一种以含氮五元杂环为核心的化合物及其在OLED器件上的应用的制作方法

文档序号:12151333阅读:194来源:国知局
本发明涉及半导体
技术领域
,尤其是涉及一种含氮五元杂环为核心的化合物,以及其作为发光层材料在有机发光二极管上的应用。
背景技术
:有机电致发光(OLED:OrganicLightEmissionDiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达100%。但磷光材料存在价格昂贵,材料稳定性较差,器件效率滚落严重等问题限制了其在OLEDs的应用。热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(△EST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%。同时,材料结构可控,性质稳定,价格便宜无需贵重金属,在OLEDs领域的应用前景广阔。虽然理论上TADF材料可以实现100%的激子利用率,但实际上存在如下问题:(1)设计分子的T1和S1态具有强的CT特征,非常小的S1-T1态能隙,虽然可以通过TADF过程实现高T1→S1态激子转化率,但同时导致低的S1态辐射跃迁速率,因此,难于兼具(或同时实现)高激子利用率和高荧光辐射效率;(2)即使已经采用掺杂器件减轻T激子浓度猝灭效应,大多数TADF材料的器件在高电流密度下效率滚降严重。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。技术实现要素:针对现有技术存在的上述问题,本申请人提供了一种以含氮五元杂环为核心的化合物及其在有机电致发光器件上的应用。本发明化合物基于TADF机理以含氮五元杂环为核心,作为发光层材料应用于有机发光二极管,本发明制作的器件具有良好的光电性能,能够满足面板制造企业的要求。本发明的技术方案如下:本申请人提供了一种以含氮五元杂环为核心的化合物,该化合物结构如通式(1)所示:通式(1)中,X表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;通式(1)中,Ar表示苯基、联苯基、萘基、蒽基、菲基、芘基、呋喃基、噻吩基或吡啶基;通式(1)中,R1、R2分别独立的表示为通式(2)所示结构;R1与R2可以相同或不同;R1还可以表示为氢原子;通式(2)中,R3、R4分别独立的表示为氢原子、通式(3)或通式(4)所示结构,且R3、R4不同时为氢原子;其中,a选自X1、X2、X3、X4分别独立的表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;通式(3)、通式(4)通过CL1-CL2键、CL2-CL3键、CL3-CL4键、CL‘1-CL’2键、CL‘2-CL’3键或CL‘3-CL’4键和通式(2)连接。优选的,所述R1、R2表示为:中的任意一种。优选的,所述化合物的具体结构式为:中的任一种。本申请人还提供了一种制备所述化合物的方法,制备过程中发生的反应方程式是:当R1为氢原子时,具体制备方法为:称取以含氮五元杂环为核心的溴代化合物和R2-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述以含氮五元杂环为核心的溴代化合物与R2-H的摩尔比为1:1.0~1.5,Pd2(dba)3与以含氮五元杂环为核心的溴代化合物的摩尔比为0.006~0.02:1,三叔丁基膦与以含氮五元杂环为核心的溴代化合物的摩尔比为0.006~0.02:1,叔丁醇钠与以含氮五元杂环为核心的溴代化合物的摩尔比为2.0~3.0:1;当R1不为氢原子且R1和R2相同时,具体制备方法为:称取含氮五元杂环为核心的溴代化合物和R1-H或R2-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述以含氮五元杂环为核心的溴代化合物与R1-H或R2-H的摩尔比为1:2.0~3.0,Pd2(dba)3与以含氮五元杂环为核心的溴代化合物的摩尔比为0.006~0.02:1,三叔丁基膦与以含氮五元杂环为核心的溴代化合物的摩尔比为0.006~0.02:1,叔丁醇钠与以含氮五元杂环为核心的溴代化合物的摩尔比为3.0~5.0:1;当R1不为氢原子且当R1和R2不同时,具体制备方法为:称取以含氮五元杂环为核心的卤代化合物和R2-H,用甲苯溶解;再加入CuCl、1,10-邻菲啰啉、氢氧化钾;在惰性气氛下,将上述反应物的混合溶液于反应温度100~140℃,反应8~20小时,反应结束后加入1mol/L稀盐酸中和,混合液采用二氯甲烷萃取,有机相分别用氨水及水洗涤,旋蒸,过硅胶柱,得到中间产物;所述以含氮五元杂环为核心的卤代化合物与R2-H的摩尔比为1:1.0~1.5,CuCl与以含氮五元杂环为核心的卤代化合物的摩尔比为0.05~0.15:1,1,10-邻菲啰啉与以含氮五元杂环为核心的卤代化合物的摩尔比为0.05~0.15:1,氢氧化钾与以含氮五元杂环为核心的卤代化合物的摩尔比为3.0~5.0:1;称取中间产物和R1-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述中间产物与R1-H的摩尔比为1:1.0~1.5,Pd2(dba)3与中间产物的摩尔比为0.006~0.02:1,三叔丁基膦与中间产物的摩尔比为0.006~0.02:1,叔丁醇钠与中间产物的摩尔比为2.0~3.0:1。本申请人还提供了一种包含所述化合物的发光器件,所述化合物作为发光层材料,用于制作OLED器件。本发明有益的技术效果在于:本发明化合物是一种发光材料,该类材料具有分子间不易结晶、不易聚集、具有良好成膜性的特点,本发明化合物分子中的刚性基团可以提高材料的热稳定性,所述化合物结构分子内包含电子给体(donor,D)与电子受体(acceptor,A)的组合可以增加轨道重叠、提高发光效率,同时连接芳香杂环基团以获得HOMO、LUMO空间分离的电荷转移态材料,实现小的S1态和T1态的能级差,从而在热刺激条件下实现反向系间窜越,适合作为发光层主体材料使用。进一步的,根据材料分子设计的不同,此类化合物也可以作为发光层材料的掺杂材料使用。本发明化合物作为OLED发光器件的发光层材料使用时,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显。本发明所述化合物材料在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。附图说明图1为本发明化合物应用的器件结构示意图;其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为发光层,6为电子传输层,7为电子注入层,8为阴极反射电极层。具体实施方式下面结合附图和实施例,对本发明进行具体描述。实施例1:化合物3的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol2,5-二(4-溴苯基)-1,3,4-恶二唑,0.024mol中间体A1,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度98.9%,收率75.2%;元素分析结构(分子式C44H36N4O):理论值C,86.15;H,4.28;N,7.44;O,2.13;测试值:C,86.14;H,4.26;N,7.45;O,2.15。HPLC-MS:材料分子量为752.86,实测分子量753.03。实施例2:化合物5的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol2,5-二(4-溴苯基)-1,3,4-恶二唑,0.024mol中间体B1,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度99.2%,收率73.5%;元素分析结构(分子式C58H28N4O3):理论值C,81.95;H,3.85;N,7.65;O,6.55;测试值:C,81.93;H,3.87;N,7.67;O,6.53。HPLC-MS:材料分子量为732.78,实测分子量732.98。实施例3:化合物9的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol2,5-二(4-溴苯基)-1,3,4-恶二唑,0.024mol中间体B2,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度99.5%,收率71.8%;元素分析结构(分子式C50H28N4O3):理论值C,81.95;H,3.85;N,7.65;O,6.55;测试值:C,81.97;H,3.83;N,7.64;O,6.56。HPLC-MS:材料分子量为732.78,实测分子量732.92。实施例4:化合物16的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol3,5-二(4-溴苯基)-4,4-二甲基-4H-吡唑,0.024mol中间体B3,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度99.4%,收率72.6%;元素分析结构(分子式C59H46N4):理论值C,87.37;H,5.72;N,6.91;测试值:C,87.39;H,5.71;N,6.90。HPLC-MS:材料分子量为811.02,实测分子量811.20。实施例5:化合物21的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol2,5-二(4-溴苯基)-1,3,4-恶二唑,0.024mol中间体A2,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度98.5%,收率70.2%;元素分析结构(分子式C64H44N4O):理论值C,86.85;H,5.01;N,6.33;O,1.81;测试值:C,86.86;H,5.02;N,6.32;O,1.80。HPLC-MS:材料分子量为885.06,实测分子量885.28。实施例6:化合物29的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol3,5-二(4-溴苯基)-4,4-二甲基-4H-吡唑,0.024mol中间体B4,0.04mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度99.5%,收率75.5%;元素分析结构(分子式C53H34N4O2):理论值C,83.88;H,4.52;N,7.38;O,4.22;测试值:C,83.87;H,4.53;N,7.39;O,4.21。HPLC-MS:材料分子量为758.86,实测分子量758.99。实施例7:化合物41的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入0.01mol2-(4-溴苯基)-5-苯基-1,3,4-恶二唑,0.012mol中间体C1,0.03mol叔丁醇钠,5×10-5molPd2(dba)3,5×10-5mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度98.5%,收率78.2%;元素分析结构(分子式C50H31N5O):理论值C,83.66;H,4.35;N,9.76;O,2.23;测试值:C,83.65;H,4.37;N,9.77;O,2.21。HPLC-MS:材料分子量为717.81,实测分子量717.98。实施例8:化合物49的合成:合成路线:在250ml的三口瓶中,通氮气保护下,加入2-(4-溴苯基)-5-苯基-1,3,4-恶二唑,0.012mol中间体D1,0.03mol叔丁醇钠,5×10-5molPd2(dba)3,5×10-5mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,柱层析得到目标产物,HPLC纯度99.5%,收率72.2%;元素分析结构(分子式C41H27N3O2):理论值C,82.95;H,4.58;N,7.08;O,5.39;测试值:C,82.94;H,4.57;N,7.09;O,5.40。HPLC-MS:材料分子量为593.67,实测分子量593.86。实施例9:化合物60的合成:合成路线:化合物60的制备方法同实施例7,不同之处在于用中间体E1替换中间体C1。元素分析结构(分子式C44H33N3O):理论值C,85.27;H,5.37;N,6.78;O,2.58;测试值:C,85.26;H,5.38;N,6.77;O,2.59。HPLC-MS:材料分子量为619.75,实测分子量619.90。实施例10:化合物61的合成:合成路线:化合物61的制备方法同实施例7,不同之处在于用中间体F1替换中间体C1。元素分析结构(分子式C38H21N3O3):理论值C,80.41;H,3.73;N,7.40;O,8.46;测试值:C,80.42;H,3.72;N,7.42O,8.44HPLC-MS:材料分子量为567.59,实测分子量567.73。实施例11:化合物63的合成:合成路线:化合物63的制备方法同实施例1,不同之处在于用中间体G1替换中间体A1。元素分析结构(分子式C56H40N4O3):理论值C,82.33;H,4.94;N,6.86;O,5.88;测试值:C,82.31;H,4.95;N,6.87;O,5.87。HPLC-MS:材料分子量为816.94,实测分子量817.16。实施例12:化合物89的合成:合成路线:化合物89的制备方法同实施例1,不同之处在于用中间体G2替换中间体A1。元素分析结构(分子式C56H40N4O3):理论值C,82.33;H,4.94;N,6.86;O,5.88;测试值:C,82.32;H,4.95;N,6.87;O,5.86。HPLC-MS:材料分子量为816.94,实测分子量817.13。实施例13:化合物94的合成:合成路线:化合物94的制备方法同实施例1,不同之处在于用中间体G3替换中间体A1。元素分析结构(分子式C56H40N4O3):理论值C,82.33;H,4.94;N,6.86;O,5.88;测试值:C,82.34;H,4.92;N,6.88;O,5.86。HPLC-MS:材料分子量为816.94,实测分子量817.09。实施例14:化合物110的合成:合成路线:化合物110的制备方法同实施例7,不同之处在于用中间体H1替换中间体C1。元素分析结构(分子式C50H38N4O2):理论值C,82.62;H,5.27;N,7.71;O,4.40;测试值:C,82.61;H,5.26;N,7.72;O,4.41。HPLC-MS:材料分子量为726.86,实测分子量726.97。实施例15:化合物118的合成:合成路线:化合物118的制备方法同实施例7,不同之处在于用中间体I1替换中间体C1。元素分析结构(分子式C40H26N4O):理论值C,83.02;H,4.53;N,9.68;O,2.76;测试值:C,83.04;H,4.54;N,9.67;O,2.75。HPLC-MS:材料分子量为578.66,实测分子量578.85。本发明化合物可以作为发光层材料使用,对本发明化合物9、化合物63、化合物100、现有材料CBP进行热性能、发光光谱及循环伏安稳定性的测试,测试结果如表1所示。表1化合物Td(℃)λPL(nm)循环伏安稳定性化合物9405481优化合物63418513优化合物100421516优材料CBP353369差注:热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;λPL是样品溶液荧光发射波长,利用日本拓普康SR-3分光辐射度计测定;循环伏安稳定性是通过循环伏安法观测材料的氧化还原特性来进行鉴定;测试条件:测试样品溶于体积比为2:1的二氯甲烷和乙腈混合溶剂,浓度1mg/mL,电解液是0.1M的四氟硼酸四丁基铵或六氟磷酸四丁基铵的有机溶液。参比电极是Ag/Ag+电极,对电极为钛板,工作电极为ITO电极,循环次数为20次。由上表数据可知,本发明化合物具有较好的氧化还原稳定性,较高的热稳定性,合适的发光光谱,使得应用本发明化合物作为发光层材料的OLED器件效率和寿命得到提升。以下通过实施例16~22和比较例1详细说明本发明合成的化合物在器件中作为发光层主体材料的应用效果。实施例17~22、比较例1与实施例16相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中发光层材料发生了改变。所不同的是对器件中的发光层5的主体材料及掺杂材料做了变换。各实施例所得器件的结构组成如表2所示。所得器件的测试结果见表3所示。实施例16ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度140nm)/发光层5(化合物9和Ir(pq)2acac按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/Al。涉及到的材料结构式如下:具体制备过程如下:透明基板层1为透明基材,如透明PI膜、玻璃等。对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的三氧化钼MoO3作为空穴注入层3使用。紧接着蒸镀140nm厚度的TAPC作为空穴传输层4。上述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包括OLED发光层5所使用材料化合物9作为主体材料,Ir(pq)2acac作为掺杂材料,掺杂材料掺杂比例为5%重量比,发光层膜厚为30nm。在上述发光层5之后,继续真空蒸镀电子传输层材料为TPBI。该材料的真空蒸镀膜厚为40nm,此层为电子传输层6。在电子传输层6上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(LiF)层,此层为电子注入层7。在电子注入层7上,通过真空蒸镀装置,制作膜厚为80nm的铝(Al)层,此层为阴极反射电极层8使用。如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。所制作的OLED发光器件的测试结果见表3。表2表3说明:器件测试性能以比较例1作为参照,比较例1器件各项性能指标设为1.0。比较例1的电流效率为14.8cd/A(@10mA/cm2);CIE色坐标为(0.66,0.33);3000亮度下LT95寿命衰减为11Hr。寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。由表3的结果可以看出本发明所述化合物可应用于OLED发光器件制作,并且与比较例1相比,无论是效率还是寿命均获得较大改观,特别是器件的驱动寿命获得较大的提升。以下通过实施例23~29和比较例2说明本发明合成的化合物在器件中作为发光层掺杂材料的应用效果。本发明所述23-29、比较例2与实施例16相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件的传输层膜厚及发光层5中的掺杂材料不同,掺杂浓度变为7%。各器件的结构组成如表4所示。所得器件的测试结果见表5所示。表4表5表5的结果表明:本发明所述化合物可作为发光层掺杂材料应用于OLED发光器件制作,并且与比较例2相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的驱动寿命获得较大的提升。从实施例所提供的测试数据来看,本发明化合物作为发光层材料在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。虽然已通过实施例和优选实施方式公开了本发明,但应理解,本发明不限于所公开的实施方式。相反,本领域技术人员应明白,其意在涵盖各种变型和类似的安排。因此,所附权利要求的范围应与最宽的解释相一致以涵盖所有这样的变型和类似的安排。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1