感病毒A和B的小鼠抗体集合(Imagen,DakoCytomation Ltd,Cambridge,UK)进行直接染色。对腺病毒和1、2和3型副流感病毒使用小鼠抗体(Chemicon International,Temecula,California),随后用FITC标记的兔抗小鼠抗体(Imagen,DakoCytomation Ltd,Cambridge,UK)进行间接染色。
VIDISCA方法为了除去残余的细胞和线粒体,将110μl病毒培养物上清在Eppendorf微量离心机中以最大速度(13500rpm)离心10分钟。为了从裂解的细胞中除去染色体DNA和线粒体DNA,将l00μl上清移至干净的试管中用DNA酶I(Ambion,Huntingdon,UK)在37℃处理45分钟。如Boom et al.(4)所述提取核酸。逆转录反应使用随机六聚体引物(Amersham Bioscience,Roosendaal,The Netherlands)和MMLV-RT(InVitrogen,Breda The Netherlands)进行,第二链DNA合成使用Sequenase II(Amersham Bioscience,Roosendaal,The Netherlands)进行。在苯酚/氯仿提取后进行乙醇沉淀。基本如Bachem et al(1)所述略加修改进行cDNA-AFLP。将dsDNA用Hind I和Mse I限制酶(NewEngland Biolabs,Beverly,Massachusetts)消化。随后在37℃将Mse I-和HinP I-锚(anchor)(见下文)及5U连接酶(InVitrogen,Breda,TheNetherlands)一起加入提供的连接酶缓冲液中2小时。Mse I-和HinP I-锚通过将上链寡聚物(对于Mse I锚为5′-CTCGTAGACTGCGTACC-3′,对于HinP I锚为5′-GACGATGAGTCCTGAC-3′)与下链寡聚物(对于Mse I锚为5′-TAGGTACGCAGTC-3′,对于HinP I锚为5′-CGGTCAGGACTCAT-3′)在连接酶缓冲液1∶40的稀释液中混合而制备。用10μl连接混合物,100ng HinP I标准引物(5′-GACGATGAGTCCTGACCGC-3′)和100ngMse I标准引物(5′-CTCGTAGACTGCGTACCTAA-3′)进行20次PCR循环。将5μl这个PCR产物在第二个“选择性”扩增步骤中用作投料,该扩增步骤中具有100ng HinPI-N引物和100ng MseI-N(N表示标准引物用一个核苷酸G,A,T或C延伸)。所述选择性扩增循环使用“递降PCR”进行10次循环[94℃ 60秒,65℃ 30秒,72℃ 1分钟],退火温度每次循环降低1℃,随后进行23次循环[94℃ 30秒,56℃ 30秒,72℃ 1分钟]及一次72℃ 10分钟。将该PCR产物在4%Metaphor琼脂糖凝胶(Cambrex,Rockland,Maine)上分析,使用BigDye终止子试剂对感兴趣的片段克隆并测序。在ABI 377设备上进行电泳和数据收集。
cDNA文库构建和全基因组测序cDNA文库如Marra等(17)所述略加修改产生。在逆转录期间,只使用随机六聚体引物,不使用寡-dT引物,将扩增的cDNA克隆进PCR2.1-TOPO TA克隆载体中。挑取集落并悬浮于BHI培养基中。大肠杆菌悬浮液在PCR扩增中用作投料,使用T7和M13 RP进行扩增。随后使用与在PCR扩增中相同的引物和BigDye终止子试剂对PCR产物测序。在ABI 377设备上进行电泳和数据收集。使用AutoAssembler DNA sequence Assembly软件2.0版本组合序列。诊断性RT-PCR在2002年12月和2002年8月之间从492名患者中收集共600份呼吸样品。材料范围包括口腔/鼻咽部抽吸样品、咽喉擦拭物、支气管肺泡灌洗物和痰液。样品是从患有上呼吸道和下呼吸道疾病的患者中收集的,用于常规病毒诊断性筛选。在Boom提取(4)中使用100μl样品。使用10ng MMLV-RT(InVitrogen)或逆转录引物(repSZ-RT5′-CCACTATAAC-3′)进行逆转录。将全部RT混合物加入含有100ng引物repSZ-1(5′-GTGATGCATATGCTAATTTG-3′)和100ng引物repSZ-3(5′-CTCTTGCAGGTATAATCCTA-3′)的第一次PCR混合物中。根据如下模式进行PCR95℃ 5分钟;20次循环(95℃ 1分钟,55℃ 1分钟,72℃ 2分钟);72℃ 10分钟。嵌套PCR使用5μl第一次PCR及100ng引物repSZ-2(5′-TTGGTAAACAAAAGATAACT-3′)和100ng引物repSZ-4(5′-TCAATGCTATAAACAGTCAT-3′)起始。进行25次与第一次PCR相同的PCR循环模式。将10μl PCR产物通过琼脂糖凝胶电泳分析。对所有阳性样品进行测序以证实样品中HCoV-NL63的存在。
序列分析将序列与Genbank数据库中所有序列进行对比,使用NCBI网页http//www.ncbi.nlm.nih.gov/blast的BLAST工具进行。为了进行系统发生分析,使用如下设置的ClustalX软件包对序列进行排列对比缺口发生罚分(Gap opening penalties)10.00;缺口延伸罚分(Gapextension penalty)0.20,延迟差异序列转换(Delay divergent sequencesswitch)30%,以及转换权重(transition weight)0.5(9)。系统发生分析使用MEGA程序的相邻连接方法(5),使用一个基因内的所有片段的信息进行。核苷酸距离矩阵通过Kimura′s 2参量估计或者通过p-距离估计(6)产生。应用拔靴再抽样法(500个复制品)将近似置信限(approximate confidence limits)赋予各个分支。
结果从患有急性呼吸系统疾病的儿童中分离病毒在2003年1月,一个7个月大的婴儿就诊时出现鼻炎、结膜炎和发热。胸片示出细支气管炎的典型特征,在疾病发生后5天收集鼻咽部抽吸样品(样品NL63)。对呼吸道合胞病毒、腺病毒、流感病毒A和B、1、2和3型副流感病毒、鼻病毒、肠道病毒、HCoV-229E和HCoV-OC43进行的诊断测试均为阴性。随后将该临床样品接种于人胚胎肺成纤维细胞(HFL)、三级猴肾细胞(tMK;Cynomolgus猴)和HeLa细胞上。仅在tMK细胞上检测到CPE,并且在接种后8天首次注意到。CPE在受影响的细胞中以折射形式扩散,随后在7天后细胞分离。基于在猴肾细胞细胞系LLC-MK2上传代观测到更显著的CPE,整体上细胞圆形化(cell rounding),并且细胞中等程度增大(图1)。另外,在HFL、横纹肌肉瘤细胞和Vero细胞上的亚培养物均保持CPE阴性。检测培养物中RSV、腺病毒、流感病毒A和B或者1、2和3型副流感病毒的免疫荧光分析保持阴性。酸不稳定性和氯仿敏感性测试表明该病毒很可能是有包膜的,并且不是小核糖核酸病毒类的成员(24)。
通过VIDISCA方法发现病毒通过分子生物学工具鉴别未知的病原体遇到了靶序列未知及基因组特异性PCR引物不能设计的问题。为了克服这个问题,我们开发了基于cDNA-AFLP技术(4)的VIDISCA方法。VIDISCA的优点是不需要预先已知序列的信息,因为限制酶位点的存在足以保证进行扩增。投料样品可以是血浆/血清或者培养物上清。尽管cDNA-AFLP始于分离的mRNA,但是VIDISCA技术首先始于一种处理以选择性富集病毒核酸,所述处理包括离心步骤以除去残余的细胞和线粒体。另外,使用DNA酶处理以从降解的细胞中除去干扰性染色体DNA和线粒体DNA,而病毒核酸保护在病毒颗粒内。最后,通过选择频繁切割的限制酶对该方法进行精细调节,由此扩增大多数病毒。使用VIDISCA能从乙型肝炎病毒感染的病人和急性细小病毒B 19感染的病人的EDTA-血浆中扩增病毒核酸。这个技术也可以检测细胞培养物中的HIV-1,表明其既具有鉴别RNA病毒的能力又具有鉴别DNA病毒的能力。
通过VIDISCA分析CPE阳性培养物NL63的上清。我们使用未感染的细胞上清作为对照。在第二次PCR扩增步骤后,测试样品中存在独特及显著的DNA片段,而对照组中则不存在。对这些片段进行克隆并测序。16个片段中有12个片段示出与冠状病毒科的序列相似性,但是在所有序列中明显存在显著的序列多样性。这些结果表明我们鉴别了一种新的冠状病毒(HCoV-NL63)。
患者样品中HCoV-NL63的检测为了论证HCoV-NL63源自该名婴儿的鼻咽部抽吸样品,我们设计了一个特异性检测HCoV-NL63的诊断性RT-PCR。基于1b基因内的独特序列的这个测试证实了所述临床样品中存在HCoV-NL63。这个PCR产物的序列与基于在LLC-MK2细胞中体外传代鉴别的病毒的序列相同(结果未示出)。
证实了培养的冠状病毒源自该婴儿,但仍存在这是否是一个临床个案或者HCoV-NL63是否在人类循环的问题。为了解决这个问题,我们测试了2002年12月至2003年8月之间住院病人和门诊病人的呼吸道样品中HCoV-NL63的存在情况。我们又鉴别出携带HCoV-NL63的7名病人。
对PCR产物进行序列分析表明一些样品中存在少量特征性(并且是可再现的)点突变,提示NL63的一些亚组可以是共同循环的。至少5名HCoV-NL63阳性个体患有呼吸道疾病,2名患者的临床数据未获得。包括首例病例在内,5名患者是1岁以内的婴儿,3名患者是成人。两名成人很可能是被免疫抑制的,因为其中一名患者是骨髓移植受体,另一名患者是CD4细胞计数非常低的患有AIDS的HIV阳性患者。第三名成人患者的临床数据未获得。仅有1名患者共感染了RSV(nr 72),所述HIV感染的患者(nr 466)携带卡氏肺孢子虫(Pneumocystis carinii)。在其它HCoV-NL63阳性患者中未发现其它呼吸系统致病因素,提示所述呼吸系统症状是由HCoV-NL63所致。所有HCoV-NL63阳性样品都是在2002年冬季收集的,在2003年1月测定频率为7%。在2003年春季和夏季收集的306个样品中无一含有该病毒(P<0.01,双尾t检验(2-tailed t-test))。
HCoV-NL63的完整基因组分析冠状病毒基因组具有特征性基因组组构。5’部分含有编码非结构蛋白的大的1a和1b基因,随后是编码4个结构蛋白的基因刺突蛋白(S),膜蛋白(M),包膜蛋白(E)和核壳(N)蛋白。额外的非结构蛋白在1b和S基因之间、S和E基因之间、M和N基因之间或者在N基因下游编码。
为了确定HCoV-NL63基因组组构是否具有这些特征,我们构建了一个cDNA文库,纯化的病毒原种作为投料。分析了共475个基因组片段,每个核苷酸平均覆盖7个序列。设计特异性PCR以填充缺口并对低质量序列数据的区域进行测序。组合5′RACE(cDNA末端快速扩增)和3′RACE实验,得到了完整HCoV-NL63基因组序列。
HCoV-NL63的基因组是具有polyA尾部的27,553个核苷酸的RNA。其G-C含量为34%,G-C含量在冠状病毒中(37%-42%)最低(25)。使用Zcurve软件鉴别ORF(26),基因组构型使用与已知冠状病毒的相似性描绘(图6)。1a和1b基因编码病毒复制必需的RNA聚合酶和蛋白酶。在第12439位存在潜在的假结结构(pseudoknotstructure),其可以提供-1移码信号以翻译1b多蛋白(polyprotein)。推测编码S,E,M和N蛋白的基因在基因组的3’部分发现。在5’和3’末端分别存在286和287个核苷酸的短的未翻译区(UTR)。在一些2类群和3类群冠状病毒中存在的血凝素-酯酶基因在此不存在。S和E基因之间的ORF 3可能编码一个单一的辅助非结构蛋白。
1a和1b多蛋白是从基因组RNA中翻译的,但是剩余的病毒蛋白是从亚基因组mRNA(sg mRNA)中翻译的,均具有衍生自基因组5’部分(5’前导序列)的5’末端和3’共末端部分。所述sg mRNA是通过在负链合成期间不连续转录产生的(27)。不连续转录需要顺式作用转录调节序列(TRS)之间的碱基配对,一个位于基因组5’部分(前导TRS)附近,其他的位于各自ORF(主体TRS(body TRS))的上游(28)。我们用于测序的cDNA库含有N蛋白的sg mRNA拷贝,因此提供了对与所有sg mRNA均融合的前导序列精确作图的机会。在5′UTR鉴别了72个核苷酸的前导序列。所述前导TRS(5′-UCUCAACUAAAC-3′)示出12个核苷酸中有11个与N基因上游的主体TRS相似。在S、ORF3、E和M基因的上游也鉴别了推定的TRS。
将HCoV-NL63的序列与其它冠状病毒的完整基因组进行序列对比。对每个基因确定核苷酸相同性百分比。对于除了M基因之外的所有基因而言,与HCoV-229E具有最高的相同性百分比。为了证实HCoV-NL63是冠状病毒1类群的一个新成员,使用1A、1B、S、M和N基因的核苷酸序列进行系统发生分析。对于分析的每个基因,HCoV-NL63与1类群冠状病毒聚簇(cluster)。HCoV-NL63/HCoV-229E亚类群的拔靴值(bootstrap value)对于1a、1b和S基因为100。然而,对于M和N基因,这个亚簇的拔靴值降低(分别降低至78和41),含有HCoV-229E、HCoV-NL63和PEDV的亚簇变得显而易见。对ORF3和E基因不能进行系统发生分析,分别因为该区域在不同的冠状病毒类群之间变化太多,或者因为这个区域太小以至于不能进行分析。利用Simplot软件2.5版本(29)进行Bootscan分析发现无重组迹象(结果未示出)。
S和E基因之间存在一个单一非结构蛋白值得注意,因为几乎所有的冠状病毒在这个区域均具有2或多个ORF,除了PEDV和OC43之外(30,31)。当与HCoV-229E相对比时,也许最明显的是在S基因5’部分中的537个核苷酸的大插入体。Blast检索发现刺突蛋白的这个额外的179个氨基酸的结构域与任何冠状病毒序列或者与GenBank中任何其它序列均无相似性。
表表1用于发现病毒的cDNA-AFLP寡核苷酸
表2用于HCOV-NL63的PALM延伸的寡核苷酸
实施例1在本实施例中,除了基本的洗涤剂片剂之外,还使用含铋和锌的玻璃。
在餐具洗涤机中还存在铝质压蒜器。
结果如表GL 4(虹彩)所示。
表GL 4-虹彩
实施例1的结果显示,同时存在铋和锌时完全消除了因铝的存在而造成的虹彩的不利影响。
实施例2在本实施例中,除了基本的洗涤剂片剂之外,还使用含铋和锌的玻璃。
在餐具洗涤机中还存在铝质压蒜器(然而,请见下一段)。
测试结果如表GL 5a(玻璃腐蚀)和表GL 5b(质量损失)所示。在这些表中,括号内显示的数据是没有铝时获得的—即由只有洗涤剂制剂和铋和锌水溶性玻璃块获得。其它数据显示了存在铝质压蒜器时获得的结果。
表4cDNA-AFLP片段的鉴别
表5本发明的病毒与不同冠状(样)病毒之间成对核苷酸序列同源性,以序列相同性百分比(%)表示
表6不同的冠状病毒之间成对的推导的氨基酸序列同源序列相同性百分比(%)
表7特异性检测HcoV-163的寡核苷酸
将热塑性树脂注入该基材背后的模腔中,以(i)产生一种整体永久性粘合的三维产品,或(ii)使图案或美学效果从印刷基材转移到注入的树脂上并除去印刷基材,从而赋予该成形树脂以美学效果。
业内技术人员也会知道,可以对以上物品进一步施用常用的固化和表面修饰工艺,包括且不限于热定形、纹饰、压花、电晕处理、火焰处理、等离子体处理和真空沉积、以改变表面外观和赋予该物品以额外功能。
因此,本发明的另一种实施方案涉及从以上组合物制备的物品、片材和薄膜。
以下非限定性实施例进一步说明本文中描述的各种实施方案。
实施例以下实施例是用表1中所列的材料制备的。这些实施例也含有<1wt%稳定剂和抗氧化剂。这些实施例中使用的重量百分率(wt%)是以该组合物的总重量为基准确定的。
表I
表9HcoV-NL63 ORF的蛋白质
Mw预测不考虑翻译后修饰,如糖基化和信号序列切割。
表10HCoV-NL65 S、M和N编码区的寡核苷酸扩增
S、M和N互补序列用粗体字母显示。PCR引物的剩余部分包括符合读框的attB1或attB2位点。
表11总体全长基因组DNA序列相同性
比较了HcoV-NL63与其他冠状病毒总体DNA序列相同性百分比。从SimPlot图(图7)对HcoV-NL63(查询)与SARS相关冠状病毒和HcoV-229E进行比较,可以推论出局部序列相同性从不超过85%。
表12刺突蛋白编码区中总体DNA序列相同性
表135′UTR中总体DNA序列相同性
附图简述图1cDNA-AFLP使得可以不需要预知任何序列信息就可以扩增核酸。
对来自CPE阳性的和未感染的细胞的培养物上清进行cDNA-AFLP程序。对在未感染的对照样品中不存在的衍生自CPE阳性培养物的扩增产物进行克隆和测序。
图2被HCoV-NL163感染的LLC-MK2细胞。
A和B组是未染色的细胞,而C和D组用苏木精伊红染色。在A和C组中示出HCoV-NL163典型的CPE。对照的未感染的LLC-MK细胞在B和D组中示出。
图3通过Metaphor琼脂糖凝胶电泳观测的VD-cDNA-AFLPPCR产物。
在选择性扩增步骤期间使用的16对引物组合中的1对引物(HinPI-G和Mse I-A)的PCR产物。泳道1和2病毒培养物NL 163的一式两份PCR产物;泳道5和6是LLC-MK2细胞的对照上清,泳道7和8是阴性PCR对照。泳道M25bp分子量标记(InVitrogen)。箭头所指是从凝胶中切离并经测序的新的冠状病毒片段。
图4HCoV-163序列的系统发生分析。
G1,G2和G3代表1,2和3组冠状病毒聚簇(cluster)。所用序列的Genbank登记号为MHV(小鼠肝炎病毒)AF201929;HCoV-229EAF304460;PEDV(猪流行性腹泻病毒)AF353511;TGEV(传染性胃肠炎病毒)AJ271965;SARS-CoVAY278554;IBV(禽传染性支气管炎病毒)NC 001451;BCoV(牛冠状病毒)NC 003045;FCoV(猫冠状病毒)Y13921和80799;CCoV(狗冠状病毒)AB105373和A22732;PRCoV(猪呼吸系统冠状病毒)M94097;FIPV(猫传染性腹膜炎病毒)D32044。与HCoV-229E(AF304460)相比HCoV-163片段的位置复制酶1AB基因15155-15361、16049-16182、16190-16315、18444-18550,刺突蛋白基因22124-22266;核壳基因25667-25882和25887-25957;3′UTR27052-27123。分支长度指示每个序列取代的数目。
图5冠状病毒和表3所示各个163片段的位置示意图。
图6HCoV-NL63′的限制图。
ssRNA基因组的全部27553个核苷酸的cDNA衍生物。可读框(ORF)以编号的黑色箭头示出,在这些ORF内鉴别的(PFAM)结构域以灰色方框示出。
图7HcoV NL63及其它人类冠状病毒的Simplot分析。
HCoV NL63与SARS、HCoV-OC43和HCoV-229E对比中的缺口是由于编码刺突蛋白的ORF中的一个独特的537符合读框的插入所致(见本文别处所述)。Sigmaplot分析由Lole,K.S.,R.C.Bollinger,R.S.Paranjape,D.Gadkari,S.S.Kulkarni,N.G.Novak,R.Ingersoll,H.W.Sheppard,及S.C.Ray.1999.Full-length humanimmunodeficiency virus type 1 genomes from subtype C-infectedseroconverters in India,with evidence of intersubtype recombination.J.Virol.73152-160所描述。
图8HCoV-NL63刺突蛋白和基质蛋白的表达构建体。
His和StrepII标记的刺突融合蛋白的表达可以通过向细菌生长培养基中加入IPTG而诱导。通过attB1/B2介导的重组,S基因插入片段可以被转移至其它可商购的表达载体中,便于在其它宿主中产生蛋白质。通过与pGP7S相同的克隆程序,可以构建HCoV-NL63 M-基因的Gateway相容表达载体。该质粒指导被N和C末端亲和标记的基质融合蛋白的IPTG可诱导的产生,使得可以选择性回收全长融合蛋白。
图9NL63-229E的重组位点NL63衍生的序列以粗体下划线标示,229E衍生的序列以灰色粗体字标示。
图10cDNA克隆NL63/229E杂合体的限制图谱。
NL63衍生部分以灰色方框标示,229E衍生的区域划线标示。两个基因组之间的连接处由标为1b′及′ORF-1b(表示杂合1b ORF)的两个相继的黑色箭头标记表示。
第二个嵌合基因组通过融合HCoV-NL63的第19653位核苷酸和HCoV-OC43的第20682位核苷酸的交互重组而产生,同样产生杂合ORF 1b,产生杂合1ab复制酶多蛋白。重组在保守序列AATTATGG内发生。
图11NL63/OC43杂合体的重组位点。
同样,NL63衍生的区域以黑色粗体下划线标示,OC43衍生的序列以灰色粗体字标示。所得cDNA限制图谱示于图12。
图12重组NL63/OC43基因组的限制图谱。
NL63衍生的部分用灰色方框标示,重组位点在黑色箭头1b′和′1b之间标示。
图13来自HCoV-NL63、HCoV-229E、HCoV-OC43及两个杂合体NL63/229E和NL63/OC43的ORF1b的相似性作图推导的蛋白质序列对比。
图14表达绿色荧光蛋白的HcoV-NL63衍生物。
功能等价的NL63/4GFP携带符合读框的E蛋白(ORF4)在C末端与人密码子优化的绿色荧光蛋白(EGFP,Stratagene)融合。感染的细胞在4EGFP融合蛋白激发后出现荧光。HCoV-NL63可用于阐明病毒感染的过程和多顺反子亚基因组信使的翻译。
图15功能衍生物NL63D2052021011的限制图谱。
NL63的这一缺失衍生物缺少刺突蛋白N末端插入的大部分。通过缺失核苷酸20520-21011,除去了独特的结构域并保留了推断的分泌信号序列(Nielsen,H.,J.Engelbrecht,S.Brunak,and G.Von Heijne.1997.Identification of prokaryotic and eukaryotic signal peptides andprediction of their cleavage sites.Protein Eng 101-6)。
图16来自另外的患者样品的HCoV-NL63中的序列差异。
对来自6个患者样品的RT-PCR产物的两条链进行直接测序表明ORF1a区域中存在多态性。
图17HCoV-NL63特异性和一般性人类冠状病毒检测探针。
冠状病毒聚合酶产生一些亚基因组RNA。编码S、E、M和N蛋白的cDNA克隆在HCoV-NL63和SARS的测序文库中的频率(Snijder,E.J.,P.J.Bredenbeek,J.C.Dobbe,V.Thiel,J.Ziebuhr,L.L.Poon,Y.Guan,M.Rozanov,W.J.Spaan,and A.E.Gorbalenya.2003Unique and conserved features of genome and proteome ofSARS-coronavirus,an early split-off from the coronavirus group 2lineage.J.Mol.Biol.331991-1004)。Northern印迹数据表明这些亚基因组RNA在感染的细胞中高度富集。因此这些基因是诊断测试的令人感兴趣的靶位。
由于基因组和亚基因组RNA具有相同的3’末端,因此含有N基因的探针与其全部杂交(表8)。
通过对所有人类冠状病毒的全长序列进行对比,鉴别了ORF1b中的一个保守区域,使得其可以用嵌套RT-PCR分析被检测。
图18冠状病毒通用检测引物。
图19HcoV NL63的核苷酸序列。
图20ORF 1a,HcoV NL63的复制酶复合物。
图21ORF 1ab,HcoV NL63的复制酶多蛋白。
图22刺突蛋白(ORF3)含有16个氨基酸的N末端分泌信号序列(在下文列出的连续序列的第一行示出)。(Nielsen,H.,J.Engelbrecht,S.Brunak,and G.Von Heijne.1997.Identification of prokaryotic andeukaryotic signal peptides and prediction of their cleavage sites.ProteinEng 101-6)。
图23ORF-4冠状病毒NS4,冠状病毒非结构蛋白4。这个家族由一些非结构蛋白4(NS4)序列或者小的膜蛋白组成。
ORF-5这个家族由各种冠状病毒基质蛋白组成,这些基质蛋白是跨膜糖蛋白。M蛋白或E1糖蛋白参与病毒装配。E1病毒膜蛋白是病毒包膜形成所必需的,并通过高尔基复合体转运。预测基质蛋白含有N-末端分泌信号序列(在连续的序列的第一部分中示出)(Nielsen,H.,J.Engelbrecht,S.Brunak,and G.Von Heijne.1997.Identification ofprokaryotic and eukaryotic signal peptides and prediction of theircleavage sites.Protein Eng 101-6)。
ORF-6Pfam 00937,冠状病毒核壳蛋白。与基因组RNA形成复合物的结构蛋白。
参考文献1.Bachem,C.W.,R.S.van der Hoeven,S.M.de Bruijn,D.Vreugdenhil,M.Zabeau,and R.G.Visser.1996.Visualization ofdifferential gene expression using a novel methodof RNA fingerprintingbased on AFLPanalysis of gene expression during potato tuberdevelopment.Plant J.9745-753。
2.Bestebroer,T.M.,A.I.M.Bartelds,A.M.van Loon,H.Boswijk,K.Bijlsma,E.C.J.Claas,J.A.F.W.Kleijne,C.Verweij,M.W.Verweij-Uijterwaal,A.G. Wermenbol,and J.de Jong,.VirologicalNIVEL/RIVM-surveillance of respiratory Virus infection in the season1994/95.245607002,1-38.1995.Bilthoven,RIVM.VirologischeNIVEL/RIVM-surveillance van respiratoire virusinfecties in het seizoen1994/95 RIVM.
Ref TypeReport3.Blondel,B.,O.Akacem,R.Crainic,P.Couillin,and F.Horodniceanu.1983.Detection by monoclonal antibodies of an antigenicdeterminant critical for poliovirus neutralization present on VPl and onheat-inactivated viriohs.Virology 126707-710。
4.Boom,R.,C.J.Sol,M.M.Salimans,C.L.Jansen,P.M.Wertheim-van Dillen,and van der Noordaa J.1990.Rapid and simplemethod fo0r purification of nucleic acids.J.Clin.Microbiol.28495-503。
5.Kamur,S.,Tamura,K.,and Wei,M.Molecular EvolutionaryGenetics Analysis(MEGA 2.0).1993.Institute of MolecularEvolutionary Genetics,Pennsylvania State University,University Park.Ref TypeComputer Program。
6.Kimura,M.1980.A simple method for estimating evolutionaryrates of base substitutions through comparative studies of nucleotidesequences.J.Mol.Evol.16111-120。
7.Kunkel,F.and G.Herrler.1993.Structural and functional analysisof the surface protein of human coronavirus OC43.Virology 195195-202。
8.Mounir,S.,P. labonte,and P.J.Talbot.1993.Characterization ofthe nonstructural and spike proteins of the human respiratory coronavirusOC43comparison with bovine enteric coronavirus.Adv.Exp.Med.Biol.34261-67。
9.Thompson,J.D.,T. J.Gibson,F.Plewniak,F.Jeanmougin,and D.G.Higgins.1997.The CLUSTALX windows interfaceflexible strategiesfor multiple sequence alignment aided by quality analysis tools.NucleicAcids Res.254876-4882。
10.Van Den Hoogen,B.G.,J.C.de Jong,J.Groen,T.Kuiken,R.deGroot,R.A.Fouchier,and A.D.Osterhaus.2001.A newly discoveredhuman pneumovirus isolated from young children with respiratory tractdisease.Nat.Med.7719-724。
11.Wu,C.N.,Y.C.Lin,C.Fann,N.S.Liao,S.R.Shih,and M.S.Ho.2001.Protection against lethal enterovirus 71 infection in newbornmice by passive immunization with subunit VPl vaccines and inactivatedvirus.Vaccine 20895-904。
13.Almeida,J.D.and D.A.Tyrrell,The morphology of threepreviouslyuncharacterized human respiratory viruses that grow in organculture.J Gen Viroll,175-178(1967)。
14.Thiel,V.,J.Herold,,B.Schelle,and S.G.Siddell,InfectiousRNA transcribed in vitro from acDNA copy of the human coronavirusgenome cloned in vaccinia virus.J Gen Virol 82,1273-1281(2001)。
15.Hendley,J.O.,H.B.Fishburne,and J.M.Gwaltney,Jr.Coronavirus infections in working adults.Eight-year study with 229 Eand OC 43.Am Rev.Respir.Dis.105,805-811(1972)。
16.Mounir,S.,P.labonte,and P.J.Talbot,Characterization of thenonstructural and spike proteins of the human respiratory coronavirusOC43comparison with bovine enteric coronavirus.Adv.Exp Med Biol342,61-67(1993)。
17.Kunkel,F.and G.Herrler,Structural and functional analysis ofthe surface protein of human coronavirus OC43.Virol.195,195-202(1993)。
18.Tyrrell,D.A.J.and M.L.Bynoe,Cultivation of novel type ofcommon-cold virus in organ cultures.B r.Med J 1,1467-1470(1965)。
l9.Bradburne,A.F.,M.L.Bynoe,and D.A.Tyrrell,Effects ofa″new′human respiratory virus in volunteers.Br.Med J 3,767-769(1967)。
20.Kapikian,A.Z.et al.Isolation from man of″avian infectiousbronchitisvirus-like″viruses(coronaviruses)similar to 229E virus,withsome epidemiological observations.J Infect.Dis.119,282-290(1969)。
21.Ksiazek,T.G.et al.A novel coronavirus associated with severeacute respiratory syndrome.N Engl J Med 2003.May 15.;348.(20)1953.-66.348,1953-1966(2003)。
22.Stohlman,S.A.and D.R.Hinton,Viral induceddemyelination.BrainPathol.11,92-106(2001)。
23.Jubelt,B.and J.R.Berger,Does viral disease underlie ALS?Lessons from the AIDS pandemic.Neurology 57,945-946(2001)。
24.Shingadia,D.,A.Bose,andR.Booy,Could a herpesvirus be thecause of Kawasaki disease?Lancet Infect.Dis.2,310-313(2002)。
25.Bachem,C.W.et al.Visualization of differential gene expressionusing a novel method of RNA fingerprinting based on AFLPanalysis ofgene expression during potato tuber development.Plant J 9,745-753(1996)。
26.Hamparian,V.V.Diagnostic procedures for viral,rickettsialandchlamydial infection.Lennette,E.H.& Schmidt,N.J.(eds.),pp.562(American Public Health Association,Washington,DC,1979)。
27.Marra,M.A.et al.The Genome sequence of theSARS-associated coronavirus.Science 2003.May 30.;300.(5624.)1399.-404.300,1399-1404(2003)。
28.McIntosh,K.et al.Coronavirus infection in acute lowerrespiratory tract disease ofinfants.J Infect.Dis.130,502-507(1974)。
29.Boivin,G.et al.Human metapneumovirus infections inhospitalized children.Emerg.Infect.Dis.9,634-640(2003)。
30.Rota,P.A.et al.Characterization of a novel coronavirusassociated with severe acute respiratory syndrome.Science300,1394-1399(2003).。
31.Bestebroer,T.M.et al.VirologicalNIVEL/RIVM-surveillance ofrespiratory virus infection in the season 1994/95.245607002,1-38.1995.Ref TypeReport32.van den Hoogen,B.G.et al.A newly discovered humanpneumovirus isolated from young children with respiratory tract disease.Nat.Med 7,719-724(2001)。
34.Earley,E.M.and K.M.Johnson.1988.Thelineage of Vero,Vero76 and its clone C1008 in the United States.,p.26-29.In B.Simizu and T.Terasima (eds.),Vero cellsorigin,properties and biomedicalapplications.Chiba Univ,Tokyo。
35.Kamur,S.,K.Tamura,and M.Wei,Molecular EvolutionaryGenetics Analysis (MEGA).(2.0).1993.Institute of MolecularEvolutionary Genetics,Pennsylvania State University,University Park。
36.Kimura,M.A simple method for estimating evolutionary rates ofbase substitutions through comparative studies of nucleotide sequences.JMol Evol.16,111-120(1980)。
37.Fouchier,R.A.,T.M.Bestebroer,S.Herfst,K.L.Van Der,G.F.Rimmelzwaan,and A.D.Osterhaus.2000.Detection of influenza Aviruses from different species by PCR amplification of conservedsequences in the matrix gene.J.Clin.Microbiol.384096-4101。
38.Nicaud,J.M.,C.Madzak,B.P.van den,C.Gysler,P.Duboc,P.Niederberger,and C.Gaillardin.2002.Protein expression and secretion inthe yeast Yarrowia lipolytica.FEM.Yeast Res.2371-379。
39.Guy,J.S.,Breslin,J.J.,Breuhaus,B.,Vivrette,S.& Smith,L.G.Characterization of a coronavirus isolated from a diarrheic foal.J ClinMicrobiol.38,4523-4526(2000)。
40.Holmes,K.V.& Lai,M.M.C.Fields Virology.Fields,B.N.,Knipe,D.M.,HoWley,P.M.& et al(eds.),pp.1075-1093(Lippincott-Raven Publishers,Philadelphia,1996)。
41.Hamre,D.& Procknow,J.J.A new virus isolated from thehuman respiratory tract.proc.soc.exp.biol.med.121,190-193(1966)。
42.McIntosh,K.,Dees,J.H.,Becker,W.B.,Kapikian,A.Z.&Chanock,R.M.Recovery in tracheal organ cultures of hovel viruses frompatients with respiratory disease.Proc.Natl.Acad.Sci.U.S.A.57,933-940(1967)。
43.Peiris,J.S.et al.Clinical progression and viral load in acommunity outbreak of coronavirus-associated SARS pneumoniaaprospective study.lancet 361,1767-1772(2003)。
44.Snijder,E.J.et al.Unique and conserved features of genomeandproteome of SARS-coronavirus,an early split-off from thecoronavirus group 2 lineage.J Mol Biol 331,991-1004(2003)。
45.de Haan,C.A.,Masters,P.S.,Shen,X.,Weiss,S.& Rottier,P.J.The group-specific murine coronavirus genes are not essential,but theirdeletion,by reverse genetics,is attenuating in the natural host.Virol.296,177-189(2002)。
46.Lai,M.M.&Cavanagh,D.The molecular biology ofcoronaviruses.Adv.Virus Res 48,1-100(1997)。
47.Sawicki,S.G.& Sawicki,D.L.Coronaviruses use discominuousextension for synthesis ofsubgenome-length negative strands.Adv.ExpMed Bio1380,499-506(1995)。
48.van Marle,G.et al.Arterivirus discontinuousmRNA transcriptionis guided by base pairing between sense and antisensetranscription-regulating sequences.ProcNatl Acad Sci U.S.A.96,12056-12061(1999)。
49.Chen,L.L.,Ou,H.Y.,Zhang,R.& Zhang,C.T.ZCURVE~CoVa new system to recognize protein coding genes incoronavirus genomes,and its applications in analyzing SARS-CoVgenomes.Biochem Biophys.Res Commun.307,382-388(2003)。
50.Liu,D.X.& Inglis,S.C.Internal entry of ribosomes on atricistronicmRNA encoded by infectious bronchitis virus.J Virol66,6143-6154(1992)。
51.Thiel,V.& Siddell,S.G.Internal ribosome entry in the codingregion of murine hepatitis virusmRNA 5.J Gen Virol 75(Pt 11),3041-3046(1994)。
52.Lole,K.S.et al.Full-length human immunodeficiency virustype 1 genomes from subtype C-infected seroconverters in India,withevidence of intersubtype recombination.J Virol 73,152-160(1999)。
53.Vaughn,E.M.,Halbur,P.G.& Paul,P.S.Sequence comparisonof porcine respiratory coronavirus isolates reveals heterogeneity in the S,3,and 3-1 genes.J Virol 69,3176-3184(1995)。
54.Koren,G.,S.King,S.Knowles,and E.Phillips.2003.Ribavirinin the treatment of SARSA new trick for an old drug?CMAJ.1681289-1292。
55.Cinatl,J.,B.Morgenstern,G.Bauer,P.Chandra,H.Rabenau,and H.W.Doerr.2003.Glycyrrhizin,an active component of liquoriceroots,and replication of SARS-associated coronavirus.Lancet 3612045-2046。
56.Anand,K;,J.Ziebuhr,P.Wadhwani,J.R.Mesters,and R.Hilgenfeld.2003.Coronavirus main proteinase(3CLpro)structurebasisfor design of anti-SARS drugs.Science 3001763-1767。
57.Cinatl,J.,B.Morgenstern,G.Bauer,P.Chandra,H.Rabenau,and H.W.Doerr.2003.Treatment of SARS with human interferons.Lancet 362293-294。
58.von Grotthuss,M.,L.S.Wyrwicz,and L.Rychlewski.2003.mRNA cap-1 methyltrahsferase in the SARS genome.Cell 113701-702。
59.Boivin,G.,G.De Serres,S.Cote,R.Gilca,Y.Abed,L.Rochette,M.G.Bergeron,and P.Dery.2003.Human metapneumovirus infectionsin hospitalized children.Emerg.Infect.Dis.9634-640。
权利要求
1.一种包含如图19和/或表3所示的序列的分离的和/或重组的核酸,或其功能部分、衍生物和/或类似物。
2.与权利要求1的核酸具有至少70%同源性的分离的和/或重组的核酸。
3.与权利要求1的核酸具有至少95%同源性的分离的和/或重组的核酸。
4.一种分离的和/或重组的核酸,其包含权利要求1-3任一项的核酸的一段100个连续核苷酸。
5.一种包含图20、图21、图22、图23或表3所示的序列的分离的和/或重组的蛋白质样分子,或其功能部分、衍生物和/或类似物。
6.一种分离的和/或重组的蛋白质样分子,其与权利要求5的蛋白质样分子具有至少70%同源性。
7.一种分离的和/或重组的蛋白质样分子,其与权利要求5的蛋白质样分子具有至少95%同源性。
8.一种分离的和/或重组的蛋白质样分子,其包含权利要求5-7任一项的蛋白质样分子的一段至少30个连续氨基酸。
9.编码权利要求5-8任一项的蛋白质样分子的核酸。
10.一种包含权利要求1-4或9任一项的核酸序列的分离的或重组的病毒,或其功能部分、衍生物和/或类似物。
11.一种包含权利要求5-8任一项的蛋白质样分子的分离的或重组的病毒,或其功能部分、衍生物和/或类似物。
12.权利要求10或11的分离的或重组的病毒或功能部分、衍生物或类似物,其能诱导HCoV-NL63-相关疾病。
13.一种包含权利要求1-4或9任一项的核酸的载体。
14.一种引物和/或探针,其能与权利要求1-4或9任一项的病毒核酸或其功能部分、衍生物或类似物特异性杂交。
15.权利要求8或9的引物和/或探针,其在严格条件下能与所述核酸杂交。
16.权利要求14或15的引物和/或探针,其包含表3、表7、表10和图16-18所示的一种序列。
17.一种分离的结合分子,其能与权利要求5-8任一项的蛋白质样分子和/或权利要求10-12任一项的分离的或重组的病毒特异性结合。
18.一种分离的结合分子,其能与权利要求1-4或9任一项的病毒的核酸序列或功能部分、衍生物或类似物特异性结合。
19.一种分离的结合分子,其能与表3所示核酸序列的至少一部分特异性结合。
20.权利要求17-19任一项的分离的结合分子,其是蛋白质样分子。
21.一种产生权利要求17-20任一项的结合分子的方法,包括-产生能与权利要求10-12任一项的病毒或其功能部分、衍生物或类似物或者权利要求5-8任一项的分离的和/或重组的蛋白质样分子结合的分子;和-选择特异于所述病毒和/或所述蛋白质样分子的蛋白质样结合分子。
22.一种分离的或重组的病毒,其与权利要求17-21任一项的分子具有免疫反应性。
23.权利要求10-12任一项的病毒或功能部分、衍生物和/或类似物在检测能与在样品中的所述病毒特异性结合的分子中的应用。
24.权利要求5-8任一项的分离的和/或重组的蛋白质样分子在检测能与在样品中的权利要求10-12任一项的病毒或所述病毒的功能部分、衍生物和/或类似物特异性结合的结合分子中的应用。
25.权利要求24的应用,其中所述结合分子包含针对所述病毒的特异性配体和/或抗体。
26.权利要求14-16任一项的引物和/或探针、权利要求17-20任一项的结合分子和/或权利要求1-4或9任一项的核酸或功能部分、衍生物或类似物在检测和/或鉴别样品中的HCoV-NL63冠状病毒中的应用。
27.权利要求26的应用,其中所述核酸包含表3所示序列。
28.一种疫苗,其包含权利要求10-12任一项的病毒或功能部分、衍生物或类似物。
29.一种疫苗,其包含权利要求5-8任一项的蛋白质样分子。
30.一种疫苗,其包含权利要求17-20任一项的结合分子。
31.一种药物,其包含权利要求17-20任一项的结合分子。
32.权利要求10-12任一项的病毒或功能部分、衍生物或类似物在制备抗冠状病毒属相关疾病的疫苗中的应用。
33.权利要求5-8任一项的蛋白质样分子在制备抗冠状病毒属相关疾病的疫苗中的应用。
34.权利要求17-20任一项的结合分子在制备抗冠状病毒属相关疾病的疫苗中的应用。
35.一种检测样品中的冠状病毒的方法,特征在于使用权利要求17-20任一项的结合分子或者权利要求14-17任一项的引物和/或探针。
36.一种检测针对冠状病毒的结合分子的方法,特征在于使用权利要求10-12任一项的病毒或者权利要求5-8任一项的蛋白质样分子。
37.权利要求35或36的方法,其用于诊断冠状病毒属相关疾病。
38.权利要求37的应用,其中所述冠状病毒属相关疾病包括HCoV-NL63冠状病毒相关疾病。
39.一种检测样品中的权利要求10-12任一项的病毒或功能部分、衍生物或类似物的方法,包括用权利要求14-16任一项的引物和/或探针杂交和/或扩增所述病毒或功能部分、衍生物或类似物的核酸,以及检测杂交和/或扩增的产物。
40.一种诊断试剂盒,其包含权利要求10-12任一项的病毒或功能部分、衍生物或类似物、权利要求17-20任一项的结合分子和/或权利要求14-16任一项的引物/探针。
41.一种治疗患有HCoV-NL63相关疾病或处于患有HCoV-NL63相关疾病危险中的个体的方法,包括给予所述个体权利要求28-31任一项的疫苗或药物。
42.一种确定个体是否患有HCoV-NL63相关疾病的方法,包括从所述个体获得样品并检测所述样品中权利要求10-12任一项的HCoV-NL63病毒或其功能部分、衍生物或类似物。
43.一种包含权利要求10-12任一项的分离的和/或重组的病毒或其功能部分、衍生物和/或类似物的细胞。
44.权利要求43的细胞,其中所述细胞是灵长类动物细胞。
45.权利要求43或44的细胞,其中所述细胞是肾细胞。
46.权利要求44或45的细胞,其中所述细胞是猴细胞。
47.权利要求5-8任一项的蛋白质样分子,其编码3CL蛋白酶。
48.一种确定化合物是否能至少部分抑制病毒蛋白酶的方法,特征在于所述蛋白酶是权利要求47的蛋白酶或其功能部分、衍生物和/或类似物。
49.一种能至少部分抑制权利要求47的病毒蛋白酶的化合物。
50.权利要求49的化合物,其中所述化合物包含氨基酸序列YNSTLQ或其功能部分、衍生物和/或类似物。
51.一种治疗患有冠状病毒感染的个体或者处于患有冠状病毒感染危险中的个体的药物,其中所述冠状病毒包含权利要求1-4或9任一项的核酸序列,其中所述药物包含氨基酸序列YNSTLQ或其功能部分、衍生物和/或类似物。
52.位于推定的3ClPro切割位点N末端的任何六肽在制备用于治疗患有冠状病毒感染或处于患有冠状病毒感染危险中的个体的药物中的应用,其中所述冠状病毒包含权利要求1-4或9任一项的序列。
53.一种基因输送载体,其包含权利要求1-4或9任一项的序列。
54.权利要求53的基因输送载体,其中所述载体基于权利要求1-4或9任一项的核酸。
55.权利要求10-12任一项的减毒的病毒。
56.一种包含核糖体滑动位点的多顺反子信使RNA,其包含位于图19所示核酸的第12433-12439位的序列。
57.权利要求29的疫苗,其包含具有图22所示序列的刺突蛋白的至少一个免疫原性部分。
58.权利要求57的疫苗,其中所述部分包含图19的第20472-21009位的序列,或其功能部分、衍生物和/或类似物。
59.一种嵌合的冠状病毒,其包含图19所示序列的至少1000个核苷酸及另一种冠状病毒的至少1000个核苷酸,其中所述后者1000个核苷酸包含与图19所示序列有5%以上序列差异的序列。
全文摘要
本发明揭示了具有包括人类在内的向性(tropism)的新冠状病毒HcoV-NL63。本发明提供了诊断(以前)感染该病毒的对象的方式和方法。本发明还提供了疫苗、药物、核酸及特异性结合成员。
文档编号C07K14/165GK1867667SQ200480030589
公开日2006年11月22日 申请日期2004年8月18日 优先权日2003年8月18日
发明者科尼莉亚·范德赫克 申请人:阿姆斯特丹病毒基因组学研究院股份有限公司
网友询问留言 已有1条留言
  • 访客 来自[中国] 2020年09月01日 22:54
    这些搜索治疗新冠病毒的药物核心技术和治疗新冠病毒的疫苗核心技术。以中国共产党和全体党员和14亿中国人民的名义分享给全世界国家。最好通过联合国秘书处古特雷斯先生。世卫组织总干事和全体联合国全体成员国分享给全世界国家!
    0
1