换热方法和设备的制作方法

文档序号:4766581阅读:201来源:国知局
专利名称:换热方法和设备的制作方法
技术领域
本发明涉及多股气流(gasstream)与热/冷载体(heat/cold carrier)在换热区进行间接换热的方法,在换热区内多股气流通过多路换热通道,仅有一股气流通过至少一个换热区。另外,本发明涉及在有多路换热通道的换热区内至少两股气流与热/冷载体进行间接换热的换热设备。
在空气低温分馏过程中,要分馏的进料空气必须冷却到工艺温度。习惯上这在主换热器中通过进料空气与所生成的气流进行间接换热。主换热器一般采用板式换热器结构,其对于待处理的气流具有多路换热通道。在加工量很大的空气分馏装置中,需要多个这样的换热区来处理大量的空气和产品。通常,2万~3万Nm3/h空气的主换热器要分成两个区。
迄今,通常全部气流和进料气流以及如果还有其它适当气流的话,是通过各单独的换热区的每一个。例如,如果两股不同压力的空气流进入空气分馏装置,所产生的气态产品是氧、纯氮和不纯氮,那么这5种气流必须通过每一换热区。因此,对这些气流每个换热区必须有10个接口,即5个气流入口和5个气流出口。
相应地,为了将这些气流分别从各自入口分配到相应的换热通道,同时把这些气流从换热通道排到适当的出口,需要有10套下面称之为收集器/分配器(collector/distributor)的设备。
目前,通过结合到换热区的分配段(distribution zones)来实现这些收集器/分配器。在该分配段,至少将某些使各换热通道互相区分开的折流板(lamellae)布置成倾斜的,以使得通过入口流入的气流导入换热通道,或使得从换热通道流出的气流折转通向出口。
但是在这种收集器/分配器构成的分配段中,流动状态大大改变。首先,由于折流板的倾斜定向,使流动方向发生变化;其次,换热通道的截面在分配段明显减小。结果,通过的气流流速可能变化。这两种效果均在换热区产生不希望的压力降。
德国专利DE-A-42 04 172中公开了把空气分馏装置的主换热器在工艺侧分成多个区,让空气分馏装置产生的每个产品流,通过各自独立的换热区与进料空气流换热。该工艺的目的是降低对每个换热区的控制要求。另一方面,该专利没有涉及换热区分配段造成的压力降,因此也不包括适于减少这种压力降的任何措施。
本发明的目的是提供一种适于多股气流间接加热或冷却的方法和设备,而且使换热器上的压力降尽可能地小。
按照本发明一开始叙述的这类方法要达到的目的是,至少一个换热区的一股气流的换热通道局限于该换热区的两个端面之间,在所有情况下,这股气流都是经过联结到换热区的一个收集器/分配器从至少一个换热区的换热通道进入或排出,在所有情况下,收集器/分配器都覆盖换热区的整个端面。
本发明的换热设备用于至少两股气流与热/冷载体在有多路换热通道的换热区中进行间接换热,其特点是换热区中每一股气流的换热通道局限于换热区两端的端面之间,而且每一个都流动联接到收集器/分配器中,在所有情况下,收集器/分配器都覆盖换热区整个端面。
按照本发明,至少一股压力降尽可能小的气流通过换热区,在该换热区无其它气流通过。很明显,一股或多股热或冷载体流经这一换热区与气流换热。用于这一气流的换热区的换热通道,从换热区一侧的端面延伸至相对侧的端面,且基本平行。在所有情况下,换热通道两个端面侧都装有一个位于换热区的外面的收集器/分配器,该收集器/分配器覆盖了整个端面,而且与进料或出料管线有接口。因而,换热通道不是通过锥形剖面插入进料或出料管线,流动方向在收集器/分配器中缓慢地改变。因此,在与收集器/分配器相联的换热区中可使压力降最小。
按照本发明的方法和相应的设备,换热区从入口到出口测得的压力降可能达到约70毫巴。相比之下,在传统换热器中,在入口和出口及换热通道之间,经分配段发生气流的分配和汇合,该分配段接入换热区并具有倾斜的折流板,如果气流来自压力1.2~1.8巴的低压塔,那么所产生的压力降大约为100毫巴。而对不加压的这一侧,本发明可使压力降降低了30毫巴左右。这就意味着可以生产比其它方法低30毫巴的低压气流。为了保持主冷凝器的换热条件,在空气压缩机下游空气被压缩到约90毫巴以下就足够了。
优选为每股气流提供单独的换热区。首先,这将具有上述低压力降的优点,其次所需的管道数量可以减少。另外,还降低了换热区的成本,因为分配段可明显地更简单。在传统方法中,所有的气流通过每一个换热区,每一股气流在主换热器的冷侧和热侧,都要求有一多支管(manifold line),该多支管包括通向每个换热区的多条支管,以作为进料管或出料管。相反,如果每股气流通过单独的换热区,就可以省却支管,管道也明显简化。
如果经过单独换热区的气速太高,不能在该换热区进行加工,则提供两个或多个换热区,并使该气流的分流通过每个换热区。
本发明特别适于加工压力低于3.5巴、与热或冷载体进行间接换热的气流,优选1.1~1.8巴的气流,此后将这样的气流称为低压气流。按照本发明,在这种情况下,一个换热区只通过这些低压气流中的一股,也就是说对每一股压力低于3.5巴的气流使用一个单独的换热区。
在气流压力高于约4巴的情况下,换热区的压力降所起的作用很小,或者可以忽略。因此,将这样的高压气流通过至少一个的、通过低压气流之一的换热区,有时是有利的。
本发明方法优选用于进料空气的低温分馏。来自双塔精馏系统低压塔的产品气流,具有略超过常压的0.1~0.8巴的过压,所以压力降的降低对其非常重要。氩气产品的情况也类似于此,因为粗氩塔也是在比较低的压力下操作的。
特别优选将这些气流与进料空气进行间接换热。这种情况下进料空气可以以不同压力的多股气流通过换热区。因而,一方面,进料空气可以在压力塔压力下通过换热区,然后进入压力塔;另一方面,进料空气可以于换热区上游再压缩,冷却后,膨胀做功产生冷量。
在能源费用比较低的地区,降低压力降没有什么好处,因为与节能相关的费用较高。因而,在这些应用中更有用的不是最大程度地降低压力降,而是提高流速,以便达到较高的压力降,最终使换热区减小。
优选气流以120~300毫巴的压力降通过换热区,更优选120~200毫巴。提高压力降使流速比传统换热器更高,从而改善传热系数,最终导致换热器体积减小。与已知方法相比,对换热区同样的压力降,本发明的方法可能使换热区体积缩小约15%,因此明显节约费用。
下面,结合附图,用附图中的实施方案来更加详细地说明本发明和其进一步的细节。在附图中

图1表示现有工艺中的具有多个主换热区的大型空气分馏装置的流程布置和结构;图2表示本发明的大型空气分馏装置主换热区的流程布置;图3~6表示在换热通道进口区和出口区中折流板的常规排列;
图7~8表示在换热通道进口区和出口区中本发明的收集器/分配器;图9表示具有氧和氮内部压缩段的本发明工艺;图10表示具有氧内部压缩段的本发明工艺;图11表示带有氮循环的空气分馏工艺。
图1表示现有工艺中加工能力为100000Nm3/h空气的大型空气分馏装置流程图,该装置中必须采用多个单独换热区3的主换热器。
压缩和净化后的进料空气1进入装置,部分空气流2直接进入互相平行排列的多个换热区3a~3e,部分空气流4采用压缩机5进行再压缩,在后冷器6中冷却,然后进入换热区3a~3e。带压空气,后面特指要经过透平的空气流7,从换热区3a~3e的中间部位抽出,在透平8中膨胀,然后进入由压力塔9和低压塔10组成的精馏装置11中的低压塔10。
换热区3a~3e形成了该空气分馏装置的主换热器。在换热区3a~3e中冷却的进料空气2送入精馏装置11中的压力塔9。气态氧14、气态氮15和气态不纯氮16作为再生气于1.3巴左右的压力下从低压塔抽出。另外,精馏装置11还可能生产液态氧12和液态氮13产品。气流14、15、16进入换热区3a~3e的每一个,通过与进料空气流2和透平空气流7间接换热而被加温。
由于所有的气流14、15、16和逆流的两股空气流2、7,即全部5股不同的气流,都通过换热区3a~3e的每一个,每个换热区3必须有10个联结入口和出口的收集器/分配器,所有情况下通过进料管和出料管以及相应的换热通道形成这种联结。
图2表示相应于图1的工艺流程,其中与图1所表明的已知工艺不同之处是,换热区3按照本发明由产品分区。空气流2和透平空气流7恰如图1工艺所示进入所有的换热区23a~23e;不同的是,气态气流14、15、16不再在整个换热区23中加温,而是在每种情况下在指定到气流14、15或16的具体换热区23中加温。
每种情况下,空气1总量的大约20%在精馏装置11中通过空气1的低温分馏转变成气态氧14和不纯氮16。其余60%的空气1作为气态纯氮15离开精馏装置11。换热区23的尺寸设计使得用于气态氧14和不纯氮16的换热区23a、23e,分别具有最大尺寸的效果,即所说换热区23a和23e完全是为预期数量的氧和氮而精确设计的。由于制造的原因,全部换热区23a~23e设计为同一尺寸,所以纯氮气流15需要3个换热区23b~23d。
因此,换热区23a仅仅进行氧气14和空气流2、7的换热,换热区23b~23d进行纯氮15和空气流2、7的换热,换热区23e进行不纯氮16和空气流2、7的换热。换热区23的数量保持与图1工艺相同,因为两种工艺的产量相同,必须与同样数量的空气换热。
但是换热区结构大大简化。每个换热区23只有3股进料,两股空气流2、7和一股气流14、15或16,结果,每个换热区23仅仅需要6个收集器/分配器以及相应的接口。
按照本发明设计的换热区23见图7和8。为了比较,在图3~6中示出了传统类型换热区3的结构。图3表示分配段31中氧通道34的折流板排列;相应地,图4表示纯氮通道35的折流板排列,图5表示不纯氮通道36的折流板排列。图6表示全部进出口排列。
图1工艺中,换热区3中有3股不同的产品流14、15、16与空气流2和透平空气流7进行换热。各气态产品经过分配段31、32、33分配于相应的换热通道34、35、36,这些分配段设有倾斜的折流板,以使气流14、15、16从进料管线37a、38a、39a分配到通道31、32、33,并使离开通道31、32、33的气流进入出口管线37a、38a、39a。
分配段31、32、33导致流动方向和流动横截面两者的变化,而这又会造成流动速度的变化。两者对通过换热区的流动均有不利影响,并在换热区3上产生不希望的压力降。压力降有不利影响,尤其在气流压力比较低时如1.1~1.8巴时。将气流14、15、16的通道34、35、36更换为空气流2和透平空气流7的通道,横向安排入口和出口40a、40b、41a、41b(见图6),也没有改善,因为空气2、7通过类似于图3~5所示的分配通道分配到相联结的换热通道,因此发生类似的流体转向和横截面变化。
图7和8表示新型换热区结构。本发明方法的主要特点是,在每一个换热区23,只有14、15或16中的一股气流与空气流2、7逆流换热。
不同于已知换热区(见图3~5)中具有倾斜的折流板的复杂分配段32,在新型换热区中,在换热通道出口区和入口区优选只有狭窄的分配段42。狭窄分配段42中的折流板位于换热通道折流板之上或之下且与之平行,但是相互之间距离缩短。进入收集器41的气流容易在分配段42的上游集聚,使气流在分配段42所有通道中、也即在全部换热通道中均匀分布。
参考图1和2,本发明方法的进一步好处非常明显。除了显著降低换热区23上的压力降外,在新方法中管道大大简化。除了将换热区进出口的数量从每个换热区10个减少到6个外,将气流14、15、16送入换热区23也无需多少集合管和分支管。
例如从图1中可以看出,为了将氮产品分布到5个换热区3中,要从氮产品管线15上分出4条支管17a~17d。反过来,为了将加温后的氮合并返回集合管19,也需要4条支管18a~18d。因此,对通过换热区的5股气流中每一股都需要配备8条支管,总计要40条支管或管接头。
相反,按照图2所示的本发明方法,仅仅空气流2和透平气流7需要在全部5个换热区23中分布,相应地需要16条支管。此外,有两条支管20a、b和两个管接头21a、b用来在换热区23b、c、e上分布氮气流15,然后将它们合并进入输出管线19。
在本发明方法中,需要总计20条支管,相比之下,按照图1的传统方法需要40条支管。这种管线减少50%就充分证实了管道复杂程度大大地简化了。
本发明方法不仅限于全部产品都是气态的工艺,而且例如也适于从精馏装置输出内部压缩液体产品的工艺。
图9表示空气精馏工艺,其中除气态纯氮15和气态不纯氮16外,还有液氮51从精馏装置11的主冷凝器中输出,并采用内部压缩泵52升压。升压后的液氮51,在换热区56与空气流7和经压缩机59压缩的高压空气进行换热,加温气化。
该工艺中氧气12也以液态形式从低压塔10抽出,并用泵54、55进行内部压缩。纯氮15和不纯氮16在各自结构如图7和8所示的换热区23b、c、d和换热区23e中加温。相反,为了加温和气化内部压缩的气流57、58,要使用高压换热区56。初看起来,高压换热区56对应于图3~6中所描述的换热区,但是为了能够承受内部压缩气流的高压,它具有高得多的强度。与来自低压塔10的气态气流15和16的情况相比,换热区56上产生的压力降对内部压缩气流57、58的不利影响大大缓解了。
图10表示了类似图9的工艺,其中液氧12也经内部压缩成54、55,但是不靠高压空气进行气化和加温,而是靠高压氮进行气化和加温。为此,将气态氮61从压力塔9中61处抽出,通过换热区62,再采用压缩机63压缩后逆流通过换热区62,返回压力塔9。换热区62在结构上基本对应于图9中换热区56。在这一变换方案中,无需对氮进行内部压缩,因为可以从压缩机63下游输出高压氮64。
图11是本发明方法的进一步应用。在这一情况下,液氧从精馏塔11之12处抽出,并经两个泵54、55进行内部压缩。在这一实施方案中,液氧被从压力塔9之61处取出的气化,循环氮在换热区77中加温,经压缩机71、72、73压缩并在换热区77中由内部压缩产品冷却,再经过76进入压力塔9。其中一部分氮在压缩机71下游膨胀(74),又返回到氮循环中。另一部分氮从压缩机71、72、73下游换热区77的中间部位抽出,然后在换热区77中冷却,在75中膨胀并返回氮循环中。
权利要求
1.一种多股气流在换热区中通过多路换热通道与热/冷载体进行间接换热的方法,其中仅有一股气流通过至少一个换热区,其特点是至少一个换热区(23a、b、c、d、e)的、用于一股气流(14、15、16)的换热通道,限制于换热区(23a、b、c、d、e)的两个端面之间,且这股气流(14、15、16)在所有情况下都经过联结到换热区(23a、b、c、d、e)的收集器/分配器(41),从至少一个换热区(23a、b、c、d、e)的换热通道进入或排出;在所有情况下,收集器/分配器都覆盖换热区(23a、b、c、d、e)的整个端面。
2.按照权利要求1所述的方法,其特点是气流(14、15、16)中的每一股通过一个单独的换热区(23a、b、c、d、e)。
3.按照权利要求1或2所述的方法,其特点是压力低于3.5巴、优选1.1~1.8巴的一股气流(14、15、16),通过换热区(23a、b、c、d、e)。
4.按照权利要求1~3之一所述的方法,其特点是在所有情况下,气流(14、15、16)的压力低于3.5巴,优选为1.1~1.8巴。
5.按照权利要求4所述的方法,其特点是另一股压力超过4巴的气流通过至少一个换热区。
6.按照权利要求1~5之一所述的方法,其特点是该气流由进料空气(1)的低温分馏所产生。
7.按照权利要求6所述的方法,其特点是气流(14、15、16)与进料空气流(2、7)进行间接换热。
8.按照权利要求1~7之一所述的方法,其特点是一股气流以压力降低于100毫巴、优选低于80毫巴的方式通过换热区(23a、b、c、d、e)。
9.按照权利要求1~8之一所述的方法,其特点是一股气流(14、15、16)以压力降为80~300毫巴、优选为100~250毫巴的方式通过换热区(23a、b、c、d、e)。
10.按照权利要求7~9之一所述的方法,其特点是加工的进料空气超过5万Nm3/h,优选超过10万Nm3/h。
11.一种用于至少两股气流与热/冷载体在具有多路换热通道的换热区中进行间接换热的换热设备,其特点是用于气流(14、15、16)之一的、换热区(23a、b、c、d、e)的换热通道,局限于换热区(23a、b、c、d、e)两个相对的端面之间,并且以流动方式联结到收集器/分配器(41)上,每个收集器/分配器覆盖换热区(23a、b、c、d、e)的整个端面。
12.按照权利要求11所述的换热设备,其特点是收集器/分配器(41)基本上是半圆柱状,并具有连接口。
全文摘要
本发明涉及多股气流与热/冷载体在换热区中经由多路换热通道进行间接换热的方法。这种情况下,气流中仅有一股通过至少一个换热区。换热区内,气流通过的换热通道,局限于换热区的两个端面之间。在所有情况下,气流进入或排出换热通道,都要经过与换热区相连接的收集器/分配器,而在所有情况下,每个收集器/分配器都覆盖换热区的整个端面。
文档编号F25J3/00GK1321868SQ0111564
公开日2001年11月14日 申请日期2001年4月28日 优先权日2000年4月28日
发明者霍斯特·科尔迪昂, 迪特里希·罗特曼, 卡尔·莱布尔 申请人:林德股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1