一种聚合物电解质膜的制备方法与流程

文档序号:13195459阅读:237来源:国知局

本发明涉及二次锂电池,尤其涉及聚合物电解质膜的制备方法。



背景技术:

使用非水溶液电解质的二次锂离子电池以其高比能量的特点,已经在移动通讯,便携式计算机及各种可移动电子终端机上获得了广泛的应用。目前,有两类锂离子电池,一种为使用液体有机电解质的锂离子电池,另一种为使用固体或胶体聚合物电解质的锂离子电池,其制造工艺简单,具形状灵活性(形状可变),可制成厚度小于1mm的电池,无液体泄漏,保存时间较长等。在本发明中,锂离子电池和金属锂电池统称为锂电池。随着电动车和电动工具的发展普及,人们对锂离子电池的性能提出了更高的要求,即能量密度大、功率高、循环寿命长、安全性好、体积小。显然,第一代液态锂离子电池已经不能满足需求.近年来,新一代聚合物锂离子二次电池已成为锂电池领域的研究热点。聚合物电解质具有高分子材料所特有的质量轻、弹性好、易成膜等特点,在一定程度上符合化学电源质轻、安全、高效、环保的发展趋势,因此成为近几年化学电源研究和开发的热点。

现有技术中使用聚偏氟乙烯(pvdf)和六氟丙烯(hfp)的共聚物以及含锂盐lipf6,碳酸丙烯酯(pc),碳酸乙烯酯(ec)的混合物制成的凝胶态聚合物电解质膜。此外,聚丙烯腈、聚氯乙烯、氧化聚乙烯(peo)类胶态聚合物电解质也用于锂电池。但它们的常温导电性差,制备工艺相对复杂或对环境湿度要求苛刻,电池的大电流充放电性能不能满足现代电器要求。

含氟型聚合物通常具有较好的力学性能和电化学稳定性能。目前关于含氟凝胶型聚合物电解质的报道多以多孔型聚偏氟乙烯为基质,浸渍电解液的多孔性电解质充放电速度快,比多孔性的聚烯烃隔膜电化学稳定性好,机械性能好,但是其对电解液的亲和能力差,在电池的使用过程中,电解液容易泄漏。

因此,本领域迫切需要提供在吸液能力上有提高的聚合物电解质材料及其膜的制备技术。



技术实现要素:

本发明旨在提供一种新型聚合物电解质膜的制备方法。

在本发明的第一方面,提供了一种聚合物电解质膜的制备方法,所述方法包括步骤:

(1)将分子筛材料、聚合物和溶剂混合得到浆料;

(2)将浆料涂覆于基膜上,得到湿薄膜;和

(3)使湿薄膜干燥后浸泡在锂盐电解液中得到聚合物电解质膜。

在另一优选例中,所述分子筛材料为纳米5a分子筛。

在另一优选例中,所述分子筛材料与聚合物的重量比为1﹕20-200,更优选为1﹕30-100,最优选为1﹕40-60。

在另一优选例中,步骤(1)中以获得的浆料的总重量计,其中含有分子筛材料0.1-3.3wt%。

在另一优选例中,所述聚合物选自聚偏氟乙烯(pvdf)、聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))、聚甲基丙烯酸甲酯(pmma)、或其混合。

在另一优选例中,所述聚合物中聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))的重量比为1﹕0.1-5,更优选为1﹕0.2-4,最优选为1﹕0.3-3。

在另一优选例中,所述溶剂选自下述的一种或两种以上:丙酮、n-甲基-2-吡咯烷酮、n,n-二甲基甲酰胺,n,n-二甲基乙酰胺、二甲基亚砜、乙醇、和异丙醇。

在另一优选例中,所述锂盐电解液中溶质的浓度为0.5-1.5mol/l;所述溶质为六氟磷酸锂。

在另一优选例中,所述锂盐电解液的溶剂为碳酸乙烯酯和碳酯二甲酯,其中碳酯乙烯酯和碳酯二甲酯的体积比为1:1-2。

在本发明的第二方面,提供了一种纳米5a分子筛的用途,用于制备聚合物电解质膜;所述分子筛材料与聚合物使用于制备聚合物电解质膜;所述聚合物选自聚偏氟乙烯(pvdf)、聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))、聚甲基丙烯酸甲酯(pmma)、或其混合。

据此,本发明提供了在吸液能力上有提高的聚合物电解质材料及其膜的制 备技术。

具体实施方式

发明人经过广泛而深入的研究,发现使用具有微孔结构的无机化合物,例如分子筛材料,并将液体电解质灌入电解质膜的微孔网络中,能够获得吸液性好的聚合物电解质膜。在此基础上,完成了本发明。

在本发明中,“基膜”是指pp、pe、pet基膜或pet无纺布基膜。

pet(polyethyleneterephthalate,聚对苯二甲酸乙二醇酯,化学式为coc6h4cooch2ch2o)属结晶型饱和聚酯,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。无纺布(nonwovenfabric或者nonwovencloth,又称不织布),是直接利用高聚物切片、短纤维或长丝将纤维通过气流或机械成网,然后经过水刺,针刺,或热轧加固,最后经过后整理形成的无编织的布料。pet无纺布是采用pet材质粒料为原料生产而成。pet材质的拉伸强度为35-52mpa,弯曲模量为200-10343mpa,熔点为254-265℃,密度为1.27-1.67g/cm3,相对分子质量为2-3万。

pe(polyethylene,聚乙烯)是乙烯经聚合制得的一种热塑性树脂。聚乙烯用途广泛,主要用来制造薄膜等。pe材质的拉伸强度30-42mpa,弯曲模量为500-760mpa,熔点为130-136℃,密度为0.93-0.96g/cm3,相对分子质量100-400万。

pp(polypropylene,聚丙烯)是由丙烯聚合而制得的一种热塑性树脂。pp基膜即聚丙烯薄膜。pp材质的拉伸强度21-39mpa,弯曲模量为800mpa,熔点为164-170℃,密度为0.89-0.91g/cm3,相对分子质量8-15万。

-

5a分子筛是一种化学物质,分子式是ca34na28[(alo2)96(sio2)96]·216h2o。

10x分子筛是一种化学物质,分子式是ca35na16[(alo2)86(sio2)106]·264h2o。

y型分子筛是一种化学物质,分子式是na56[(alo2)56(sio2)136]·264h2o。

本发明提供的一种制备聚合物电解质膜的方法包括下述步骤:

第一步,将分子筛材料、聚合物和溶剂混合,获得浆体;

第二步,将浆体涂在基膜上形成湿薄膜;

第三步,干燥湿薄膜获得薄膜;

第四步,将薄膜浸泡在锂盐电解液中,取出后得到本发明的新型聚合物电解质膜。

上述第一步中的分子筛材料与聚合物的重量比为1﹕20-200,优选为1﹕30-100,更优选为1﹕40-60;以获得的浆体的总重量计,其中含有分子筛材料0.1-3.3wt%。

在本发明的一种实施方式中,上述第一步中的混合是将分子筛材料和聚合物溶于溶剂中,并进行充分的搅拌以使获得的浆体均匀。

上述第一步涉及的分子筛材料为纳米5a分子筛。

上述第一步中的涉及的聚合物选自聚偏氟乙烯(pvdf)、聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))、聚甲基丙烯酸甲酯(pmma)、或其混合;优选聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp)))和聚甲基丙烯酸甲酯(pmma)的混合,所述混合中聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))的重量比为1﹕0.1-5,优选为1﹕0.2-4,更优选为1﹕0.3-3。

上述第一步中涉及的溶剂选自下述的一种或两种以上:丙酮、n-甲基-2-吡咯烷酮、n,n-二甲基甲酰胺,n,n-二甲基乙酰胺、二甲基亚砜、乙醇、和异丙醇;优选n,n-二甲基乙酰胺。

上述第二步中涉及的基膜包括pp、pe、pet基膜和pet无纺布基膜;优选pet无纺布基膜。

在本发明的一种实施方式中,上述第三步中将湿薄膜在85-95℃下的干燥10-20分钟。

在本发明的一种实施方式中,上述第四步在干燥环境中进行浸泡,浸泡时间为25-35秒。

在本发明的一种优选实施方式中,上述第四步在取出后将膜表面的液体吸去。

上述第四步中涉及的锂盐电解液中溶质的浓度为0.5-1.5mol/l;所述溶质为六氟磷酸锂;溶剂为碳酸乙烯酯(ec)和碳酸二甲酯(dmc)的混合溶剂。

在本发明的一种优选实施方式中,所述锂盐电解液可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂,其中碳酸乙烯酯(ec)和碳酸二甲酯(dmc)的体积比为1﹕1。

通过本发明的制备方法获得的聚合物电解质膜中聚合物电解质膜的质量分数为30-70%,在25℃情况下,该聚合物电解质膜的导离子率可为1.0x10-3scm-1

本发明还提供一种分子筛材料的用途,即与聚合物一起使用于制备聚合物电解质膜。分子筛材料为纳米5a分子筛;所述聚合物选自聚偏氟乙烯(pvdf)、聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))、聚甲基丙烯酸甲酯(pmma)、或其混合;优选聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))和聚甲基丙烯酸甲酯(pmma)的混合。

本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。

本发明的主要优点在于:

(1)本发明提供的聚合物电解质膜具有很强的吸收液体能力和液体保持能力。

(2)本发明提供的聚合物电解质膜由于支链上已经存在锂离子,因此电池中只要加入少量的锂盐就能达到与液态电解质相当的电导率,易于工业化。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。

下述实施例和对比例中的不同隔膜进行性能的测试与表征:

膜厚度:采用千分尺(精度0.01毫米)测试不同隔膜的厚度,任意取样品上的5个点,取平均值。

孔隙率:把隔膜浸泡在正丁醇中10小时,然后根据公式计算孔隙率:

p=(mb/ρb)/(mb/ρb+mp/ρp)×100%

其中,ρb和ρp是正丁醇的密度和纤维素的干密度,mb和mp是膜吸入的正丁醇的质量和纤维膜自身的质量。

吸收量:把隔膜浸润在电解液中10小时,使隔膜中的电解液达到饱和,分别测试隔膜吸收电解液前后的质量,根据以下公式计算:

eu={(w-wo)/wo}×100%

其中,wo和w为吸收电解液前后隔膜的质量。

平均孔径:首先被打开的孔所对应的压力,为泡点压力,该压力所对应的孔径为最大孔径;在此过程中,实时记录压力和流量,得到压力-流量曲线;压力反应孔径大小的信息,流量反应某种孔径的孔的多少的信息;然后再测试出干膜的压力-流量曲线,可根据相应的公式计算得到该膜样品的平均孔径。孔径和压力的关系如washburn公式:

d=4γcosθ/p

公式中d=孔隙直径;γ=液体的表面张力;θ=接触角和p=压差

导离子性:将试样放入温度为23±2℃的电解液中,保持密封,浸泡2h。将电解液注入电阻测试模具中,并将其与化学工作站连接,设置测试参数。依次放入1层隔膜,测试其阻抗谱,再放入一层,测试其阻抗谱,直至放入4层,测量出四个阻抗谱图,并从阻抗谱图中分别读取1到4层时的阻值r1、r2、r3和r4。以层数为横坐标,隔膜阻值为纵坐标作曲线,求出曲线的斜率和线性拟合度,当线性拟合度大于0.99时,隔膜的导离子率按照下式进行计算:

σ=d/1000ks

式中:σ—试样的离子电导率,单位为西门子/米(s/cm)

d—试验的厚度,单位为微米(μm)

k—曲线的斜率

s—隔膜的测试面积,单位为平方厘米(cm2)。

实施例1

将0.05g的纳米5a分子筛、2g聚偏氟乙烯溶于丙酮中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pp基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc (1:1)中30秒后取出,用滤纸吸去膜表面的液体。

所述的锂盐电解液的浓度为0.5-1.5mol/l,所述锂盐电解液中,溶质为六氟磷酸锂(lipf6),溶剂为碳酸乙烯酯(ec)和碳酸二甲酯(dmc),也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂(同以下实施例)。

实施例2

将0.02g的纳米5a分子筛、2g聚偏氟乙烯与六氟丙烯共聚物(p(vdf-hfp))溶于n-甲基吡咯烷酮(nmp)中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pe基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

实施例3

将0.07g的纳米5a分子筛分子筛、1g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

实施例4

将0.05g的纳米5a分子筛分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

实施例5

将0.07g的纳米5a分子筛分子筛、0.85g聚偏氟乙烯+六氟丙烯共聚物 (p(vdf-hfp))和1g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pe基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

实施例6

将0.02g的纳米5a分子筛分子筛、3g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pe基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

对比例1

将1g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

对比例2

将0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例3

将0.05g的10x分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。 将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例4

将0.05g的y型分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例5

将0.05g的纳米5a分子筛分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和0.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例6

将0.05g的纳米5a分子筛分子筛、2.0g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和2.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例7

将0.125g的纳米5a分子筛分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

对比例8

将0.008g的纳米5a分子筛分子筛、0.5g聚偏氟乙烯+六氟丙烯共聚物(p(vdf-hfp))和1.5g聚甲基丙烯酸甲酯(pmma)溶于n,n-二甲基乙酰胺中。该混合溶液经过充分搅拌后成为均匀的浆体。将浆体涂在pet无纺布基膜上成为湿薄膜。将湿薄膜在90℃下干燥15min,再将薄膜在干燥环境中浸泡在电解液如1mlipf6+ec:dmc(1:1)中30秒后取出,用滤纸吸去膜表面的液体。

也可简写为lipf6/(ec+dmc),其中,ec+dmc表示碳酸乙烯酯和碳酸二甲酯混合溶剂。

各实施例、对比例、基膜的基本性质及吸液性能见附表1。

附表1各样品的理化性能

注:隔膜的吸收量(%)=(w-w0)/w0×100,w和w0分别为吸液前后隔膜的重量。

以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1