一种微胶囊、其制备方法、仿生防污涂料和仿生防污涂层与流程

文档序号:11469821阅读:352来源:国知局

本发明涉及防污涂料技术领域,尤其涉及一种微胶囊、其制备方法、仿生防污涂料和仿生防污涂层。



背景技术:

生物污损是指海洋生物如藻类、贝类以及浮游生物等附着于船底和水下建筑表面上,并大量繁殖后,在附着物表面积积聚产生污垢,使其表面环境发生变化,从而导致附着物性能下降甚至破坏。

海洋污损生物使得船只摩擦阻力增加,燃料消耗增大,给人类造成了巨大的经济损失。海洋防污涂料是海洋船只涂料中最重要品种之一,而防污剂在海洋防污涂料中对海洋污损生物的防治起着关键性的作用。

现有技术中,柿单宁、吸水树脂、无机纳米氧化银粒子等防污剂都有一定的抗菌防污效果,在聚丙烯酸酯中复合并涂装后,涂层能产生梯度层次毒杀污染船体的海洋生物效果,但它们的疏水性和防污性能仍有待提高。



技术实现要素:

有鉴于此,本发明的目的在于提供一种微胶囊、其制备方法、仿生防污涂料和仿生防污涂层,该微胶囊制备的仿生防污涂料具有良好的疏水性能和防污性能。

本发明提供了一种微胶囊,包括囊芯和包裹所述囊芯的囊壁;

所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种;

所述囊壁为脲醛树脂。

优选地,所述微胶囊的粒径为0.5~2.0μm。

本发明提供了一种上述技术方案所述微胶囊的制备方法,包括以下步骤:

将囊芯原料和乳化剂溶液混合,乳化,得到乳液;所述囊芯原料包括硅油或混合物,所述混合物为硅油和防污剂的混合物;

将所述乳液的ph值调节至8~9后,再加入尿素、甲醛溶液、交联剂和固化剂,反应,得到微胶囊。

优选地,所述尿素、甲醛、硅油和乳化剂的质量比1:1:2~5:2~2.5。

优选地,所述反应的温度为50~70℃;所述反应的时间为4~7h。

优选地,所述乳化剂选自十二烷基苯磺酸钠、聚乙烯醇和阿拉伯树胶中的一种或多种。

本发明提供了一种仿生防污涂料,包括1~20重量份的微胶囊和100重量份的树脂基体;

所述微胶囊为上述技术方案所述微胶囊或上述技术方案所述制备方法制备的微胶囊。

优选地,所述树脂基体选自丙烯酸锌树脂、聚四氟乙烯改性的丙烯酸树脂、聚二甲基硅氧烷树脂和聚氨酯树脂中的一种或多种。

本发明提供了一种仿生防污涂层,由上述技术方案所述仿生防污涂料涂布制得。

优选地,所述仿生防污涂层的厚度为50~80μm。

本发明提供了一种微胶囊,包括囊芯和包裹所述囊芯的囊壁;所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种;所述囊壁为脲醛树脂。该微胶囊与树脂基体混合制备的仿生防污涂料具有良好的疏水性能和防污性能;延长了涂料的使用寿命。实验结果表明:本发明制备的仿生防污涂料接触角达到120°以上;三个月后,微胶囊的缓释效率均达到50%以上;仿生防污涂层的菌类附着量为0.1%~11%;藻类附着量为1%~21%。

具体实施方式

本发明提供了一种微胶囊,包括囊芯和包裹所述囊芯的囊壁;

所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种;

所述囊壁为脲醛树脂。

本发明提供的微胶囊仿真荷叶表面结构,使其制备的涂层表面形成了一种特殊的微纳米结构,这种结构可以增强涂层表面的抗湿润型,达到疏水与自清洁的效果。该微胶囊还可以延缓防污剂的释放速率,起到很好的缓释作用,延长其制备的涂料的使用寿命。

本发明提供的微胶囊包括囊芯。所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物。所述囊芯为硅油和防污剂的混合物时,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种。在本发明中,所述硅油和防污剂的质量比没有限定,优选为2~5:2~2.5。

本发明提供的微胶囊包括包裹所述囊芯的囊壁,所述囊壁为脲醛树脂。具体地,所述囊壁为尿素与甲醛经界面缩聚反应而成的脲醛树脂。

在本发明中,所述微胶囊的粒径优选为0.5~2.0μm。所述微胶囊的状态为自由流动的粉末状态。

本发明提供了一种上述技术方案所述微胶囊的制备方法,包括以下步骤:

将囊芯原料和乳化剂溶液混合,乳化,得到乳液;所述囊芯原料包括硅油或混合物,所述混合物为硅油和防污剂的混合物;

将所述乳液的ph值调节至8~9后,再加入尿素、甲醛溶液、交联剂和固化剂,反应,得到微胶囊。

该方法制备微胶囊具有较高的包覆率。

本发明将囊芯原料和乳化剂溶液混合,乳化,得到乳液。

具体地,所述囊芯原料为硅油时,微胶囊的制备方法包括:

将乳化剂溶解于去离子水中,得到乳化剂溶液;

将硅油和乳化剂溶液混合,乳化,得到乳液;

将所述乳液的ph值调节至8~9后,加入尿素、甲醛溶液、交联剂和固化剂,反应,得到微胶囊。

本发明优选在搅拌的条件下,将硅油滴入乳化剂中;滴加完毕后,升高转速至2000~2400r/min,乳化,得到乳液。本发明优选采用naoh溶液或hcl溶液调节乳液的ph值。本发明优选将所述乳液的ph值调节至8~9后,在搅拌的条件下加入尿素、甲醛溶液、交联剂和固化剂;然后在至500~900r/min的转速下搅拌反应,得到微胶囊。所述交联剂优选为间苯二酚;所述固化剂优选为氯化铵。本发明优选以0.2~2.5℃/min的升温速率升温至反应所需的温度。

具体地,所述囊芯原料为硅油和防污剂的混合物时,微胶囊的制备方法包括:

将乳化剂溶解于去离子水中,得到乳化剂溶液;

将硅油与防污剂混合均匀,得到混合物;

将混合物和乳化剂溶液混合,乳化,得到乳液;

将所述乳液的ph值调节至8~9后,再加入尿素、甲醛溶液、交联剂和固化剂,反应,得到微胶囊。

本发明优选在搅拌的条件下,将混合物滴入乳化剂中;滴加完毕后,升高转速至2000~2400r/min,乳化,得到乳液。本发明优选采用naoh溶液或hcl溶液调节乳液的ph值。本发明优选将所述乳液的ph值调节至8~9后,在搅拌的条件下加入尿素、甲醛溶液、交联剂和固化剂;然后在至500~900r/min的转速下搅拌反应,得到微胶囊。

在本发明中,所述尿素、甲醛、硅油和乳化剂的质量比1:1:2~5:2~2.5。

在本发明中,所述反应的温度为50~70℃;所述反应的时间为4~7h。

在本发明中,所述乳化剂优选选自十二烷基苯磺酸钠、聚乙烯醇和阿拉伯树胶中的一种或多种。

本发明提供了一种仿生防污涂料,包括1~20重量份的微胶囊和100重量份的树脂基体;

所述微胶囊为上述技术方案所述微胶囊或上述技术方案所述制备方法制备的微胶囊。

本发明提供的仿生防污涂料具有优异的疏水性和防污性能。

在本发明中,所述仿生防污涂料优选按照以下方法制得:

将1~20重量份的微胶囊和100重量份的树脂基体混合,得到仿生防污涂料。

在本发明中,所述仿生防污涂料包括1~20重量份的微胶囊,优选为5~15重量份。

本发明中,所述仿生防污涂料包括100重量份的树脂基体;所述树脂基体优选选自丙烯酸锌树脂、聚四氟乙烯改性的丙烯酸树脂、聚二甲基硅氧烷树脂和聚氨酯树脂中的一种或多种。

本发明提供了一种仿生防污涂层,由上述技术方案所述仿生防污涂料涂布制得。

在本发明中,所述仿生防污涂层的厚度优选为50~80μm。仿生防污涂层的表面形成类似荷叶表面的微纳米结构,使得涂层的疏水性能增加,同时显示出良好的防污性能。微胶囊掺杂在涂层中在有效提高防污效果的同时,提高了防污涂层的使用寿命,减低了成本。

本发明优选采用以下方式对上述技术方案所述仿生防污涂层进行性能测定:

仿生防污涂层表面接触角测定方法:接触角测试在室温条件下进行,利用接触角测试仪将蒸馏水滴在杂化涂层的基板上,每个基板取三个不同的位置进行测试,选择接近平均值的接触角进行表征。

仿生防污涂层微胶囊的缓释性能测试方法:将纯硅油或防污剂与不同防污涂料混合,按照上述仿生防污涂料涂布方法涂布在基板上。将制备好的涂层与仿生防污涂层的缓释效率进行对比,以两种涂层的水接触角的变化程度作为衡量两者缓释效率的标准。具体为将所述涂层表面以固定流速的自来水浸蚀2小时作为1个腐蚀周期。在一个腐蚀周期之后,80℃下干燥固化3-5分钟,测量水接触角。本发明对所述硅油或混合物占涂料的质量百分比不进行限定,所述硅油或混合物占涂料质量百分比为15%。

仿生防污涂层的抗菌类附着测试方法:在抑菌试验中,选用芽孢杆菌为代表。取300μl适当浓度的芽孢杆菌悬浊液,将微胶囊质量百分含量为15%的仿生防污涂层玻璃板竖直置于菌液之中,在37℃的恒温培养箱中培养24h取出,用无菌蒸馏水清洗。用显微镜观察菌落生长情况,以菌落面积占整个基板面积百分比作为衡量防污剂抑菌效果的依据。本发明对所述细菌不进行限定,所述细菌优选芽孢杆菌、假单胞菌与孤菌中的一种或多种。

涂层抗藻类附着测试方法:在检测涂层抗藻类附着试验中,选取绿藻为代表。将微胶囊质量百分含量为15%的仿生防污涂层玻璃板竖直置于绿藻培养液,一段时间后,用无菌蒸馏水清洗,用面积占整个基板面积百分比作为衡量抗藻类附着效果的指标。本发明对所述藻类不进行限定,所述藻类优选绿藻和/或硅藻。

本发明提供了一种微胶囊,包括囊芯和包裹所述囊芯的囊壁;所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种;所述囊壁为脲醛树脂。该微胶囊与树脂基体混合制备的仿生防污涂料具有良好的疏水性能和防污性能;延长了涂料的使用寿命。实验结果表明:本发明制备的仿生防污涂料接触角达到120°以上;三个月后,微胶囊的缓释效率均达到50%以上;仿生防污涂层的菌类附着量为0.1%~11%;藻类附着量为1%~21%。

为了进一步说明本发明,下面结合实施例对本发明提供的一种微胶囊、其制备方法、仿生防污涂料和仿生防污涂层进行详细地描述,但不能将它们理解为对本发明保护范围的限定。

实施例1

将5g十二烷基苯磺酸钠溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠完全溶解;在剧烈搅拌下,将5g硅油逐滴滴入上述十二烷基苯磺酸钠溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以0.5℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到丙烯酸锌树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度40μm,50℃下固化2h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例1制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到121°以上;三个月后,微胶囊的缓释效率均达到58%;本发明制备仿生防污涂层的菌类附着量11%,藻类附着量21%。

实施例2

将5g阿拉伯树胶溶解于140ml去离子水中,搅拌,使阿拉伯树胶完全溶解;在剧烈搅拌下,将5g硅油与1.2g氧化亚铜混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到丙烯酸锌树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度60μm,60℃下固化3h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例2制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到124°以上;三个月后,微胶囊的缓释效率均达到54%;本发明实施例2制备的仿生防污涂层的菌类附着量为0.1%,藻类附着量为1.0%。

实施例3

将4g十二烷基苯磺酸钠和6g聚乙烯醇溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠和聚乙烯醇完全溶解;在剧烈搅拌下,将12.5g硅油与2.5g苯氟磺胺混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚四氟乙烯改性的丙烯酸树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度60μm,55℃下固化5h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例3制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到129°以上;三个月后,微胶囊的缓释效率均达到56%;本发明实施例3制备的含防污剂的仿生防污涂层的菌类附着量为0.4%,藻类附着量为1.2%。

实施例4

将5g十二烷基苯磺酸钠和5g阿拉伯树胶溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠和阿拉伯树胶完全溶解;在剧烈搅拌下,将5g硅油与10ml异噻唑淋酮混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1.5℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚二甲基硅氧烷树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度40μm,70℃下固化4h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例4制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到131°以上;三个月后,微胶囊的缓释效率均达到54%;本发明实施例4制备的含防污剂的仿生防污涂层相的菌类附着量为0.6%,藻类附着量为1.1%。

实施例5

将5g十二烷基苯磺酸钠和5g阿拉伯树胶溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠和阿拉伯树胶完全溶解;在剧烈搅拌下,将5g硅油与2.5g吡啶硫酮锌混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚氨酯树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度40μm,60℃下固化5h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例5制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到127°以上;三个月后,微胶囊的缓释效率均达到51%;本发明实施例5制备的含防污剂的仿生防污涂层的菌类附着量为0.3%,藻类附着量为1.0%。

实施例6

将10g聚乙烯醇溶解于140ml去离子水中,搅拌,使聚乙烯醇完全溶解;在剧烈搅拌下,将12.5g硅油与2.0g琉氧吡啶酮混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1.2℃/min的升温速度将溶液缓慢升温至70℃,保温5h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚氨酯树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度50μm,60℃下固化2h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例6制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到131°以上;三个月后,微胶囊的缓释效率均达到59%;本发明实施例6制备的含防污剂的仿生防污涂层的菌类附着量为0.1%,藻类附着量为1.1%。

实施例7

将6g十二烷基苯磺酸钠和4g阿拉伯树胶溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠和阿拉伯树胶完全溶解;在剧烈搅拌下,将10.0g硅油与1.5g琉氧吡啶锌混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化25min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以0.8℃/min的升温速度将溶液缓慢升温至55℃,保温5h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚氨酯树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度50μm,55℃下固化2h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例7制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到129°以上;三个月后,微胶囊的缓释效率均达到51%;本发明实施例7制备的含防污剂的仿生防污涂层的菌类附着量为0.2%,藻类附着量为1.5%。

实施例8

将5g十二烷基苯磺酸钠和5g阿拉伯树胶溶解于140ml去离子水中,搅拌,使十二烷基苯磺酸钠和阿拉伯树胶完全溶解;在剧烈搅拌下,将5g硅油与2.5gsea-nine211混合均匀,逐滴滴入上述溶液中,滴加完毕后,升高转速至2000r/min,乳化30min,形成硅油乳液;将乳液的ph值调整为8.5,然后向烧瓶中加入2.5g尿素、6.5g37%的甲醛溶液、0.28g氯化铵和0.28g间苯二酚引发缩聚反应,以1℃/min的升温速度将溶液缓慢升温至50℃,保温4h后结束,最后将反应液冷却、抽滤、干燥,即得到自由流动的微胶囊粉末。

将上述制备的微胶囊粉末掺杂到聚氨酯树脂中,制备微胶囊含量为15%的防污涂层,均匀地涂抹在载玻片上,厚度40μm,65℃下固化2h,得到仿生防污涂层。

按照本发明上述技术方案所述的方法,对本发明实施例8制备得到的仿生防污涂层进行表面接触角、缓释效率、涂层的抗菌类附着性能及涂层的抗藻类附着性能测定,实验结果表明,本发明制备的仿生防污涂料接触角达到125°以上;三个月后,微胶囊的缓释效率均达到52%;本发明实施例8制备的含防污剂的仿生防污涂层的菌类附着量为0.8%,藻类附着量为1.7%。

由以上实施例可知,本发明提供了一种微胶囊,包括囊芯和包裹所述囊芯的囊壁;所述囊芯包括硅油或混合物,所述混合物为硅油和防污剂的混合物,所述防污剂选自氧化亚铜、异噻唑淋酮、吡啶硫酮锌、苯氟磺胺、琉氧吡啶酮、琉氧吡啶锌和sea-nine211中的一种或几种;所述囊壁为脲醛树脂。该微胶囊与树脂基体混合制备的仿生防污涂料具有良好的疏水性能和防污性能;延长了涂料的使用寿命。实验结果表明:本发明制备的仿生防污涂料接触角达到120°以上;三个月后,微胶囊的缓释效率均达到50%以上;仿生防污涂层的菌类附着量为0.1%~11%;藻类附着量为1%~21%。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1