混合动力车辆的驱动控制装置制造方法

文档序号:3864216阅读:68来源:国知局
混合动力车辆的驱动控制装置制造方法
【专利摘要】提供一种抑制从发动机停止状态启动发动机时的驾驶者的违和感的混合动力车辆的驱动控制装置。所述混合动力车辆具备使第1行星齿轮装置(14)的齿轮架(C1)与第2行星齿轮装置(16)的齿轮架(C2)之间通断的离合器CL、和使该齿轮架(C2)相对于壳体(26)通断的制动器(BK),在从发动机(12)停止且离合器(CL)及制动器(BK)均接合的行驶模式即模式2(EV-2)启动发动机(12)时,使离合器(CL)及制动器(BK)的至少一方分离,因此,能够适当地抑制从发动机停止状态启动发动机时的反驱动力的产生。
【专利说明】
混合动力车辆的驱动控制装置

【技术领域】
[0001]本发明涉及混合动力车辆的驱动控制装置的改良。

【背景技术】
[0002]已知一种除了内燃机等发动机之外还具备作为驱动源发挥功能的至少一个电动机的混合动力车辆。例如,专利文献I所记载的车辆就是这种车辆。根据该技术,在具备内燃机、第I电动机以及第2电动机的混合动力车辆中,具备将所述内燃机的输出轴固定于非旋转构件的制动器,通过根据车辆的行驶状态来控制该制动器的接合状态,能够提高车辆的能效并且实现与驾驶员的要求相应的行驶。
[0003]现有技术文献
[0004]专利文献1:日本特开2008-265600号公报


【发明内容】

[0005]发明要解决的问题
[0006]但是,在所述以往的技术中,例如,在从使所述发动机停止并且专门通过所述电动机来产生行驶用的驱动力的行驶模式启动发动机时,会产生反驱动力即与车辆行进方向反向的驱动力(加速度),驾驶者可能会感到违和感。在所述以往的技术中,不能充分抑制在从所述行驶模式启动发动机时的驾驶者违和感。这样的问题是在本发明人为了提高混合动力车辆的性能而持续进行锐意研究的过程中新发现的问题。
[0007]本发明是以以上情况为背景而完成的发明,其目的在于,提供一种能够抑制从发动机停止状态启动发动机时的驾驶者的违和感的混合动力车辆的驱动控制装置。
[0008]用于解决问题的手段
[0009]为了达成该目的,本第I发明的要点在于,一种混合动力车辆的驱动控制装置,该混合动力车辆具备作为整体具有4个旋转要素的第I差动机构及第2差动机构、和分别与该4个旋转要素连结的发动机、第I电动机、第2电动机及输出旋转构件,所述4个旋转要素中的I个旋转要素中的所述第I差动机构的旋转要素和所述第2差动机构的旋转要素经由离合器选择性地连结,成为该离合器的接合对象的所述第I差动机构或所述第2差动机构的旋转要素经由制动器选择性地与非旋转构件连结,所述驱动控制装置的特征在于,在从所述发动机停止且所述离合器和所述制动器均接合的行驶模式启动所述发动机时,使所述离合器和所述制动器的至少一方分离。
[0010]发明效果
[0011]这样,根据所述第I发明,一种混合动力车辆的驱动控制装置,该混合动力车辆具备作为整体具有4个旋转要素的第I差动机构及第2差动机构、和分别与该4个旋转要素连结的发动机、第I电动机、第2电动机及输出旋转构件,所述4个旋转要素中的I个旋转要素中的所述第I差动机构的旋转要素和所述第2差动机构的旋转要素经由离合器选择性地连结,成为该离合器的接合对象的所述第I差动机构或所述第2差动机构的旋转要素经由制动器选择性地与非旋转构件连结,所述驱动控制装置的特征在于,在从所述发动机停止且所述离合器和所述制动器均接合的行驶模式启动所述发动机时,使所述离合器和所述制动器的至少一方分离,因此,能够适当地抑制从发动机停止状态启动发动机时的反驱动力的产生。即,能够提供一种抑制从发动机停止状态启动发动机时驾驶者的违和感的混合动力车辆的驱动控制装置。
[0012]从属于所述第I发明的本第2发明的要点在于,在从所述行驶模式启动所述发动机时,使所述离合器和所述制动器中的某一方分离,在该发动机启动时正在产生所述混合动力车辆的行驶用驱动力的情况下,根据该驱动力的大小来选择是使所述离合器分离、还是使所述制动器分离。这样一来,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0013]从属于所述第I发明或第2发明的本第3发明的要点在于,在从所述行驶模式启动所述发动机时,使所述离合器和所述制动器的某一方分离,在判定为处于不容易因所述发动机的启动而感知到反驱动力的驱动状态的情况下,使所述制动器分离。这样一来,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0014]从属于所述第2发明的本第4发明的要点在于,在所述驱动力为预先设定的阈值以上的情况下,使所述制动器分离。这样一来,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0015]从属于所述第2发明的本第5发明的要点在于,在所述驱动力低于预先设定的阈值的情况下,使所述离合器分离。这样一来,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0016]第3发明从属于所述第I发明或第2发明,从属所述第I发明、第2发明、第3发明、第4发明或第5发明的本第6发明的要点在于,所述第I差动机构具备与所述第I电动机连结的第I旋转要素、与所述发动机连结的第2旋转要素以及与所述输出旋转构件连结的第3旋转要素,所述第2差动机构具备与所述第2电动机连结的第I旋转要素、第2旋转要素以及第3旋转要素,这些第2旋转要素及第3旋转要素的某一方与所述第I差动机构的第3旋转要素连结,所述离合器选择性地使所述第I差动机构的第2旋转要素与所述第2差动机构的第2旋转要素及第3旋转要素中不与所述第I差动机构的第3旋转要素连结的一方的旋转要素接合,所述制动器选择性地使所述第2差动机构的第2旋转要素及第3旋转要素中不与所述第I差动机构的第3旋转要素连结的一方的旋转要素与所述非旋转构件接合。这样一来,能够在实用的混合动力车辆的驱动装置中抑制从发动机停止状态启动发动机时的驾驶者的违和感。

【专利附图】

【附图说明】
[0017]图1是对适于应用本发明的混合动力车辆用驱动装置的结构进行说明的要点图。
[0018]图2是对为了控制图1的驱动装置的驱动而设置的控制系统的主要部分进行说明的图。
[0019]图3是表示在图1的驱动装置中成立的5种行驶模式的各个中的离合器和制动器的接合状态的接合表。
[0020]图4是能够在直线上表示图1的驱动装置中各旋转要素的转速的相对关系的列线图,是与图3的模式1、3对应的图。
[0021]图5是能够在直线上表示图1的驱动装置中各旋转要素的转速的相对关系的列线图,是与图3的模式2对应的图。
[0022]图6是能够在直线上表示图1的驱动装置中各旋转要素的转速的相对关系的列线图,是与图3的模式4对应的图。
[0023]图7是能够在直线上表示图1的驱动装置中各旋转要素的转速的相对关系的列线图,是与图3的模式5对应的图。
[0024]图8是对图1的驱动装置的传递效率进行说明的图。
[0025]图9是对图1的驱动装置的电子控制装置所具备的控制功能的主要部分进行说明的功能框线图。
[0026]图10是对图1的驱动装置的电子控制装置的发动机启动控制的一例进行说明的流程图。
[0027]图11是对图1的驱动装置的电子控制装置的发动机启动控制的其他的一例进行说明的流程图。
[0028]图12是对适于应用本发明的其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0029]图13是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0030]图14是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0031]图15是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0032]图16是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0033]图17是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构进行说明的要点图。
[0034]图18是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构及工作分别进行说明的列线图。
[0035]图19是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构及工作分别进行说明的列线图。
[0036]图20是对适于应用本发明的又一其他的混合动力车辆用驱动装置的结构及工作分别进行说明的列线图。

【具体实施方式】
[0037]在本发明中,所述第I差动机构及第2差动机构在所述离合器接合的状态下作为整体具有4个旋转要素。另外,优选,在所述第I差动机构及第2差动机构的要素彼此之间除了所述离合器之外还具备其他离合器的结构中,所述第I差动机构及第2差动机构在这些多个离合器接合的状态下作为整体具有4个旋转要素。换言之,本发明优选应用于如下的混合动力车辆的驱动控制装置:该混合动力车辆具备在列线图上表示为4个旋转要素的第I差动机构及第2差动机构、和分别与这4个旋转要素连结的发动机、第I电动机、第2电动机及输出旋转构件,所述4个旋转要素中的I个旋转要素中的所述第I差动机构的旋转要素和所述第2差动机构的旋转要素经由离合器选择性地连结,成为该离合器的接合对象的所述第I差动机构或所述第2差动机构的旋转要素经由制动器选择性地与非旋转构件连结。
[0038]所述离合器及制动器优选均为根据液压来控制接合状态(接合或分离)的液压式接合装置,例如,优选使用湿式多片型的摩擦接合装置等,但也可以是啮合式的接合装置即所谓的牙嵌离合器(啮合离合器)。或者,还可以是电磁式离合器和/或磁粉式离合器等根据电气指令来控制接合状态(接合或分离)的离合器。
[0039]在应用本发明的驱动装置中,根据所述离合器及制动器的接合状态等,选择性地使多个行驶模式中的某一个成立。优选,在使所述发动机的运转停止并且将所述第I电动机及第2电动机的至少一方用作行驶用驱动源的EV行驶模式下,通过使所述制动器接合并且使所述离合器分离从而使模式I成立,通过使所述制动器及离合器均接合从而使模式2成立。在使所述发动机驱动并且根据需要通过所述第I电动机及第2电动机进行驱动或发电等的混合动力行驶模式下,通过使所述制动器接合并且使所述离合器分离从而使模式3成立,通过使所述制动器分离并且使所述离合器接合从而使模式4成立,通过使所述制动器及离合器均分离从而使模式5成立。
[0040]在本发明中,优选,在所述离合器接合且所述制动器分离的情况下的所述第I差动机构及第2差动机构各自的各旋转要素在列线图中的排列顺序,在将与所述第I差动机构及第2差动机构各自的第2旋转要素及第3旋转要素对应的转速重叠表示的情况下,是所述第I差动机构的第I旋转要素、所述第2差动机构的第I旋转要素、所述第I差动机构的第2旋转要素及第2差动机构的第2旋转要素、所述第I差动机构的第3旋转要素及第2差动机构的第3旋转要素的顺序。
[0041]在本发明中,优选,在启动所述发动机时正在产生所述混合动力车辆的行驶用驱动力的情况下,在该驱动力为预先确定的阈值以上时,判定为处于不容易因所述发动机的启动而感知到反驱动力的驱动状态。优选,在没有正在进行制动器操作的情况下(处于制动器接通的情况下),进一步优选,在没有正在进行制动器操作且车速为零的情况下,判定为不处于不容易因所述发动机的启动而感知到反驱动力的驱动状态。优选,在换挡操作装置的操作位置处于停车位置即“P”档的情况下,判定为处于不容易因所述发动机的启动而感知到反驱动力的驱动状态。
[0042]以下,基于附图对本发明的优选实施例进行详细说明。在以下的说明所使用的附图中,各部分的尺寸比等不一定准确地进行了描绘。
[0043]实施例1
[0044]图1是对优选应用本发明的混合动力车辆用驱动装置10 (以下,简称为驱动装置10)的结构进行说明的要点图。如该图1所示,本实施例的驱动装置10是适于优选在例如FF(前置发动机前轮驱动)型车辆等中使用的横置用装置,构成为在共同的中心轴CE上具备作为主动力源的发动机12、第I电动机MG1、第2电动机MG2、作为第I差动机构的第I行星齿轮装置14、以及作为第2差动机构的第2行星齿轮装置16。所述驱动装置10构成为相对于中心轴CE大致对称,在图1中省略中心线的下半部分进行图示。在以下的各实施例中也是同样的。
[0045]所述发动机12例如是通过被喷射到气缸内的汽油等燃料的燃烧来产生驱动力的汽油发动机等内燃机。所述第I电动机MGl及第2电动机MG2优选均为具有作为产生驱动力的马达(发动机)和产生反力的发电机的功能的所谓的电动发电机,构成为各自的定子(固定子)18、22固定设置在作为非旋转构件的壳体(外壳)26上,并且在各定子18、22的内周侧具备转子(旋转子)20、24。
[0046]所述第I行星齿轮装置14是齿轮比为P I的单小齿轮型的行星齿轮装置,作为旋转要素(要素)而具备:作为第I旋转要素的太阳轮S1、将小齿轮Pl支承为能够自转及公转的作为第2旋转要素的齿轮架Cl、以及经由小齿轮Pl与太阳轮SI啮合的作为第3旋转要素的齿圈R1。所述第2行星齿轮装置16是齿轮比为P 2的单小齿轮型的行星齿轮装置,作为旋转要素(要素)而具备:作为第I旋转要素的太阳轮S2、将小齿轮P2支承为能够进行自转及公转的作为第2旋转要素的齿轮架C2、以及经由小齿轮P2与太阳轮S2啮合的作为第3旋转要素的齿圈R2。
[0047]所述第I行星齿轮装置14的太阳轮SI与所述第I电动机MGl的转子20连结。所述第I行星齿轮装置14的齿轮架Cl与输入轴28连结,该输入轴28与所述发动机12的曲轴一体地旋转。该输入轴28以所述中心轴CE为轴心,在以下的实施例中,在不特别区分的情况下,将该中心轴CE的轴心的方向称为轴向(轴心方向)。所述第I行星齿轮装置14的齿圈Rl与作为输出旋转构件的输出齿轮30连结,并且与所述第2行星齿轮装置16的齿圈R2彼此连结。所述第2行星齿轮装置16的太阳轮S2与所述第2电动机MG2的转子24连结。
[0048]从所述输出齿轮30输出的驱动力经由未图示的差动齿轮装置及车轴等向未图示的左右一对的驱动轮传递。另一方面,从车辆的行驶路面对驱动轮输入的转矩经由所述差动齿轮装置及车轴等从所述输出齿轮30向所述驱动装置10传递(输入)。所述输入轴28的与所述发动机12相反侧的端部连结有例如叶片泵等机械式油泵32,伴随所述发动机12的驱动而输出作为后述液压控制回路60等的源压的液压。也可以除了该油泵32之外还设置通过电能驱动的电动式油泵。
[0049]在所述第I行星齿轮装置14的齿轮架Cl与所述第2行星齿轮装置16的齿轮架C2之间设置有选择性地使这些齿轮架Cl与C2之间接合(使齿轮架Cl与C2之间通断)的离合器CL。在所述第2行星齿轮装置16的齿轮架C2与作为非旋转构件的所述壳体26之间设置有选择性地使所述齿轮架C2接合(固定)于该壳体26的制动器BK。这些离合器CL及制动器BK优选均为根据从液压控制回路60供给的液压来控制接合状态(接合或分离)的液压式接合装置,优选使用例如湿式多片型的摩擦接合装置等,但也可以是啮合式的接合装置即所谓的牙嵌离合器(啮合离合器)。进而,还可以是电磁式离合器和/或磁粉式离合器等根据从电子控制装置40供给的电气指令来控制接合状态(接合或分离)的离合器。
[0050]如图1所示,在所述驱动装置10中,所述第I行星齿轮装置14及第2行星齿轮装置16分别与所述输入轴28配置在同轴上(中心轴CE上),且配置在所述中心轴CE的轴向上相对的位置。即,关于所述中心轴CE的轴向,所述第I行星齿轮装置14相对于所述第2行星齿轮装置16配置在所述发动机12侧。关于所述中心轴CE的轴向,所述第I电动机MGl相对于所述第I行星齿轮装置14配置在所述发动机12侧。关于所述中心轴CE的轴向,所述第2电动机MGl相对于所述第2行星齿轮装置16配置在所述发动机12的相反侧。即,关于所述中心轴CE的轴向,所述第I电动机MG1、第2电动机MG2以将所述第I行星齿轮装置14及第2行星齿轮装置16夹在中间的方式配置在相对的位置。即,在所述驱动装置10中,在所述中心轴CE的轴向上,从所述发动机12侧起,以所述第I电动机MGl、第I行星齿轮装置14、离合器CL、第2行星齿轮装置16、制动器BK、第2电动机MG2的顺序将这些结构配置在同轴上。
[0051]图2是对为了控制所述驱动装置10的驱动而在该驱动装置10设置的控制系统的主要部分进行说明的图。该图2所示的电子控制装置40是包含CPU、ROM、RAM以及输入输出接口等而构成、利用RAM的暂时存储功能并按照预先存储在ROM中的程序来执行信号处理的所谓的微型计算机,执行以所述发动机12的驱动控制和/或与所述第I电动机MGl及第2电动机MG2相关的混合动力驱动控制为首的、所述驱动装置10的驱动所涉及的各种控制。即,在本实施例中,所述电子控制装置40相当于应用了所述驱动装置10的混合动力车辆的驱动控制装置。该电子控制装置40如所述发动机12的输出控制用和/或所述第I电动机MGl及第2电动机MG2的工作控制用那样,根据需要而按各控制构成为独立的控制装置。
[0052]如图2所示,构成为从在所述驱动装置10的各部分设置的传感器和/或开关等向所述电子控制装置40供给各种信号。即,由加速器开度传感器42向上述电子控制装置40供给表示与驾驶员的输出要求量对应的未图示的加速器踏板的操作量即加速器开度Arc的信号,由发动机转速传感器44向上述电子控制装置40供给表示所述发动机12的转速即发动机转速Ne的信号,由MGl转速传感器46向上述电子控制装置40供给表示所述第I电动机MGl的转速Nki的信号,由MG2转速传感器48向上述电子控制装置40供给表示所述第2电动机MG2的转速Nk2的信号,由输出转速传感器50向上述电子控制装置40供给表示与车速V对应的所述输出齿轮30的转速Nqut的信号,由换挡传感器52向上述电子控制装置40供给表示未图示的换挡操作装置的操作位置(档位)Ps的信号、由电池SOC传感器54向上述电子控制装置40供给表示未图示的电池的充电容量(充电状态)SOC的信号,由制动器传感器55向上述电子控制装置40供给表示有无未图示的制动器踏板(脚制动器)的踩踏操作的信号等。
[0053]构成为从所述电子控制装置40向所述驱动装置10的各部分输出工作指令。SP,作为控制所述发动机12的输出的发动机输出控制指令,向控制该发动机12的输出的发动机控制装置56输出控制燃料喷射装置向进气配管等的燃料供给量的燃料喷射量信号、指示点火装置在所述发动机12中的点火正时(点火定时)的点火信号、以及为了操作电子节气门的节气门开度ΘΤΗ而向节气门致动器供给的电子节气门驱动信号等。指示所述第I电动机MGl及第2电动机MG2的工作的指令信号向变换器58输出,经由该变换器58将与该指令信号相应的电能从电池供给到所述第I电动机MGl及第2电动机MG2从而控制这些第I电动机MGl及第2电动机MG2的输出(转矩)。由所述第I电动机MGl及第2电动机MG2发出的电能经由所述变换器58向电池供给,并蓄积在该电池中。控制所述离合器CL、制动器BK的接合状态的指令信号向液压控制回路60所具备的线性电磁阀等电磁控制阀供给,通过控制从这些电磁控制阀输出的液压来控制所述离合器CL、制动器BK的接合状态。
[0054]所述驱动装置10作为通过经由所述第I电动机MGl及第2电动机MG2控制运转状态来控制输入转速和输出转速的差动状态的电气式差动部发挥功能。例如,将由所述第I电动机MGl发出的电能经由所述变换器58向电池和/或第2电动机MG2供给。由此,所述发动机12的动力的主要部分机械地向所述输出齿轮30传递,另一方面,该动力的一部分为了所述第I电动机MGl的发电而被消耗从而变换为电能,该电能通过所述变换器58向所述第2电动机MG2供给。然后,该第2电动机MG2被驱动,从第2电动机MG2输出的动力向所述输出齿轮30传递。由从该电能的产生到被第2电动机MG2消耗为止所关联的设备构成将所述发动机12的动力的一部分变换为电能并将该电能变换为机械能为止的电路径。
[0055]在应用了如以上那样构成的驱动装置10的混合动力车辆中,根据所述发动机12、第I电动机MGl及第2电动机MG2的驱动状态以及所述离合器CL、制动器BK的接合状态等,选择性地使多个行驶模式的某一个成立。图3是表示在所述驱动装置10成立的5种行驶模式的各个中的所述离合器CL、制动器BK的接合状态的接合表,用“ O ”表示接合,用空栏表示分离。该图3所示的行驶模式“EV-l”、“EV-2”均为使所述发动机12的运转停止并且将所述第I电动机MGl及第2电动机MG2的至少一方用作行驶用的驱动源的EV行驶模式。“HV-l”、“HV-2”、“HV-3”均为使所述发动机12例如作为行驶用的驱动源进行驱动并且根据需要通过所述第I电动机MGl及第2电动机MG2进行驱动或发电等的混合动力行驶模式。在该混合动力行驶模式下,可以通过所述第I电动机MGl及第2电动机MG2的至少一方产生反力,也可以使其以无负荷的状态空转。
[0056]如图3所示,在所述驱动装置10中,在使所述发动机12的运转停止并且将所述第I电动机MGl及第2电动机MG2的至少一方用作行驶用的驱动源的EV行驶模式下,通过使所述制动器BK接合并且使所述离合器CL分离从而使作为模式I (行驶模式I)的“EV-1”成立,通过使所述制动器BK及离合器CL均接合从而使作为模式2 (行驶模式2)的“EV-2”成立。在使所述发动机12例如作为行驶用的驱动源进行驱动并且根据需要通过所述第I电动机MGl及第2电动机MG2进行驱动或发电等的混合动力行驶模式下,通过使所述制动器BK接合并且使所述离合器CL分离从而使作为模式3 (行驶模式3)的“HV-1 ”成立,通过使所述制动器BK分离并且使所述离合器CL接合从而使作为模式4 (行驶模式4)的“HV-2”成立,通过使所述制动器BK及离合器CL均分离从而使作为模式5 (行驶模式5)的“HV-3”成立。
[0057]图4?图7是能够在直线上表示在所述驱动装置10 (第I行星齿轮装置14及第2行星齿轮装置16)中连结状态根据所述离合器CL及制动器BK各自的接合状态而不同的各旋转要素的转速的相对关系的列线图,是在横轴方向上表示所述第I行星齿轮装置14及第2行星齿轮装置16的齿轮比P的相对关系、在纵轴方向上表示相对转速的二维坐标。以车辆前进时的所述输出齿轮30的旋转方向为正方向(正旋转)来表不各转速。横线Xl表不转速零。纵线Yl?Y4从左向右依次为:实线Yl表示所述第I行星齿轮装置14的太阳轮SI (第I电动机MGl)的相对转速,虚线Y2表示所述第2行星齿轮装置16的太阳轮S2(第2电动机MG2)的相对转速,实线Y3表示所述第I行星齿轮装置14的齿轮架Cl (发动机12)的相对转速,虚线Ti'表示所述第2行星齿轮装置16的齿轮架C2的相对转速,实线Y4表示所述第I行星齿轮装置14的齿圈Rl (输出齿轮30)的相对转速,虚线Y4'表示所述第2行星齿轮装置16的齿圈R2的相对转速。在图4?图7中,将纵线Y3及Y3'、纵线Y4及Y4'分别重叠表示。在此,由于所述齿圈Rl及R2彼此连结,所示纵线Y4、Y4'分别表示的齿圈Rl及R2的相对转速相等。
[0058]在图4?图7中,用实线LI表示所述第I行星齿轮装置14的3个旋转要素的相对转速,用虚线L2表示所述第2行星齿轮装置16的3个旋转要素的相对转速。所述纵线Yl?Y4(Y2?Υ4')的间隔根据所述第I行星齿轮装置14及第2行星齿轮装置16的各齿轮比Pl、P2来确定。即,关于与所述第I行星齿轮装置14的3个旋转要素对应的纵线Yl、Υ3、Υ4,太阳轮SI与齿轮架Cl之间对应于I,齿轮架Cl与齿圈Rl之间对应于P I。关于与所述第2行星齿轮装置16的3个旋转要素对应的纵线Υ2、Υ3' ,Υ4/,太阳轮S2与齿轮架C2之间对应于1,齿轮架C2与齿圈R2之间对应于P 2。即,在所述驱动装置10中,优选,所述第2行星齿轮装置16的齿轮比P 2比所述第I行星齿轮装置14的齿轮比P I大(P 2>Ρ I)。以下,使用图4?图7对所述驱动装置10的各行驶模式进行说明。
[0059]图3所示的“EV-1”相当于所述驱动装置10的模式I (行驶模式I),优选是使所述发动机12的运转停止并且将所述第2电动机MG2用作行驶用的驱动源的EV行驶模式。图4是与该模式I对应的列线图,使用该列线图进行说明,通过使所述离合器CL分离,所述第I行星齿轮装置14的齿轮架Cl和所述第2行星齿轮装置16的齿轮架C2能够进行相对旋转。通过使所述制动器BK接合,所述第2行星齿轮装置16的齿轮架C2连结(固定)于作为非旋转构件的所述壳体26,其转速为零。在该模式I下,在所述第2行星齿轮装置16中,所述太阳轮S2的旋转方向和所述齿圈R2的旋转方向成为相反方向,若由所述第2电动机MG2输出负的转矩(负方向的转矩),则所述齿圈R2即输出齿轮30通过该转矩而向正方向旋转。即,通过由所述第2电动机MG2输出负的转矩,能够使应用了所述驱动装置10的混合动力车辆前进行驶。在该情况下,优选使所述第I电动机MGl空转。在该模式I下,能够进行与搭载有允许所述齿轮架Cl及C2的相对旋转并且该齿轮架C2与非旋转构件连结的所谓THS (Toyota Hybrid System:丰田混合动力系统)的车辆的EV行驶同样的EV行驶控制。
[0060]图3所示的“EV-2”相当于所述驱动装置10的模式2 (行驶模式2),优选是使所述发动机12的运转停止并且将所述第I电动机MGl及第2电动机MG2的至少一方用作行驶用的驱动源的EV行驶模式。图5是与该模式2对应的列线图,使用该列线图进行说明,通过使所述离合器CL接合,所述第I行星齿轮装置14的齿轮架Cl及所述第2行星齿轮装置16的齿轮架C2不能进行相对旋转。进而,通过使所述制动器BK接合,所述第2行星齿轮装置16的齿轮架C2及与该齿轮架C2接合的所述第I行星齿轮装置14的齿轮架Cl连结(固定)于作为非旋转构件的所述壳体26,其转速为零。在该模式2下,在所述第I行星齿轮装置14中,所述太阳轮SI的旋转方向和所述齿圈Rl的旋转方向成为相反方向,在所述第2行星齿轮装置16中,所述太阳轮S2的旋转方向和所述齿圈R2的旋转方向成为相反方向。S卩,若由所述第I电动机MGl或所述第2电动机MG2输出负的转矩(负方向的转矩),则所述齿圈Rl及R2即输出齿轮30通过该转矩而向正方向旋转。即,通过由所述第I电动机MGl及第2电动机MG2的至少一方输出负的转矩,能够使应用了所述驱动装置10的混合动力车辆前进行驶。
[0061]在所述模式2下,也可以使通过所述第I电动机MGl及第2电动机MG2的至少一方进行发电的形态成立。在该形态下,能够通过所述第I电动机MGl及第2电动机MG2的一方或双方分担产生行驶用的驱动力(转矩),能够使各电动机在高效的动作点动作,能够进行缓和由热引起的转矩限制等限制的行驶等。进而,在电池的充电状态为满充电的情况等不允许通过再生进行发电的情况下,也可以使所述第I电动机MGl及第2电动机MG2的一方或双方空转。即,在所述模式2下,能够通过所述第I电动机MGl及第2电动机MG2来彼此互补工作量,能够在广泛的行驶条件下进行EV行驶,能够长时间持续进行EV行驶。因此,所述模式2优选在插电式混合动力车辆等进行EV行驶的比例高的混合动力车辆中采用。
[0062]图3所示的“HV-1”相当于所述驱动装置10的模式3 (行驶模式3),优选是驱动所述发动机12而将其用作行驶用的驱动源、并且根据需要通过所述第I电动机MGl及第2电动机MG2进行驱动或发电的混合动力行驶模式。图4的列线图与该模式3对应,使用该列线图进行说明,通过使所述离合器CL分离,所述第I行星齿轮装置14的齿轮架Cl和所述第2行星齿轮装置16的齿轮架C2能够进行相对旋转。通过使所述制动器BK接合,所述第2行星齿轮装置16的齿轮架C2连结(固定)于作为非旋转构件的所述壳体26,其转速为零。在该模式3下,使所述发动机12驱动,通过其输出转矩使所述输出齿轮30旋转。此时,在所述第I行星齿轮装置14中,通过由所述第I电动机MGl输出反力转矩,能够将来自所述发动机12的输出向所述输出齿轮30传递。在所述第2行星齿轮装置16中,由于所述制动器BK接合,所以所述太阳轮S2的旋转方向和所述齿圈R2的旋转方向成为相反方向。即,若由所述第2电动机MG2输出负的转矩(负方向的转矩),则所述齿圈Rl及R2即输出齿轮30通过该转矩而向正方向旋转。
[0063]图3所示的“HV-2”相当于所述驱动装置10的模式4 (行驶模式4),优选是驱动所述发动机12而将其用作行驶用的驱动源、并且根据需要通过所述第I电动机MGl及第2电动机MG2进行驱动或发电的混合动力行驶模式。图6是与该模式4对应的列线图,使用该列线图进行说明,通过使所述离合器CL接合,所述第I行星齿轮装置14的齿轮架Cl和所述第2行星齿轮装置16的齿轮架C2不能进行相对旋转,所述齿轮架Cl及C2作为一体地旋转的I个旋转要素进行动作。由于所述齿圈Rl及R2彼此连结,所以这些齿圈Rl及R2作为一体地旋转的I个旋转要素进行动作。S卩,在所述模式4下,所述驱动装置10的所述第I行星齿轮装置14及第2行星齿轮装置16的旋转要素作为差动机构发挥功能,该差动机构作为整体具有4个旋转要素。即,成为以在图6中朝向纸面从左侧起依次示出的4个旋转要素即太阳轮SI (第I电动机MG1)、太阳轮S2(第2电动机MG2)、彼此连结的齿轮架Cl及C2 (发动机12)、彼此连结的齿圈Rl及R2 (输出齿轮30)的顺序结合而成的复合分解模式。
[0064]如图6所示,在所述模式4下,优选,所述第I行星齿轮装置14及第2行星齿轮装置16的各旋转要素在列线图中的排列顺序成为由纵线Yl表示的太阳轮S1、由纵线Y2表示的太阳轮S2、由纵线Y3(Y3,)表示的齿轮架Cl及C2、由纵线Y4(Yf )表示的齿圈Rl及R2的顺序。所述第I行星齿轮装置14及第2行星齿轮装置16各自的齿轮比P 1、P 2被确定为:在列线图中,如图6所示,与所述太阳轮SI对应的纵线Yl和与所述太阳轮S2对应的纵线Y2成为上述排列顺序,即纵线Yl与纵线Y3的间隔比纵线Y2与纵线Y3'的间隔宽。换言之,太阳轮S1、S2与齿轮架C1、C2之间对应于1,齿轮架C1、C2与齿圈R1、R2之间对应于PU P 2,因此,在所述驱动装置10中,所述第2行星齿轮装置16的齿轮比P 2比所述第I行星齿轮装置14的齿轮比P I大。
[0065]在所述模式4下,通过使所述离合器CL接合,所述第I行星齿轮装置14的齿轮架Cl与所述第2行星齿轮装置16的齿轮架C2连结,这些齿轮架Cl及C2 —体地旋转。因此,对于所述发动机12的输出,所述第I电动机MGl及第2电动机MG2都能够接受反力。即,在所述发动机12驱动时,能够由所述第I电动机MGl及第2电动机MG2的一方或双方分担接受其反力,换言之,能够通过所述第I电动机MGl及第2电动机MG2彼此互补工作量。即,在所述模式4下,能够在高效的动作点进行动作、进行缓和由热引起的转矩限制等限制的行驶等。
[0066]例如,通过进行控制以使得利用所述第I电动机MGl及第2电动机MG2中能够高效地进行动作的一方的电动机优先接受反力,能够实现效率的提高。例如,在车速V比较高的高车速时且发动机转速Ne比较低的低旋转时,所述第I电动机MGl的转速Nki有时成为负的值即负旋转。在该情况下,若考虑通过所述第I电动机MGl来接受所述发动机12的反力,则成为通过该第I电动机MGl消耗电力而产生负转矩的逆转牵引的状态,有可能导致效率降低。在此,从图6可知,在所述驱动装置10中,由纵线Y2表示的所述第2电动机MG2的转速与由纵线Yl表示的所述第I电动机MGl的转速相比难以取负的值,能够在正旋转的状态下接受所述发动机12的反力的情况较多。因此,在所述第I电动机MGl的转速为负的值的情况等下,进行控制以使得利用所述第2电动机MG2优先接受所述发动机12的反力,从而能够实现基于效率提高的燃料经济性的提高。进而,在所述第I电动机MGl及第2电动机MG2的某一方因热而受到了转矩限制的情况下,通过未受转矩限制的电动机的再生或输出来对驱动力进行辅助,从而能够确保所述发动机12的驱动所需的反力等。
[0067]图8是对所述驱动装置10的传递效率进行说明的图,横轴表示变速比,纵轴表示理论传递效率。该图8所示的变速比是所述第I行星齿轮装置14及第2行星齿轮装置16的、输入侧转速相对于输出侧转速的比即减速比,例如,相当于所述齿轮架Cl等输入旋转构件的转速相对于所述输出齿轮30的转速(齿圈Rl、R2的转速)的比。在图8所示的横轴上,朝向纸面的左侧是变速比小的高档侧,右侧是变速比大的低档侧。图8所示的理论传递效率是所述驱动装置10的传递效率的理论值,在向所述第I行星齿轮装置14、第2行星齿轮装置16输入的动力不经由电路径而通过机械传递全部传递给所述输出齿轮30的情况下,成为最大效率1.0。
[0068]在图8中,用单点划线表示所述驱动装置10的模式3(HV_1)时的传递效率,用实线表示模式4(HV-2)时的传递效率。如该图8所示,所述驱动装置10的模式3 (HV-1)时的传递效率在变速比Y I处成为最大效率。在该变速比Y I处,所述第I电动机MGl (太阳轮SI)的转速成为零,在该第I电动机MGl中因接受反力而产生的电路径成为零,成为能够仅通过机械动力传递从所述发动机12或所述第2电动机MG2向输出齿轮30传递动力的动作点。以下,将这样的电路径为零的高效率动作点称为机械点(机械传递点)。所述变速比YI是超速档侧的变速比即比I小的变速比,以下,将该变速比YI称为第I机械传递变速比Y I。如图8所示,随着变速比成为比所述第I机械传递变速比Y I靠低档侧的值,所述模式3时的传递效率缓慢降低,另一方面,随着变速比成为比所述第I机械传递变速比YI靠高档侧的值,所述模式3时的传递效率与低档侧相比急剧降低。
[0069]如图8所示,在所述驱动装置10的模式4(HV_2)下,设定所述第I行星齿轮装置14及第2行星齿轮装置16各自的齿轮比P1、P 2以使得在通过所述离合器CL的接合而构成的4个旋转要素中图6的列线图所涉及的所述第I电动机MGl及第2电动机MG2各自的转速成为横轴上的不同位置,因此,该模式4时的传递效率除了所述变速比YI之外还在变速比Y 2处具有机械点。即,在所述模式4时,在所述第I机械传递变速比Y I处所述第I电动机MGl的转速成为零,能够实现在该第I电动机MGl中因接受反力而产生的电路径成为零的机械点,并且,在变速比Y 2处所述第2电动机MG2的转速成为零,能够实现在该第2电动机MG2中因接受反力而产生的电路径成为零的机械点。以下,将该变速比Y2称为第2机械传递变速比Y 2。该第2机械传递变速比Y 2相当于比所述第I机械传递变速比Y I小的变速比。即,在所述驱动装置10的模式4时,成为相对于所述模式3时在高档侧具有机械点的系统。
[0070]如图8所示,在比所述第I机械传递变速比Y I靠低档侧的区域中,所述模式4时的传递效率根据变速比的增加而与所述模式3时的传递效率相比急剧降低。在所述第I机械传递变速比Yl与第2机械传递变速比Υ2之间的变速比的区域中,所述模式4时的传递效率向低效率侧弯曲。在该区域中,所述模式4时的传递效率与所述模式3时的传递效率相等或者比其高。在比所述第2机械传递变速比Y 2靠高档侧的区域中,所述模式4时的传递效率随着变连比的减少而降低,但与所述模式3时的传递效率相比相对较高。即,在所述模式4时,除了在所述第I机械传递变速比Y I之外还在比该第I机械传递变速比Y I靠高档侧的第2机械传递变速比Y 2处具有机械点,从而能够实现变速比比较小的高档动作时的传递效率的提闻。因此,例如能够实现基于比较闻速行驶时的传递效率的提闻的燃料经济性的提高。
[0071]以上,如使用图8说明那样,在所述驱动装置10中,在使所述发动机12例如作为行驶用的驱动源进行驱动并且根据需要通过所述第I电动机MGl及第2电动机MG2进行驱动或发电等的混合动力行驶时,通过适当地切换所述模式3 (HV-1)和模式4 (HV-2),能够实现传递效率的提高。例如,在比所述第I机械低速变速比YI靠低档侧的变速比的区域中使所述模式3成立,另一方面,在比该第I机械传递变速比YI靠高档侧的变速比的区域使所述模式4成立,通过进行这样的控制,能够在从低档区域到高档区域的广泛的变速比的区域中提闻传递效率。
[0072]图3所示的“HV-3”相当于所述驱动装置10的模式5 (行驶模式5),优选是驱动所述发动机12而将其用作行驶用的驱动源、并且根据需要通过所述第I电动机MGl进行驱动或发电的混合动力行驶模式。在该模式5下,能够实现将所述第2电动机MG2从驱动系统切离而通过所述发动机12及第I电动机MGl进行驱动等的形态。图7是与该模式5对应的列线图,使用该列线图进行说明,通过使所述离合器CL分离,所述第I行星齿轮装置14的齿轮架Cl和所述第2行星齿轮装置16的齿轮架C2能够进行相对旋转。通过使所述制动器BK分离,所述第2行星齿轮装置16的齿轮架C2能够相对于作为非旋转构件的所述壳体26进行相对旋转。在该结构中,能够将所述第2电动机MG2从驱动系统(动力传递路径)切离并使其停止。
[0073]在所述模式3下,由于所述制动器BK接合,所以在车辆行驶时所述第2电动机MG2伴随所述输出齿轮30 (齿圈R2)的旋转而始终旋转。在该形态下,在比较高旋转的区域中,所述第2电动机MG2的转速会达到界限值(上限值),所述齿圈R2的转速增加而传递到所述太阳轮S2等,因此,从提高效率的观点来看,在比较高车速时使所述第2电动机MG2始终旋转不一定是优选的。另一方面,在所述模式5下,通过在比较高车速时将所述第2电动机MG2从驱动系统切离而实现通过所述发动机12及第I电动机MGl进行驱动的形态,除了能够减少无需驱动该第2电动机MG2的情况下的拖拽损失,还能够消除因该第2电动机MG2所允许的最高转速(上限值)而引起的对最高车速的制约等。
[0074]从以上的说明可知,在所述驱动装置10中,关于驱动所述发动机12而将其用作行驶用的驱动源的混合动力行驶,通过所述离合器CL及制动器BK的接合与分离的组合,能够使HV-1 (模式3)、HV-2 (模式4)以及HV-3 (模式5)这3个模式选择性地成立。由此,通过例如根据车辆的车速和/或变速比等选择性地使这3个模式中传递效率最高的模式成立,能够实现传递效率的提闻进而实现燃料经济性的提闻。
[0075]图9是对所述电子控制装置40所具备的控制功能的主要部分进行说明的功能框线图。该图9所示的行驶模式判定部70判定在所述驱动装置10成立的行驶模式。基本上,根据预先设定的关系,基于由所述加速器开度传感器42检测的加速器开度A。。、与由所述输出转速传感器50检测的输出转速Nqut对应的车速V、以及由所述电池SOC传感器54检测的电池SOC等,使用图3来判定前述模式I?5中的某一行驶模式的成立。优选,在由所述电池SOC传感器54检测的电池SOC低于预先设定的阈值的情况下,判定驱动所述发动机12而将其用作行驶用的驱动源的混合动力行驶模式即所述模式3?5中的某一行驶模式的成立。优选,在由所述电池SOC传感器54检测的电池SOC为所述阈值以上的情况下,判定使所述发动机12停止的EV行驶模式即所述模式I或模式2的成立。例如,在由所述电池SOC传感器54检测的电池SOC为所述阈值以上的情况下,在车辆起步时即从与由所述输出转速传感器50检测的输出转速Ntot对应的车速V为零的状态进行了未图示的制动器踏板的释放操作(解除制动器踏板的踩踏的操作)时,判定使所述发动机12停止而专门将所述第I电动机MGl等用作行驶用的驱动源的EV行驶模式即所述模式I等的成立。另外,根据应用了所述驱动装置10的混合动力车辆的行驶状态,适当选择使传递效率和/或所述发动机12的燃料经济性提高的行驶模式。
[0076]离合器接合控制部72经由所述液压控制回路60控制所述离合器CL的接合状态。例如,通过控制来自所述液压控制回路60所具备的与所述离合器CL对应的电磁控制阀的输出压,来进行在接合与分离之间切换该离合器CL的接合状态的控制。制动器接合控制部74经由所述液压控制回路60控制所述制动器BK的接合状态。例如,通过控制来自所述液压控制回路60所具备的与所述制动器BK对应的电磁控制阀的输出压,来进行在接合与分尚之间切换该制动器BK的接合状态的控制。所述尚合器接合控制部72及制动器接合控制部74基本上对所述离合器CL及制动器BK的接合状态进行控制以使由所述行驶模式判定部70判定出的行驶模式成立。即,关于所述模式I?5的各个,以利用前述图3所示的组合使所述离合器CL及制动器BK接合或分离的方式来控制它们的接合状态。
[0077]发动机启动判定部76判定从所述发动机12停止的状态的该发动机12的启动。优选,与由所述行驶模式判定部70判定出的行驶模式对应地判定所述发动机12的启动。SP,在由所述行驶模式判定部70判定了从使所述发动机12停止并且将所述第I电动机MGl及第2电动机MG2的至少一方作为行驶用的驱动源的行驶模式即EV行驶模式向使所述发动机12驱动的行驶模式即混合动力行驶模式的转变的情况下,判定所述发动机12的启动。具体而言,在判定了从图3所示的所述模式I(EV-1)或模式2(EV-2)成立的状态向所述模式3 (HV-1)、模式4 (HV-2)或模式5 (HV-3)的转换的情况下,判定所述发动机12的启动。在由所述发动机启动判定部76判定了所述发动机12的启动的情况下,在通过所述第I电动机MGl及第2电动机MG2的至少一方的转矩提升了与所述发动机12的曲轴的转速对应的所述输入轴28的转速(齿轮架Cl的转速)之后,开始由所述发动机控制装置56实现的所述发动机12的自行运转。
[0078]反驱动力推定部78推定(判定)是否处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态。该反驱动力是指与应用了所述驱动装置10的混合动力车辆的行进方向(例如前进方向)反方向的驱动力(加速度),对于驾驶者而言会感知为减速感。即,换言之,所述反驱动力推定部78判定是否处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到减速感的驱动状态。为了该判定,所述反驱动力推定部78包括驱动力判定部80、制动器操作判定部82以及P档判定部84。以下,分别对这些控制功能进行说明。
[0079]在所述发动机12从该发动机12停止的状态启动时正在产生所述混合动力车辆的行驶用驱动力的情况下,所述驱动力判定部80判定该驱动力是否为预先设定的阈值Pb。以上。优选,判定基于所述加速器开度Acc及车速V等算出的要求驱动力(驱动力要求量)是否为预先设定的阈值Pb。以上。在所述驱动力判定部80的判定为肯定的情况下,即,在判定为所述驱动力为预先设定的阈值Pb。以上的情况下,所述反驱动力推定部78的判定为肯定。即,判定为处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态。在所述驱动力判定部80的判定为否定的情况下,即,在判定为所述驱动力低于预先设定的阈值Pb。的情况下,所述反驱动力推定部78的判定为否定。即,判定为不处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态(处于驾驶者容易感知到反驱动力的驱动状态)。
[0080]所述制动器操作判定部82判定是否正在进行制动器操作、即由所述制动器传感器55检测到的信号是否表示制动器操作(制动器开启)。优选,判定是否正在进行制动器操作且处于车辆停止状态。即,判定是否由所述制动器传感器55检测到的信号表示制动器操作(制动器开启)且由所述输出转速传感器50检测到的输出转速Ntm (车速V)为零。在所述制动器操作判定部82的判定为肯定的情况下,即,在正在进行制动器操作的情况下(优选,在处于制动器开启的车辆停止状态的情况下),所述反驱动力推定部78的判定为肯定。即,判定为处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态。在所述制动器操作判定部82的判定为否定的情况下,即,在没有进行制动器操作的情况下(优选,在不处于制动器开启的车辆停止状态的情况下),所述反驱动力推定部78的判定为否定。即,判定为不处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态(处于驾驶者容易感知到反驱动力的驱动状态)。
[0081]所述P档判定部84判定所述驱动装置10的档位是否处于停车位置、即由所述换挡传感器52检测到的换挡操作装置的操作位置Ps是否处于停车位置即“P”档。在所述P档判定部84的判定为肯定的情况下,即,在判定为档位处于“P”档的情况下,所述反驱动力推定部78的判定为肯定。即,判定为处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态。在所述P档判定部84的判定为否定的情况下,即,在判定为档位不处于“P”档的情况下,所述反驱动力推定部78的判定为否定。即,判定为不处于驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力的驱动状态(处于驾驶者容易感知到反驱动力的驱动状态)。优选,在所述驱动力判定部80、制动器操作判定部82以及P档判定部84中至少一个的判定为肯定的情况下,所述反驱动力推定部78的判定为肯定,但在所有判定都为否定的情况下,所述反驱动力推定部78的判定为否定。
[0082]在从所述发动机12停止且所述离合器CL及制动器BK均接合的行驶模式即所述模式2 (EV-2)启动所述发动机12时,发动机启动时接合控制部86进行使所述离合器CL及制动器BK的至少一方分离的控制。即,在由所述行驶模式判定部70判定了所述模式2的成立的情况下,在判定行驶模式的转变等而由所述发动机启动判定部76判定了所述发动机12的启动时,进行使所述离合器CL及制动器BK的至少一方分离的控制。优选,在从所述模式2启动所述发动机12时,进行使所述离合器CL及制动器BK的某一方(离合器CL或制动器BK)分离的控制。
[0083]使用图5的列线图,如前所述,在所述驱动装置10中所述模式2成立的情况下,通过使所述离合器CL接合,所述第I行星齿轮装置14的齿轮架Cl和所述第2行星齿轮装置16的齿轮架C2不能进行相对旋转。进而,通过使所述制动器BK接合,所述第2行星齿轮装置16的齿轮架C2以及与该齿轮架C2接合的所述第I行星齿轮装置14的齿轮架Cl连结(固定)于作为非旋转构件的所述壳体26,其转速为零。因此,无法提升与所述发动机12的的转速对应的所述输入轴28的转速(齿轮架Cl的转速),无法进行所述发动机12的启动。因此,在从所述模式2启动所述发动机12时,利用所述发动机启动时接合控制部86来进行使所述离合器CL及制动器BK的至少一方分离的控制,从而成为能够提升所述发动机12的转速的状态,能够进行该发动机12的启动。
[0084]优选,在从所述模式2启动所述发动机12时,所述发动机启动时接合控制部86使所述离合器CL以制动器BK的某一方分离,在启动该发动机12时正在产生所述混合动力车辆的行驶用驱动力的情况下,根据该驱动力的大小来选择是使所述离合器CL分离、还是使所述制动器BK分离。即,根据所述驱动力判定部80的判定结果来选择性地使所述离合器CL及制动器BK的某一方分离。例如,在所述驱动力判定部80的判定为肯定的情况下,即,在判定为所述驱动力为预先确定的阈值Pb。以上的情况下,使所述制动器BK分离。在所述驱动力判定部80的判定为否定的情况下,S卩,在判定为所述驱动力低于预先确定的阈值Pb。的情况下,使所述离合器CL分离。
[0085]优选,在从所述模式2启动所述发动机12时,所述发动机启动时接合控制部86使所述离合器CL及制动器BK的某一方分离,根据是否处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态来选择是使所述离合器CL分离、还是使所述制动器BK分离。即,根据所述反驱动力推定部78的判定结果来选择性地使所述离合器CL及制动器BK的某一方分离。例如,在所述反驱动力推定部78的判定为肯定的情况下,即,在判定为处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下,使所述制动器BK分离。在所述反驱动力推定部78的判定为否定的情况下,即,在判定为不处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下(处于驾驶者容易感知到反驱动力的驱动状态),使所述离合器CL分离。
[0086]换言之,优选,在从所述模式2启动所述发动机12时,所述发动机启动时接合控制部86根据所述制动器操作判定部82的判定结果来选择性地使所述离合器CL及制动器BK中的某一方分离。例如,在所述制动器操作判定部82的判定为肯定的情况下,即,在正在进行制动器操作的情况下(优选,在处于制动器开启的车辆停止状态的情况下),使所述制动器BK分离。在所述制动器操作判定部82的判定为否定的情况下,即,在没有进行制动器操作的情况下(优选,在不处于制动器开启的车辆停止状态的情况下),使所述离合器CL分离。
[0087]换言之,优选,在从所述模式2启动所述发动机12时,所述发动机启动时接合控制部86根据所述P档判定部84的判定结果来选择性地使所述离合器CL及制动器BK的某一方分离。例如,在所述P档判定部84的判定为肯定的情况下,即,在由所述换挡传感器52检测的换挡操作装置的操作位置Ps处于停车位置即“P”档的情况下,使所述制动器BK分离。在所述P档判定部84的判定为否定的情况下,即,在由所述换挡传感器52检测的换挡操作装置的操作位置Ps不处于停车位置即“P”档的情况下,使所述离合器CL分离。
[0088]在正在产生应用了所述驱动装置10的混合动力车辆的行驶用驱动力且该驱动力比较大的情况下(例如为预先确定的阈值Pb。以上),在处于制动器开启的车辆停止状态的情况下,在换挡操作装置的操作位置Ps处于停车位置即“P”档的情况下等,驾驶者不容易因所述发动机12从该发动机12停止的状态启动而感知到反驱动力(减速感)。在所述驱动装置10中,在考虑在从所述离合器CL及制动器BK均接合的状态启动发动机时使其中某一方分离的情况下,使所述制动器BK分离的一方比使所述离合器CL分离的一方产生大的反驱动力。即,虽然在使所述制动器BK分离而进行了所述发动机12的启动的情况下无法抑制反驱动力,但如上所述,在驾驶者不容易感知到反驱动力的驱动状态下,即使使所述制动器BK分离,驾驶者也不容易感到违和感。另一方面,在驾驶者容易感知到反驱动力的驱动状态下,通过使所述制动器BK分离来进行所述发动机12的启动,驾驶者可能会感到违和感。因此,在判定为处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下,使所述制动器BK分离,而在判定为不处于不容易感知到反驱动力的驱动状态的情况下,使所述离合器CL分离,通过进行这样的控制,能够适于抑制从所述模式2启动发动机时的驾驶者的违和感。
[0089]图10是对所述电子控制装置40的发动机启动控制的一例的主要部分进行说明的流程图,以预定的周期反复执行。
[0090]首先,在步骤(以下,省略步骤)SI中,判断是否判定了从所述EV行驶模式向混合动力行驶模式的转变等从而判定了所述发动机12从该发动机12停止的状态的启动。在该SI的判断为否定的情况下,就此结束本例程,而在SI的判断为肯定的情况下,在S2中,判断此时在所述驱动装置10中成立的行驶模式是否是所述发动机12停止且所述离合器CL及制动器BK均接合的行驶模式即所述模式2 (EV-2)。在该S2的判断为否定的情况下,就此结束本例程,而在S2的判断为肯定的情况下,在S3中,输出使所述离合器CL及制动器BK的某一方分离的指令。接着,在S4中,判断在S3中被输出分离指令的所述离合器CL或制动器BK的分离(分离液压控制)是否完成。在该S4的判断为否定的情况下,执行S3以下的处理,而在S4的判断为肯定的情况下,在S5中,执行所述发动机12的启动控制,然后结束本例程。
[0091]图11是对所述电子控制装置40的发动机启动控制的另一例的主要部分进行说明的流程图,以预定的周期反复执行。在该图11所示的控制中,对于与前述图10所示的控制共通的步骤,标注相同的标号而省略其说明。
[0092]在图11所示的控制中,在前述S2的判断为肯定的情况下,即,在判断为在所述驱动装置10中成立的行驶模式是所述发动机12停止且所述离合器CL及制动器BK均接合的行驶模式即所述模式2(EV-2)的情况下,在S6中,判断是否处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态。例如,基于根据加速器开度Arc及车速V等算出的要求驱动力是否为预先确定的阈值Pb。以上、是否处于制动器开启的车辆停止状态、换挡操作装置的操作位置Ps是否处于停车位置即“P”档等来进行该判断。在S6的判断为肯定的情况下,即,在判断为处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下,在S7中,输出使所述制动器BK分离的指令。接着,在S8中,判断所述制动器BK的分离(分离液压控制)是否完成。在该S8的判断为否定的情况下,执行S7以下的处理,而在S8的判断为肯定的情况下,执行前述S5以下的处理。在S6的判断为否定的情况下,S卩,在判断为不处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下(处于容易因发动机12的启动而感知到反驱动力的驱动状态),在S9中,输出使所述离合器CL分离的指令。接着,在SlO中,判断所述离合器CL的分离(分离液压控制)是否完成。在该SlO的判断为否定的情况下,执行S9以后的处理,而在SlO的判断为肯定的情况下,执行前述S5以后的处理。
[0093]在以上控制中,S2对应于所述行驶模式判定部70的动作,S3、S4、S9以及SlO对应于所述离合器接合控制部72的动作,S3、S4、S7以及S8对应于所述制动器接合控制部74的动作,SI对应于所述发动机启动判定部76的动作,S6对应于所述反驱动力推定部78 (驱动力判定部80)的动作,S3、S4、S7?SlO对应于所述发动机启动时接合控制部86的动作。
[0094]接着,基于附图,对本发明的优选的其他实施例进行详细说明。在以下说明中,对于实施例彼此共通的部分,标注相同的标号而省略其说明。
[0095]实施例2
[0096]图12?图17是分别说明适于应用本发明的其他混合动力车辆用驱动装置100、110、120、130、140、150的结构的要点图。如图12所示的驱动装置100和/或图13所示的驱动装置110那样,本发明的混合动力车辆的驱动控制装置也适于应用于将中心轴CE方向上的所述第I电动机MG1、第I行星齿轮装置14、第2电动机MG2、第2行星齿轮装置16、离合器CL以及制动器BK的配置(排列)变更后的结构。如图14所示的驱动装置120那样,本发明的混合动力车辆的驱动控制装置也适于应用于在所述第2行星齿轮装置16的齿轮架C2与作为非旋转构件的所述壳体26之间与所述制动器BK并列地具备允许该齿轮架C2相对于壳体26的一个方向的旋转且阻止反方向的旋转的单向离合器(One Way Clutch) OffC的结构。如图15所示的驱动装置130、图16所示的驱动装置140、图17所示的驱动装置150那样,本发明的混合动力车辆的驱动控制装置也适于应用于代替所述单小齿轮型的第2行星齿轮装置16而具备作为第2差动机构的双小齿轮型的第2行星齿轮装置16'的结构。该第2行星齿轮装置16'作为旋转要素而具备:作为第I旋转要素的太阳轮S2';作为第2旋转要素的齿轮架C2',其将相互啮合的多个小齿轮P2'支承为能够自转及公转;以及作为第3旋转要素的齿圈R2',其经由小齿轮P2'与太阳轮S2'啮合。
[0097]实施例3
[0098]图18?图20是对代替所述驱动装置10而适于应用本发明的其他混合动力车辆用驱动装置160、170、180的结构及工作分别进行说明的列线图。在图18?图20中,与前述图4?7等列线图同样,用实线LI表示所述第I行星齿轮装置14的太阳轮S1、齿轮架Cl、齿圈Rl的相对转速,用虚线L2表示所述第2行星齿轮装置16的太阳轮S2、齿轮架C2、齿圈R2的相对转速。在图18所示的混合动力车辆用驱动装置160中,所述第I行星齿轮装置14的太阳轮S1、齿轮架Cl以及齿圈Rl分别与所述第I电动机MG1、所述发动机12以及所述第2电动机MG2连结。所述第2行星齿轮装置16的太阳轮S2、齿轮架C2分别与所述第2电动机MG2、所述输出齿轮30连结,齿圈R2经由所述制动器BK与所述壳体26连结。所述太阳轮SI和齿圈R2经由所述离合器CL选择性地连结。所述齿圈Rl和太阳轮S2彼此连结。在图19所示的混合动力车辆用驱动装置170中,所述第I行星齿轮装置14的太阳轮S1、齿轮架Cl以及齿圈Rl分别与所述第I电动机MG1、所述输出齿轮30以及所述发动机12连结。所述第2行星齿轮装置16的太阳轮S2、齿轮架C2分别与所述第2电动机MG2、所述输出齿轮30连结,齿圈R2经由所述制动器BK与所述壳体26连结。所述太阳轮SI和所述齿圈R2经由所述离合器CL选择性地连结。所述离合器Cl和C2彼此连结。在图20所示的混合动力车辆用驱动装置180中,所述第I行星齿轮装置14的太阳轮S1、齿轮架Cl以及齿圈Rl分别与所述第I电动机MG1、所述输出齿轮30以及所述发动机12连结。所述第2行星齿轮装置16的太阳轮S2、齿圈R2分别与所述第2电动机MG2、所述输出齿轮30连结,齿轮架C2经由所述制动器BK与所述壳体26连结。所述齿圈Rl与齿轮架C2经由离合器CL选择性地连结。所述齿轮架Cl和齿圈R2彼此连结。
[0099]在图18?图20所示的实施例中,与前述图4?7等所示的实施例同样,在以下方面是共通的:一种混合动力车辆的驱动控制装置,具备在列线图上具有4个旋转要素(表现为4个旋转要素)的作为第I差动机构的第I行星齿轮装置14及作为第2差动机构的第2行星齿轮装置16、W、和分别与这4个旋转要素连结的第I电动机MGl、第2电动机MG2、发动机12及输出旋转构件(输出齿轮30),所述4个旋转要素中的I个旋转要素中的所述第I行星齿轮装置14的旋转要素和所述第2行星齿轮装置16、16'的旋转要素经由离合器CL选择性地连结,成为该离合器CL的接合对象的所述第2行星齿轮装置16、16'的旋转要素经由制动器BK选择性地与作为非旋转构件的壳体26连结。S卩,使用图9等叙述的本发明的混合动力车辆的驱动控制装置也适于应用在图18?图20所示的结构。
[0100]这样,根据本实施例,一种混合动力车辆的驱动控制装置,具备在离合器CL接合的状态下作为整体具有4个旋转要素(在图4?图7等所示的列线图上表示为4个旋转要素)的作为第I差动机构的第I行星齿轮装置14及作为第2差动机构的第2行星齿轮装置16、16'、和分别与这4个旋转要素连结的发动机12、第I电动机MGl、第2电动机MG2及作为输出旋转构件的输出齿轮30,所述4个旋转要素中的I个旋转要素中的所述第I差动机构的旋转要素和所述第2差动机构的旋转要素经由离合器CL选择性地连结,成为该离合器CL的接合对象的所述第I差动机构或所述第2差动机构的旋转要素经由制动器BK选择性地与作为非旋转构件的壳体26连结,在从所述发动机12停止且所述离合器CL及制动器BK均接合的行驶模式即所述模式2 (EV-2)启动所述发动机12时,使所述离合器CL及制动器BK的至少一方分离,因此,能够适当地抑制从发动机停止状态启动发动机时的反驱动力的产生。即,能够提供一种作为抑制从发动机停止状态启动发动机时的驾驶者的违和感的混合动力车辆的驱动控制装置的所述电子控制装置40。
[0101]在从所述模式2启动所述发动机12时,使所述离合器CL及制动器BK的某一方分离,在启动该发动机12时正在产生所述混合动力车辆的行驶用驱动力的情况下,根据该驱动力的大小来选择是使所述离合器CL分离、还是使所述制动器BK分离,因此,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0102]在从所述模式2启动所述发动机12时,使所述离合器CL及制动器BK的某一方分离,在判定为处于不容易因所述发动机12的启动而感知到反驱动力的驱动状态的情况下,使所述制动器BK分离,而在判定为不处于不容易感知到反驱动力的驱动状态的情况下,使所述离合器CL分离,因此,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0103]在所述驱动力为预先确定的阈值Pb。以上的情况下,使所述制动器BK分离,而在所述驱动力低于预先确定的阈值Pb。的情况下,使所述离合器CL分离,因此,能够以适当且实用的形态来抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0104]所述第I行星齿轮装置14具备与所述第I电动机MGl连结的作为第I旋转要素的太阳轮S1、与所述发动机12连结的作为第2旋转要素的齿轮架Cl、以及与所述输出齿轮30连结的作为第3旋转要素的齿圈R1,所述第2行星齿轮装置16(16')具备与所述第2电动机MG2连结的作为第I旋转要素的太阳轮S2(S2')、作为第2旋转要素的齿轮架C2(C2')、以及作为第3旋转要素的齿圈R2(R2'),这些齿轮架C2 (C2 ')及齿圈R2(R2')的某一方与所述第I行星齿轮装置14的齿圈Rl连结,所述离合器CL选择性地使所述第I行星齿轮装置14的齿轮架Cl与所述齿轮架C2(C2')及齿圈R2(R2')中不与所述齿圈Rl连结的一方的旋转要素接合,所述制动器BK选择性地使所述齿轮架C2(C2')及齿圈R2(R2')中不与所述齿圈Rl连结的一方的旋转要素与作为非旋转构件的壳体26接合,因此,能够在实用的混合动力车辆的驱动装置10等中适当地抑制从发动机停止状态启动发动机时的反驱动力的产生。
[0105]以上,基于附图对本发明的优选的实施例进行了详细说明,但本发明不限于此,可在不脱离其主旨的范围内加入各种变更并实施。
[0106]标号说明
[0107]10、100、110、120、130、140、150、160、170、180:混合动力车辆用驱动装置,12:发动机,14:第I行星齿轮装置(第I差动机构),16、16':第2行星齿轮装置(第2差动机构),18、22:定子,20、24:转子,26:壳体(非旋转构件),28:输入轴,30:输出齿轮(输出旋转构件),32:油泵,40:电子控制装置(驱动控制装置),42:加速器开度传感器,44:发动机转速传感器,46 =MGl转速传感器,48:MG2转速传感器,50:输出转速传感器,52:换挡传感器,54:电池SOC传感器,55:制动器传感器,56:发动机控制装置,58:变换器,60:液压控制回路,70:彳丁驶t旲式判定部,72:尚合器接合控制部,74:制动器接合控制部,76:发动机启动判定部,78:反驱动力推定部,80:驱动力判定部,82:制动器操作判定部,84:P档判定部,86:发动机启动时接合控制部,BK:制动器,CL:离合器,Cl、C2、C2':齿轮架(第2旋转要素),MGl:第I电动机,MG2:第2电动机,OffC:单向离合器,PU P2、P2':小齿轮,RU R2、R2':齿圈(第3旋转要素),S1、S2、S2':太阳轮(第I旋转要素)
【权利要求】
1.一种混合动力车辆的驱动控制装置,该混合动力车辆具备作为整体具有4个旋转要素的第I差动机构及第2差动机构、和分别与该4个旋转要素连结的发动机、第I电动机、第2电动机及输出旋转构件, 所述4个旋转要素中的I个旋转要素中的所述第I差动机构的旋转要素和所述第2差动机构的旋转要素经由离合器选择性地连结, 成为该离合器的接合对象的所述第I差动机构或所述第2差动机构的旋转要素经由制动器选择性地与非旋转构件连结,所述驱动控制装置的特征在于, 在从所述发动机停止且所述离合器和所述制动器均接合的行驶模式启动所述发动机时,使所述离合器和所述制动器的至少一方分离。
2.根据权利要求1所述的混合动力车辆的驱动控制装置,其中, 在从所述行驶模式启动所述发动机时,使所述离合器和所述制动器的某一方分离,在该发动机启动时正在产生所述混合动力车辆的行驶用驱动力的情况下,根据该驱动力的大小来选择是使所述离合器分离、还是使所述制动器分离。
3.根据权利要求1或2所述的混合动力车辆的驱动控制装置,其中, 在从所述行驶模式启动所述发动机时,使所述离合器和所述制动器的某一方分离,在判定为处于不容易因所述发动机的启动而感知到反驱动力的驱动状态的情况下,使所述制动器分离。
4.根据权利要求2所述的混合动力车辆的驱动控制装置,其中, 在所述驱动力为预先设定的阈值以上的情况下,使所述制动器分离。
5.根据权利要求2所述的混合动力车辆的驱动控制装置,其中, 在所述驱动力低于预先设定的阈值的情况下,使所述离合器分离。
6.根据权利要求1?5中任一项所述的混合动力车辆的驱动控制装置,其中, 所述第I差动机构具备与所述第I电动机连结的第I旋转要素、与所述发动机连结的第2旋转要素以及与所述输出旋转构件连结的第3旋转要素, 所述第2差动机构具备与所述第2电动机连结的第I旋转要素、第2旋转要素以及第3旋转要素,这些第2旋转要素及第3旋转要素的某一方与所述第I差动机构的第3旋转要素连结, 所述离合器选择性地使所述第I差动机构的第2旋转要素与所述第2差动机构的第2旋转要素及第3旋转要素中不与所述第I差动机构的第3旋转要素连结的一方的旋转要素接合, 所述制动器选择性地使所述第2差动机构的第2旋转要素及第3旋转要素中不与所述第I差动机构的第3旋转要素连结的一方的旋转要素与所述非旋转构件接合。
【文档编号】B60W10/06GK104203685SQ201280071557
【公开日】2014年12月10日 申请日期:2012年3月21日 优先权日:2012年3月21日
【发明者】林宏司, 寺岛正人, 原田广康, 大野智仁, 石井启之 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1