一种多层耐磨擦碳纤维连续抽油杆的制备装置的制作方法

文档序号:11608533阅读:297来源:国知局
一种多层耐磨擦碳纤维连续抽油杆的制备装置的制造方法
此申请是下述发明的分案申请:
专利名称:为:一种多层耐磨擦碳纤维连续抽油杆及制备装置和制备方法;专利号为:2016108732187;申请日为:2016-09-30。本发明属于油田采油设备领域,尤其涉及一种多层耐磨擦碳纤维连续抽油杆的制备装置。
背景技术
:抽油杆是石油生产过程中常用的一种设备,采油时,通过抽油杆带动井下的抽油泵泵杆上下往复运动,从而将地层内的石油等液体泵送至地面。在使用过程中,通常要将抽油杆连接至上千米,在此种情况下,抽油杆要承受的自身悬重和抽油泵的负荷,因此承受的拉力比较大。现有的抽油杆多由钢材制成,但钢材存在重量大、易腐蚀、易磨损等物理缺陷,使得抽油杆的损耗居高不下。另外,现有的抽油杆大多为分段式结构,施工时需要逐段安装,因此施工效率比较低。为了解决上述问题,生产了一种碳纤维连续抽油杆,这种抽油杆利用碳纤维质量轻、韧性好、抗拉强度高等优越的物理性能,解决了上述问题。但这种抽油杆也存在一些缺陷:1、现有的碳纤维抽油杆的抗扭强度比较差;2、现有的碳纤维抽油杆中的碳纤维和玻璃纤维的走向均与抽油杆的长度方向相同,生产时,本该包覆在碳纤维外侧的玻璃纤维很容易掺入碳纤维束中,从而对抽油杆的强度造成不利影响。3、现有的碳纤维抽油杆的外层均为单纯的环氧树脂层,耐磨性较差。技术实现要素:本发明提供一种多层耐磨擦碳纤维连续抽油杆的制备装置,以生产一种多层耐摩擦碳纤维连续抽油杆,进而解决上述
背景技术
中提出的问题。本发明所解决的技术问题采用以下技术方案来实现:本发明提供了一种多层耐磨擦碳纤维连续抽油杆,包括碳纤维芯体,所述的碳纤维芯体外依次螺旋缠绕有缠绕玻璃纤维层a和缠绕玻璃纤维层b,缠绕玻璃纤维层b外包覆有纵向玻璃纤维层,纵向玻璃纤维层外壁涂覆有环氧树脂层,碳纤维芯体由150根/12k---242根/12k,碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维拉伸强度4950mpa以上,碳纤维芯体的质量百分含量为33.1---28.3%,碳纤维芯体直径为11--14mm,缠绕玻璃纤维层a和缠绕玻璃纤维层b两层缠绕玻璃纤维的缠绕螺旋角均为45°,缠绕方向相反,缠绕玻璃纤维层a和缠绕玻璃纤维层b由环氧树脂粘结在碳纤维芯体上,缠绕玻璃纤维层a和缠绕玻璃纤维层b的质量百分含量为5.0—5.9%,缠绕玻璃纤维层a和缠绕玻璃纤维层b两层的缠绕厚度为0.4—0.6mm,纵向玻璃纤维层的玻璃纤维与碳纤维芯体平行设置,纵向玻璃纤维层质量百分含量32—38%,纵向玻璃纤维层由42根/2400tex--106根/2400tex的玻璃纤维组成,纵向玻璃纤维层由环氧树脂粘结在缠绕玻璃纤维层b外壁,抽油杆的两个端头连接有抽油杆接头,抽油杆接头与抽油杆杆体的连接处能承受的拉力达到698kn,剪切强度达到92mpa;拉伸弹性模量150gpa以上,环氧树脂层的外侧还包覆有聚乙烯层。抽油杆的外侧还设有石墨烯层。所述的缠绕玻璃纤维层a、缠绕玻璃纤维层b及纵向玻璃纤维层中的玻璃纤维采用s级无碱玻璃纤维,玻璃纤维强度2500mpa以上;线密度2400±5%tex;拉伸弹性模量88gpa以上、含水率0.1%以下,所述的环氧树脂耐温160℃,环氧树脂拉伸强度60-85mpa、拉伸模量2.5-3.0gpa、伸长率3.5-5.0%、弯曲强度100-135mpa、弯曲模量2.5-3.5gpa,环氧树脂耐温达到160℃。环氧树脂购自惠柏新材料科技(上海)股份有限公司。所述的抽油杆接头主要由锥套、外套管和连接头组成,外套管与连接头之间通过螺纹连接,连接头将锥套封装在外套管内,锥套与外套管的接触面为圆锥面,所述的锥套的两端各加工有一个切口,切口沿轴线方向切入,两个切口所在的平面相互垂直,切口的长度占锥套总长度的百分比为85%-90%。本发明提供了一种多层耐磨擦碳纤维连续抽油杆的制备装置,包括纱架、树脂槽、缠绕机a、缠绕机b、拉挤模具、烘干装置a、长度计量装置、挤塑机、牵引机和卷盘,所述的树脂槽、缠绕机a和缠绕机b设置在无尘恒温室内,所述的纱架上放置有卷轴,碳纤维原料和玻璃纤维原料均为缠绕在卷轴上的线状结构,从纱架上的卷轴上引出的碳纤维依次通过树脂槽、缠绕机a、缠绕机b、拉挤模具、烘干装置a、长度计量装置和挤塑机制成抽油杆成品,抽油杆成品通过牵引机后缠绕在卷盘上;所述的树脂槽的两端分别设置有扶线板a和扶线板b,两块扶线板上均设置有扶线孔阵列,碳纤维或玻璃纤维从扶线板a穿入后从扶线板b穿出且分层排列,树脂槽包括树脂滴管、加热水套和回收槽,树脂滴管设置在每一层碳纤维的上方,加热水套通过热水或热油的循环实现其加热功能,所述的树脂槽内的各树脂滴管上下错位分布;所述的缠绕机a和缠绕机b的结构相同,均包括一个安装在空心轴上的、由电机驱动的转盘,两个转盘的来料一侧均设置有预成型模具,缠绕机a的进料处设置有用于将各股碳纤维均匀分布在圆形面上的圆形布线盘,缠绕机b的进口处设置有一个脱模剂加注装置,每个缠绕机的转盘的侧面的边缘至少对称设置有两个缠绕有玻璃纤维的卷轴,每个卷轴的内侧对应设置有一个扶线针,卷轴上的玻璃纤维穿过扶线针后缠绕在碳纤维芯体上,形成缠绕玻璃纤维层a和缠绕玻璃纤维层b;所述的树脂槽、缠绕机a和缠绕机b均设置在无尘恒温室内;所述的无尘恒温室与拉挤模具之间也设置有圆形布线盘,所述的碳纤维束从该圆形布线盘中央的通孔穿过,从纱架上的卷轴上引出的玻璃纤维经由设置在无尘恒温室内的另一树脂槽后,在该圆形布线盘的作用下均匀分布在碳纤维的周围,该圆形布线盘的进料一侧也设置有一个脱模剂加注装置;所述的拉挤模具为长条状结构,拉挤模具的外侧延长度方向套有三个模具加热装置;所述的烘干装置a为带有上盖的箱体式结构,通过打开上盖可将抽油杆半成品含于箱体内,以实现环绕加热烘干;所述的卷盘安装在电驱动的卷盘支架上。本发明还包括雾化室和烘干装置b,雾化室和烘干装置b设置在挤塑机和牵引机之间,抽油杆半成品从挤塑机出来后,先后通过雾化室和烘干装置b,然后进入牵引机,烘干装置b与烘干装置a的结构相同。所述的卷盘的直径大于3米。卷盘与卷盘支架之间为可拆卸连接。本发明提供了一种所述的多层耐磨擦碳纤维连续抽油杆的制备方法包括:步骤一,将纱架上的碳纤维和玻璃纤维引入无尘恒温室内,并使二者各自经由一个树脂槽,在此过程中,通过树脂槽上的树脂滴管向碳纤维和玻璃纤维上滴洒树脂;步骤二,通过扶线板和圆形布线盘将涂有树脂的碳纤维聚拢排布后,在预成型模具的聚拢挤压作用下初步形成碳纤维芯体,碳纤维芯体再经由缠绕机a和缠绕机b,缠绕机a和缠绕机b先后将两层缠绕玻璃纤维缠绕在碳纤维芯体上,形成缠绕玻璃纤维层a和缠绕玻璃纤维层b,然后将抽油杆半成品引出无尘恒温室,缠绕机a和缠绕机b上的转盘的转动方向相反,缠绕的螺旋角通过调整扶线针与碳纤维之间的相对位置进行控制;与此同时,将涂有树脂的玻璃纤维引出无尘恒温室;步骤三,通过圆形布线盘将上一步骤中涂有树脂的玻璃纤维均匀环绕在抽油杆半成品周围,并与抽油杆半成品一同穿过拉挤模具,以使得碳纤维和玻璃纤维被充分压紧,并形成纵向玻璃纤维层,在此过程中,通过拉挤模具外侧套装的模具加热装置进行加热,以使树脂固化,三个模具加热装置的加热温度按照产品行进方向依次为160℃,180℃,190℃;步骤四,将抽油杆半成品继续引入烘干装置a进行烘干,以使树脂进一步脱水干燥;步骤五,将抽油杆半成品继续引入挤塑机,以形成聚乙烯层;步骤六,将抽油杆半成品继续引入雾化室,在雾化室中通过雾化喷涂的方式向抽油杆半成品的表面喷涂石墨烯,然后在喷涂后通过烘干装置b进行烘干,形成抽油杆成品。碳纤维芯体的端部穿过拉挤模具后,将该端部与一条扁带连接,通过牵引机牵引扁带来提供产品行进的动力;碳纤维芯体的端部到达牵引机后,牵引机直接牵引抽油杆成品,以实现连续生产,连续生产中牵引机的拉挤速度为0.25-0.45m/min,再通过卷盘将抽油杆成品盘绕起来。本发明的有益效果为:本发明并根据该抽油杆的结构设计出了一套完整的工艺设备,通过本发明可生产出一种多层耐摩擦碳纤维连续抽油杆,具有重量轻,耐磨损,抗扭强度、抗剪强度、抗拉强度高等诸多优点,将该抽油杆应用于油田生产中,在保证使用功能的同时,可实现节能增效的效果,显著提升效益。使用本发明所述的设备工艺操作简单,工艺布局合理,采用常规的自动化控制技术控制各生产参数,实现了连续抽油杆的连续自动化生产。附图说明图1是多层耐磨擦碳纤维连续抽油杆及制备装置和制备方法的结构示意图;图2是图1中无尘恒温室内各装置的结构示意图;图3是图1中a处的局部放大图;图4是图1中拉挤模具处的结构示意图;图5是利用本发明生产出来的多层耐摩擦碳纤维连续抽油杆的结构示意图;图6是扶线板a的过线状况示意图(图中黑点表示碳纤维或玻璃纤维);图7是扶线板b的过线状况示意图(图中黑点表示碳纤维或玻璃纤维);图8是圆形布线盘的结构示意图(图中黑点表示碳纤维或玻璃纤维);图9是抽油杆接头的装配图;图10是锥套的剖视图;图11是图10中a处的剖视图。图中:1-纱架,2-卷轴,3-碳纤维,4-树脂槽,5-缠绕机a,6-缠绕机b,7-拉挤模具,8-烘干装置a,9-挤塑机,10-雾化室,11-烘干装置b,12-牵引机,13-卷盘,14-抽油杆成品,15-长度计量装置,16-脱模剂加注装置,17-无尘恒温室,18-加热水套,19-回收槽,20-转盘,21-扶线针,22-预成型模具,23-圆形布线盘,24-扶线板a,25-树脂滴管,26-玻璃纤维,27-模具加热装置,28-碳纤维芯体,29-缠绕玻璃纤维层a,30-纵向玻璃纤维层,31-环氧树脂层,32-聚乙烯层,33-石墨烯层,34-缠绕玻璃纤维层b,35-扶线板b,36-外套管,37-锥套,38-连接头,39-切口。具体实施方式以下结合附图对本发明做进一步描述:实施例:一种多层耐磨擦碳纤维连续抽油杆,包括碳纤维芯体28,碳纤维芯体28由150根/12k---242根/12k碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维拉伸强度≥4950mpa,所述的碳纤维芯体28外依次螺旋缠绕有缠绕玻璃纤维层a29和缠绕玻璃纤维层b34,缠绕玻璃纤维层b34外包覆有纵向玻璃纤维层30,纵向玻璃纤维层30外壁涂覆有环氧树脂层31。缠绕玻璃纤维可束缚碳纤维芯体28中各股碳纤维,避免抽油杆承受扭矩时各股碳纤维发生分离引起抽油杆损坏,从而有效增强了抽油杆的抗扭强度,同时,用缠绕玻璃纤维将碳纤维芯体28包裹,可有效防止纵向玻璃纤维层30与碳纤维芯体28掺合,从而保证了碳纤维芯体28的圆度,即保证了抽油杆结构强度的均匀性,消除了强度弱点。碳纤维芯体28由150根/12k---242根/12k碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维芯体28的质量百分含量为33.1---28.3%,碳纤维芯体28直径为11--14mm。每根碳纤维的单丝数量是碳纤维的一项重要指标,单丝数量越大成本越高,但强度越高同时抽油杆也会加粗。本发明选用单丝数量为12k的碳纤维,在满足连续抽油杆的强度要求的同时,也兼顾了经济性。受使用环境和生产标准的限制,连续抽油杆的直径通常被限定为几个固定值,根据连续抽油杆直径的不同,将12k碳纤维的数量限制在150-242根,可在保证连续抽油杆强度的同时降低了生产成本,抽油杆整体也变轻了降低了能耗,保证连续抽油杆的其它层不会因为碳纤维芯体28的直径过大而被迫压缩,进而影响连续抽油杆的整体性能。本发明将碳纤维芯体28的质量百分含量为33.1---28.3%,这是极有必要的。在碳纤维的根数被限定的情况下,对碳纤维芯体28的质量百分含量的限定既是对连续抽油杆质量的限定,也是对连续抽油杆内碳纤维含量与其它各组分含量的比例的限定。连续抽油杆的直径一定时,碳纤维芯体28的质量百分含量越高,连续抽油杆的抗拉强度越高,但连续抽油杆中的环氧树脂和玻璃纤维等组份也会相应的被压缩,从而影响这些组份性能的发挥,因此,碳纤维芯体28的质量百分含量必须限定在一个合理的范围内。缠绕玻璃纤维层a29和缠绕玻璃纤维层b34两层缠绕玻璃纤维的缠绕螺旋角均为45°,缠绕方向相反,缠绕玻璃纤维层a29和缠绕玻璃纤维层b34由环氧树脂粘结在碳纤维芯体28上。45°是工业设计中的一个特殊角度,在本发明中,45°是最优的缠绕角度,缠绕角度大于45°时,角度越大在工艺上越难以实现,缠绕角度小于45°时,角度越小,抽油杆抵抗扭矩的能力越差。缠绕玻璃纤维层a29和缠绕玻璃纤维层b34的缠绕方向相反,使得抽油杆在顺时针和逆时针两个旋向上获得相同的抗扭强度。缠绕玻璃纤维层a29和缠绕玻璃纤维层b34的质量百分含量为5.0—5.9%,为了使连续抽油杆具有良好的抗扭强度并预留出足够的安全阈值,缠绕玻璃纤维的含量必须足够,经过对使用需求的详细调查和系统分析,此处将最低值设定为5.0%,为了避免连续抽油杆生产中因过于严格的精度控制要求而提高精度控制成本,同时避免材料的无效损耗,此处将缠绕玻璃纤维的质量百分含量的上限设定为5.9%。缠绕玻璃纤维层a29和缠绕玻璃纤维层b34两层的缠绕厚度为0.4—0.6mm,厚度的下限值设置为0.4mm,才可完全保证纵向玻璃纤维层30内的玻璃纤维不会掺合到碳纤维芯体28内,为了避免连续抽油杆生产中因过于严格的精度控制要求而提高精度控制成本,同时避免材料的无效损耗,缠绕玻璃纤维的厚度可向上浮动至0.6mm。纵向玻璃纤维层30的玻璃纤维与碳纤维芯体28平行设置,纵向玻璃纤维层30质量百分含量32—38%,纵向玻璃纤维层30由42根/2400tex--106根/2400tex玻璃纤维组成,纵向玻璃纤维层30主要起抗剪切作用,因此对玻璃纤维的线密度必然提出要求。本发明中采用线密度为2400tex的玻璃纤维,以保证良好的抗剪切能力。而在实际生产中,线密度过高(即纤维过粗)会严重影响环氧树脂的粘结效果和纵向玻璃纤维层30的均匀度,因此,在满足抗剪切性能的情况下,线密度定为2400tex即可,不宜过高。纵向玻璃纤维层30由环氧树脂粘结在缠绕玻璃纤维层b34外壁。所述的玻璃纤维可采用s级无碱玻璃纤维。玻璃纤维强度≥2500mpa;线密度2400±5%tex;拉伸弹性模量≥88gpa、含水率≤0.1%。构成纵向玻璃纤维层30的玻璃纤维与碳纤维芯体28平行设置,使得纵向玻璃纤维层30与碳纤维芯体28可共同分担拉力载荷,有利于提高连续抽油杆的抗拉强度。抽油杆的外侧还设有聚乙烯层32和石墨烯层33。石墨烯具有极好的耐磨性能,在生产时,石墨烯层的厚度极小,因此,在抽油杆直径一定的情况下,增加石墨烯层33不会影响其它各层的结构分布。聚乙烯层32和石墨烯层33赋予抽油杆更优秀的耐磨性能,同时,通过在抽油杆表面设置多层结构,可避免油液渗透,延缓树脂水解,从而防止抽油杆因树脂水解而损坏。所涉及的技术成熟可靠,性能稳定性高。在原有的碳纤维拉挤工艺基础上增加了热固性的聚乙烯层32及石墨烯层33。在抽油杆本身的弯曲直径不增大的同时,利用石墨烯的耐磨性,增加连续杆的耐磨性能。当石墨烯磨损失效后,热固性聚乙烯代替其性能继续保护抽油杆的内部结构。而且热固性的聚乙烯与抽油杆的环氧树脂层31为两相结构,当热固性聚乙烯材料磨损失效后,可以通过相应工艺对受损部分进行剥离并重新修复,增加抽油杆使用寿命。上述方案中,所述的缠绕玻璃纤维层a29、缠绕玻璃纤维层b34及纵向玻璃纤维层30中的玻璃纤维采用s级无碱玻璃纤维,玻璃纤维强度≥2500mpa;线密度2400±5%tex;拉伸弹性模量≥88gpa、含水率≤0.1%。上述方案中的环氧树脂耐温160℃,环氧树脂拉伸强度60-85mpa、拉伸模量2.5-3.0gpa、伸长率3.5-5.0%、弯曲强度100-135mpa、弯曲模量2.5-3.5gpa。上述参数保证了环氧树脂层31的强度,防止其在弯曲过程中开裂。为了保证玻璃纤维和环氧树脂的拉伸状态与碳纤维的拉伸状态在承受载荷时可以协同变化(防止玻璃纤维断裂或环氧树脂开裂),玻璃纤维和环氧树脂的选用必须严格依照上述参数确定。本发明针对本连续抽油杆设计了配套的专用抽油杆接头,通过该抽油杆接头可以将本连续抽油杆与普通的钢制抽油杆快速、稳定、可靠地连接。抽油杆接头主要由锥套37、外套管36和连接头38组成,外套管36与连接头38之间通过螺纹连接,连接头38将锥套37封装在外套管36内,锥套37与外套管36的接触面为圆锥面,所述的锥套37的两端各加工有一个切口39,切口39沿轴线方向切入,两个切口39所在的平面相互垂直,切口39的长度占锥套37总长度的百分比为85%-90%。连续抽油杆与上述的抽油杆接头连接时,将连接头38拆下并使锥套37与外套管36分离,然后使连续抽油杆的端部依次穿入外套管36和锥套37,然后使锥套37与外套管36重新贴合,贴合过程中,锥套37侧壁不断向连续抽油杆靠拢贴合,最终将连续抽油杆夹紧。在连续抽油杆承受拉力载荷后,锥套37侧壁进一步向连续抽油杆靠拢贴合,拉力载荷越大夹紧力越大,消除了连续抽油杆松脱的可能,保证了连接的可靠性。在锥套37的两端各加工有一个切口39且两个切口39所在的平面相互垂直,这样的切口设计,使得锥套37上的所有区段均可以在外套管36内壁的挤压作用下向连续抽油杆靠拢贴合,锥套37的有效夹紧长度等于锥套37的长度,与在锥套37的一端设置切口39相比,夹紧的可靠性大大增强。另外,切口39的长度占锥套37总长度的百分比限制为85%-90%,若切口39过长,则锥套37的结构强度会比较薄弱,在生产、安装和使用过程中容易损坏,若切口39过短,则锥套37的柔性就会变差,影响锥套37的内壁与连续抽油杆的周向贴合程度,进而对夹紧的可靠性和稳定性造成影响。下面是对本申请的抽油杆进行测试,测试结果如下:1)剪切强度达到92mpa;拉伸弹性模量≥150gpa。2)对抽油杆的疲劳性能进行测试,最小拉力40kn,最大拉力120kn,拉力变化频率100hz,次数1千万次。3)碳纤维连续抽油杆杆体性能:表1序号检测项目单位数据要求实测数据1规格尺寸mm19±0.219.102密度g/m31.5-1.951.7363径向耐压kn≥110119.14弯曲强度mpa≥80010465弯曲弹性模量gpa≤10085.66拉伸破坏载荷kn≥690700.57拉伸模量gpa≥1501528表现水平剪切强度mpa≥60929玻璃化转变温度(tg)℃≥160181.14表2抽油杆拉伸试验结果:拉伸强度:1831mpa,断裂延伸率:1.84%,拉伸模量为152gpa。4)抽油杆圆形截面d(mm):153.938(mm2)时承重46.18(吨),201.062(mm2)承重60.32(吨),283.529(mm2)承重85.06(吨)。5)对抽油杆的密度进行测试(取5根抽油杆),结果如下:表36)对抽油杆的抗压性能进行测试(取3根抽油杆),结果如下:表4最大载荷n第1根140471.09第2根102943.23第3根113920.12平均值119111.48注:以上测试数据均依据标准q/jhy006-2014测定。一种多层耐磨擦碳纤维连续抽油杆的制备装置,包括纱架1、树脂槽4、缠绕机a5、缠绕机b6、拉挤模具7、烘干装置a8、长度计量装置15、挤塑机9、牵引机12和卷盘13。所述的树脂槽4、缠绕机a5和缠绕机b6设置在无尘恒温室17内,所述的纱架1上放置有卷轴2,碳纤维原料和玻璃纤维原料均为缠绕在卷轴2上的线状结构,从纱架1上的卷轴2上引出的碳纤维3依次通过树脂槽4、缠绕机a5、缠绕机b6、拉挤模具7、烘干装置a8、长度计量装置15和挤塑机9制成抽油杆成品14,抽油杆成品14通过牵引机12后缠绕在卷盘13上。牵引机12能够控制抽油杆行进速度。所述的树脂槽4包括树脂滴管25、加热水套18和回收槽19,树脂槽4的两端分别设置有扶线板a24和扶线板b35,两块扶线板上均设置有扶线孔阵列。碳纤维3或玻璃纤维26从扶线板a24穿入后从扶线板b35穿出且分层排列,树脂滴管25设置在每一层碳纤维3的上方,树脂滴管25上设置有一列用于树脂滴出的小孔,从而使树脂均匀地滴在所有碳纤维上。加热水套18通过热水或热油的循环实现其加热功能,从而使树脂保持一定的流动性,以便树脂顺利地滴出。所述的缠绕机a5和缠绕机b6的结构相同,均包括一个安装在空心轴上的、由电机驱动的转盘20,两个转盘20的来料一侧均设置有预成型模具22,缠绕机a5的进料处设置有用于将各股碳纤维3均匀分布在圆形面上的圆形布线盘23,使得碳纤维芯体28内部的碳纤维整齐、均匀地排列,保证了碳纤维芯体28的结构均匀性。缠绕机b6的进口处设置有一个脱模剂加注装置16,通过脱模剂的润滑作用可减小产品与生产设备之间的摩擦力,从而产生减小牵引力和减缓设备磨损的作用。每个缠绕机的转盘20的侧面的边缘至少对称设置有两个缠绕有玻璃纤维26的卷轴2,每个卷轴2的内侧对应设置有一个扶线针21,卷轴2上的玻璃纤维26穿过扶线针21后缠绕在碳纤维芯体28上,形成缠绕玻璃纤维层a29。扶线针21的作用是使玻璃纤维26的位置保持稳定,从而使玻璃纤维26的分布更均匀,保证产品的结构均匀性。缠绕机是本制备装置中的核心设备,通过缠绕机a5和缠绕机b6可实现玻璃纤维的双向缠绕。所述的树脂槽4、缠绕机a5和缠绕机b6均设置在无尘恒温室17内,无尘的环境,可防止因碳纤维3、玻璃纤维26和树脂受灰尘污染而影响产品的质量,恒温的环境可保证树脂的流动性,从而使树脂充分的浸润在碳纤维3和玻璃纤维26中,以保证各股纤维之间的粘合强度。所述的无尘恒温室17与拉挤模具7之间也设置有圆形布线盘23,所述的碳纤维束从该圆形布线盘23中央的通孔穿过,从纱架1上的卷轴2上引出的玻璃纤维26经由设置在无尘恒温室17内的另一树脂槽4后,在该圆形布线盘23的作用下均匀分布在碳纤维束的周围,该圆形布线盘23的进料一侧也设置有一个脱模剂加注装置16。所述的拉挤模具7为长条状结构,拉挤模具7的中央设置有通孔,抽油杆半成品从该通孔穿过,实现挤压。拉挤模具7的外侧延长度方向套有三个模具加热装置27,通过模具加热装置27使存在于各股纤维之间的树脂充分析出并固化,形成环氧树脂层31。所述的烘干装置a8为带有上盖的箱体式结构,通过打开上盖可将抽油杆半成品含于箱体内,以实现环绕加热烘干,烘干速度快,效果好。本发明还可包括雾化室10和烘干装置b11,雾化室10和烘干装置b11设置在挤塑机9和牵引机12之间,抽油杆半成品从挤塑机9出来后,先后通过雾化室10和烘干装置b11,然后进入牵引机12,烘干装置b11与烘干装置a8的结构相同。所述的卷盘13的直径大于3米,3米是本发明产出的抽油杆的最小弯折直径,若弯折直径小于3米,抽油杆成品14会发生不可逆的塑性变形,造成抽油杆成品14的损坏。所述的卷盘13安装在电驱动的卷盘支架上,卷盘13与卷盘支架之间为可拆卸连接。一个卷盘13缠满后,可将该卷盘13拆下并通过天车吊运至别处存放,然后在卷盘支架上放置一个空的卷盘13,从而便于产品的存放和运输。所述的树脂槽4内的各树脂滴管25上下错位分布,否则,位于上层的树脂滴管25中滴出的树脂会滴在位于下层的树脂滴管25上,长期使用后,位于下层的树脂滴管25会被堵塞,进而增加了额外的清理工作。本发明的使用过程为:步骤一,将纱架1上的碳纤维3和玻璃纤维26引入无尘恒温室17内,并使二者各自经由一个树脂槽4,在此过程中,通过树脂槽4上的树脂滴管25向碳纤维3和玻璃纤维26上滴洒树脂。在碳纤维3和玻璃纤维26上同时滴涂树脂,可使树脂与纤维更充分的接触,从而改善各股纤维之间的粘接强度。步骤二,通过两块扶线板和圆形布线盘23将涂有树脂的碳纤维3聚拢排布后,在预成型模具22的聚拢挤压作用下初步形成碳纤维芯体28,碳纤维芯体28再经由缠绕机a5和缠绕机b6,缠绕机a5和缠绕机b6先后将两层缠绕玻璃纤维缠绕在碳纤维芯体28上,形成缠绕玻璃纤维层a29和缠绕玻璃纤维层b34,然后将抽油杆半成品引出无尘恒温室17;与此同时,将涂有树脂的玻璃纤维26引出无尘恒温室17,缠绕机a5和缠绕机b6上的转盘20的转动方向相反,缠绕的螺旋角通过调整扶线针21与碳纤维之间的相对位置进行控制。经过预成型模具22的挤压,可将碳纤维束中的树脂挤出,使得碳纤维芯体28的结构更紧密,抽油杆的强度会因此得到显著提升。步骤三,通过圆形布线盘23将上一步骤中涂有树脂的玻璃纤维26均匀环绕在抽油杆半成品周围,并与抽油杆半成品一同穿过拉挤模具7,以使得碳纤维3和玻璃纤维26被充分压紧,并形成纵向玻璃纤维层30,在此过程中,通过拉挤模具7外侧套装的模具加热装置27进行加热,以使树脂析出固化。三个模具加热装置27的加热温度按照产品行进方向依次为160℃,180℃,190℃,可按照树脂的固化规律使树脂内外层均充分固化。步骤四,将抽油杆半成品继续引入烘干装置a8进行烘干,以使树脂进一步脱水干燥;步骤五,将抽油杆半成品继续引入挤塑机9,以形成聚乙烯层32;步骤六,将抽油杆半成品继续引入雾化室10,在雾化室10中通过雾化涂覆的方式向抽油杆半成品的表面涂覆石墨烯,然后在涂覆后通过烘干装置b11进行烘干,形成抽油杆成品14。雾化工艺是表面处理的常用工艺,与喷涂工艺相比,采用雾化工艺更能保证涂层的均匀性。碳纤维芯体28的端部穿过拉挤模具7后,将该端部与一条扁带(图中未示出)连接,所述的扁带为市面上常见的尼龙扁带,根据抗拉强度选择即可。通过牵引机12牵引扁带来提供产品行进的动力;碳纤维芯体28的端部到达牵引机12后,牵引机12直接牵引抽油杆成品14,以实现连续生产,连续生产中牵引机12的拉挤速度为0.25-0.45m/min,再通过卷盘13将抽油杆成品14盘绕起来。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1