含铜催化剂床上游防止其被氯和硫污染物污染的含铅化合物保护床的制作方法

文档序号:4901389阅读:338来源:国知局
专利名称:含铜催化剂床上游防止其被氯和硫污染物污染的含铅化合物保护床的制作方法
技术领域
本发明涉及催化剂,特别是铜催化剂。
铜催化剂常用于涉及氢气的反应,例如简单的氢化反应和甲醇合成(其中氧化碳与氢气反应)、甲醇分解(其中甲醇(通常与水蒸汽混合)分解形成氢气和碳氧化物)和变换反应(其中一氧化碳与水蒸汽反应产生氢气和二氧化碳)及逆变换反应。为获得最佳活性和稳定性的催化剂,所述催化剂通常用高度分散形式的铜制备,例如通过铜化合物在一或多种载体材料特别是锌、镁、铬和/或铝化合物存在下沉淀或与之一起沉淀。沉淀后,将所述组合物加热使所述铜化合物转化成相应的氧化物(需要时也使载体材料转化成相应的氧化物)。用于所要反应之前,使所述氧化铜还原成金属铜。特别适用于上述反应的催化剂是铜/氧化锌/氧化铝和铜/氧化锌/氧化铬组合物。某些情况下,部分锌可被镁替代和/或部分氧化铝或氧化铬可被氧化铈或稀土如氧化镧替代。
经历所述反应的工艺气体中存在含氯化合物如氯化氢易使所述铜催化剂失活。痕量的含氯化合物可能来自制备所述工艺气体所用原料例如烃原料、水蒸汽、空气。这种含氯化合物与所述活性铜反应形成氯化铜。由于氯化铜的熔点较低,在所述催化剂的通常使用温度例如150-300℃的温度下,使所述铜活动而趋于聚集导致失去所述铜的分散,因而损失所述催化剂的活性。当氧化锌和/或氧化镁也是所述催化剂的组分时,同样可生成相应的氯化物,它们同样易于活动导致失去所述氧化锌或氧化镁的稳定作用,也损失所述铜的分散和活性。
为克服此问题,GB1 357 335提出在铜变换催化剂上游设置保护床,所述保护床包括比氧化锌碱性更强的物质的固体颗粒或含有比氧化锌碱性更强的物质。所提出的保护床的例子是碱金属、碱土金属、锰、钇或镧的氧化物,负载于氧化铝颗粒上。用部分含铜催化剂作为牺牲保护床也是已知的。
然而,当工艺气体含有水蒸汽时,如上述变换和甲醇分解反应的情况下,某些条件下(例如设备失常)存在水在保护床和/或催化剂上冷凝的危险。在此情况下,所述保护床中的碱性物质与工艺气体的含氯污染物反应生成的氯化物可能从保护床中冲洗至催化剂中,也导致催化剂的分散和活性损失。
我们发现一种使所述催化剂失活的危险降低的保护床材料。
因此,我们提供一种组合,包括含铜催化剂颗粒床和在所述催化剂床上游的粒状组合物保护床,所述组合物包含a)铅和/或至少一种与氯化氢反应的铅化合物和b)其载体。
本发明还提供一种方法,其中使工艺气体经历使用含铜催化剂床的催化反应,包括使所述工艺气体在通过所述含铜催化剂床之前通过上述保护床。
本发明中,所述保护床中使用铅和/或与氯化氢反应的铜化合物。所述铅化合物可以是氧化铅和/或加热时分解成氧化铅的铅化合物,但如后面所述,优选使用在低于300℃、特别是低于350℃、最优选低于400℃的温度下仅缓慢地分解成氧化铅或被含氢气流还原成元素铅的铅化合物。优选的铅化合物包括硝酸铅、碳酸铅、碱式碳酸铅和“铝酸”铅。
我们发现用硝酸铅浸渍载体、干燥并在300℃下焙烧2小时得到优于用乙酸铅制备的类似材料的性能。据信所述改善的结果是因为硝酸铅在300℃下加热2小时时不经历明显的分解,用约225℃的氢气/一氧化碳混合气处理时所述被加热的材料不经历明显的还原。相反,用乙酸铅代替硝酸铅制备并在300℃加热2小时的类似材料用225℃的氢气/一氧化碳混合气处理后显示出金属铅的迹象。因此,优选所述铅化合物是在300℃下加热2小时时不经历明显的分解或用225℃的氢气/一氧化碳混合气处理时不明显还原成元素铅的化合物。
通过铅和铝化合物从可溶性铅和铝盐水溶液中共沉淀制得的产品也特别有效。该产品的XRD分析显示至少一些铅可能以结构类似于铝酸镁Mg4Al2(OH)14·3H2O的“铝酸”铅形式和氧化铅/氢氧化铅3PbO·2Pb(OH)2形式存在。
所述载体可以是惰性材料如氧化铝、氧化铬、氧化锌、氧化钛、或不优选的氧化硅的颗粒。所述载体优选有较高的表面积,例如高于50m2/g。为在不需过多保护床颗粒的情况下提供足够的保护作用,所述保护床颗粒的铅含量优选为至少2%(重)、更优选至少5%(重)、特别是至少10%(重)、最优选至少15%(重)。所述保护床颗粒可通过以下方法制备用适合的铅盐溶液浸渍所述载体的预制成形颗粒例如球或圆柱体,然后加热除去水和/或用适合的试剂处理(包括必要时加热)使所述铅盐转化成要求的铅化合物。适合的试剂的例子包括尿素和碳酸铵或碱金属特别是钠的碳酸盐。所述保护床颗粒也可通过以下方法制备在载体颗粒存在下使所述铅化合物沉淀或使铅和载体(或载体前体)化合物共沉淀,然后进行必要时的加热,在此加热步骤之前或之后将所述沉淀的化合物制成成形颗粒。
优选的保护床材料是包含硝酸铅和其载体特别是氧化物载体如氧化铝的粒状组合物。
所述保护床颗粒的最大和最小尺寸优选在1.5至20mm、特别是3至6mm的范围内。
所述保护床和催化剂床采用固定床形式,可在相同容器或不同容器中,所述保护床位于所述催化剂床的上游。优选所述工艺气体向下流过所述催化剂床因此当所述保护床和催化剂床在同一容器内时,所述保护床将是位于所述催化剂床颗粒上面的保护床颗粒层。需要时在所述保护床和所述催化剂床之间可有一层惰性材料便于在不干扰催化剂床的情况下补充所述保护床。
本发明特别适用于所述变换反应。该工艺中,在150至300℃范围内的温度下,特别是在150至250℃范围内的入口温度下,使包含一氧化碳和水蒸汽及其它常见组分如氢气、二氧化碳、甲烷和/或氮气的工艺气体流过所述含铜催化剂床,特别是铜/氧化锌/氧化铝或铜/氧化锌/氧化铬催化剂,其中一些氧化锌可被氧化镁替代和/或一些氧化铝和/或氧化铬可被稀土替代。所述工艺气体优选包含1至4%(体积)的一氧化碳,和至少1mol水蒸汽/mol一氧化碳。优选所述工艺气体包含20至50%(体积)的水蒸汽。所述工艺典型地在2000至5000h-1范围内的湿气空速和10至50bar(绝压)范围内的压力下操作。
除吸收氯化物之外,显然所述铅物质也将吸收含硫化合物,因此该床也作为硫保护床。
通过以下实施例说明本发明,其中通过将0.393ml(0.50g)包含约50%(重)氧化铜、粒度在0.6-1.0mm范围内的标准氧化铜/氧化锌/氧化铝低温变换催化剂前体颗粒装入微型反应器中,所述变换催化剂前体上有一层粒度为0.6-1.0mm的熔凝氧化铝颗粒(0.25g),所述熔凝氧化铝颗粒上有0.197ml粒度为0.6-1.0mm的保护材料颗粒,得到总体积为0.70ml的催化剂床,试验各种保护床。
使含2%(体积)氢气的的氮气流在约28bar(绝压)的压力下以15l/hr(在NTP下)的流量向下通过所述微型反应器,同时将所述微型反应器从环境温度加热至220℃并在此温度下保持95分钟,使所述催化剂前体中的氧化铜还原成金属铜,总还原时间为3.5小时。
在220℃的温度和约28bar(绝压)的压力下,使50l/hr(在NTP下)包含1份(体积)水蒸汽/2份(体积)体积组成为H255%、CO215%、CO 5%和N225%的气体的混合气通过所述微型反应器,测定所述催化剂用于水煤气变换反应的活性。
为模拟氯化物污染,所述混合气已通过所述催化剂床约6小时后,向所述混合气中加入HCl使所述湿气中HCl浓度为5.2ppm(体积)(测试方法1)和1ppm(体积)(测试方法2)。在这些固定的试验条件下,用在线红外检测法测量CO转化率随在线时间的变化。CO转化率随时间下降表示所述催化剂的活性损失。
实施例1将30g粒度为0.6-1.0mm、BET表面积为350m2/g的γ-氧化铝颗粒在200ml浓度约6.8g硝酸铅(II)/100ml溶液的60至70℃的硝酸铅(II)水溶液中浸渍。20分钟后将所述材料从溶液中取出,沥干,在110℃干燥2小时,然后在烘箱中于300℃焙烧2小时。分析所得材料(试样A)显示铅含量为6.4%(重)。
实施例2重复实施例1,但使用含20.3g Pb(NO3)2/100ml溶液的水溶液。所得产品(试样B)的化学分析显示铅含量为10.7%(重)。
实施例3重复实施例1,但使用浓度约37g Pb(NO3)2/100ml溶液的水溶液。所述材料在300℃焙烧后,再用含约37g Pb(NO3)2/100ml溶液的第二水溶液浸渍,然后沥干,在110℃干燥2小时,在烘箱中于300℃焙烧2小时。此材料(试样C)的化学分析显示铅含量为19.9%(重),红外分析显示所述硝酸铅几乎没有分解成氧化铅。将一部分试样C在空气中加热至900℃超过2小时以确保所述铅化合物完全分解成氧化铅。加热至900℃后铅含量为23.7%(重)。
实施例4将1.5M Na2CO3溶液和5升含1843g Al(NO3)3·9H2O和15.05g Pb(NO3)2的溶液加热至80℃,在70℃的温度下以足以使pH保持约6.8的速度加入1升软化水中。所得浆液在70℃下老化30分钟,洗涤,过滤,然后在110℃干燥16小时。将干燥后的试样在烘箱中于300℃焙烧6小时,加入2%(重)石墨,将所得产品制成粒度为0.6-1.0mm的颗粒。所述产品的铅含量为3.5%(重)。尽管经过所述洗涤步骤,所述产品(试样D)仍有约1.1%(重)的剩余钠含量。XRD分析显示所述铅大多数处于类似于Mg4Al2(OH)14·3H2O的结构相中,因而可认为是“铝酸”铅。也存在3PbO·2Pb(OH)2结构相。
如上所述测试所述保护床材料的试样。作为第一对比(对比X),所述保护床为0.197ml用于制备实施例1至3的保护材料的未处理的γ-氧化铝颗粒,作为第二对比(对比Y),所述保护床是0.197ml所述催化剂颗粒。对于测试方法1,所述%CO转化率测量5天,间隔约2-3小时(对于试样D的保护床材料为约6-7小时)读取测量结果。对于测试方法2,在约每6小时读取测量结果,共测量11天。为便于对比,依据在线时间标绘CO转化率测量结果,通过各试样的这些点画一平滑曲线。(各点几乎未偏离所述平滑曲线。)从这些曲线图确定规定间隔(测试方法1为每6小时,测试方法2为每24小时)的转化率,示于下表1和2中,其中%CO转化率图已化整到最接近的整数。
表1-测试方法1-5.2ppm HCl
从表1可见,本发明保护床材料在约30小时的在线时间以内效力相似,试样A的保护床稍差,可能是因为其铅含量较低。关于此,计算出在30小时内供给所述保护床的氯化氢量近似为使试样B的保护床中所有铅都转化成氯化铅(II)所需的量。试样D优于试样B,尽管其铅含量低得多。氧化铝保护床(对比X)开始时与本发明保护床一样有效,可能是氯化氢与表面羟基反应的结果。但其性能迅速退化表明它只有有限的氯容(chloride capacity)。用牺牲催化剂床作为保护床(对比Y)开始时性能优于本发明保护床,因为所述附加的催化剂可用于催化所述变换反应(这里所述变换反应在这样高的空速下操作以致所述反应是活性限制而非平衡限制-在所述操作条件下,达到平衡所需一氧化碳转化率应为99%以上)。但对比Y显示所述催化剂的性能迅速下降,虽然不象用未处理的氧化铝作为保护床时那样快。
表2-测试方法2-1ppm HCl
计算表明,对于测试方法2中的试样B和C,供入的HCl总量相当于分别约75%和95%的铅转化成氯化铅时开始显著失活。在防止失活方面所述含铅保护床也比使用牺牲催化剂床更有效。
实施例5将80g直径5.6mm、长4.9mm的圆柱形氧化铬切粒在200ml浓度约23.15g硝酸铅(II)/100ml溶液的室温硝酸铅(II)水溶液中浸渍。将所述材料从溶液中取出,沥干,室温下在流动空气中干燥48小时。分析所得材料(试样E)显示铅含量为6.6%(重)。
实施例6重复实施例6,然后将干燥后的切粒再如实施例5中所述浸渍、沥干和干燥两遍。所得材料(试样F)的分析显示铅含量为10.9%(重)。
实施例7为进行对比(对比Z),将实施例5中所用氧化铬切粒试样在水中浸渍,如实施例5中进行干燥。
如上所述测试这些试样测试之前将切粒研磨至粒度为0.6-1.0mm。结果示于表3中。
表3-测试方法1-5.0ppm HCl
从表3中通过与表1中试样A和B的数据对比可见,所述氧化铬是适合的载体,但不如试样A和B的γ-氧化铝有效。
实施例8如下进一步测试试样C。为模拟涉及氯化物污染然后水蒸汽冷凝的设备失常,如上所述使催化剂还原,然后如上所述测量一氧化碳变换转化活性。为模拟氯化物污染,用6小时的时间向所述混合气中加入5.2ppm HCl。然后停止向混合气中加HCl,用不含HCl的气体继续反应约30小时。然后使反应温度降至180℃ 3小时。虽然此温度不够低不足以导致所述水蒸汽在所述本体相中冷凝,但它足以导致水蒸汽在催化剂和保护床孔内的一些冷凝。然后使温度升至220℃,在该温度下保持15小时。
在向混合气中加HCl的6小时内CO转化率从初始的95%降至约88%。经过接下来的30小时,转化率缓慢地降至约85%。当温度降至180℃时,转化率迅速降至约27%,但当温度返回到220℃时,转化率迅速升回到约85%,表明所述水蒸汽冷凝没有导致明显的持久损害。
为进行对比,用商购氯化物保护颗粒(对比W)代替浸渍铅的氧化铝颗粒重复上述步骤,所述商购氯化物保护颗粒包括用碳酸钠浸渍氧化铝颗粒并在高于500℃下焙烧得到堆积密度约0.75g/ml、BET表面积约113m2/g的颗粒,在900℃下点燃后氧化钠Na2O含量为约14%(重)。以相同的方式测试之。在混合气中存在HCl的6小时内CO转化率从95%的初始值降至88%,在接下来的30小时逐渐降至约84%。当温度下降时,CO转化率迅速降至20%以下,但与浸渍铅的材料-试样C不同,当温度返回到220℃时未恢复,仍保持在20%以下。
实施例9将259g粒度为0.6-1.0mm、BET表面积为350m2/g的γ-氧化铝在800ml浓度约55g硝酸铅(II)/100ml溶液的60-70℃硝酸铅(II)水溶液中浸渍。30分钟后从溶液中取出所述材料,沥干,在110℃干燥2小时。部分所述干燥产品在烘箱中于150℃焙烧2小时得到试样G,其余在烘箱中于200℃焙烧2小时得到试样H。
在220℃下与所述测试步骤中所用水蒸汽/氢气/二氧化碳/一氧化碳/氮气混合气接触之前和之后试样G的XRD分析显示没有变化,表明在所述测试条件下硝酸铅未还原。程序升温还原分析同样表明在220℃以下未发生还原。
实施例10将303g粒度为0.6-1.0mm、BET表面积为350m2/g的γ-氧化铝在800ml浓度约55g硝酸铅(II)/100ml溶液的60-70℃硝酸铅(II)水溶液中浸渍。30分钟后从溶液中取出所述材料,沥干,在110℃干燥2小时,然后在烘箱中于300℃焙烧2小时。用如上制备的焙烧后的浸渍硝酸铅的氧化铝和新鲜的所述硝酸铅溶液重复上述过程。在300℃焙烧后,所得材料再用新鲜的所述硝酸铅溶液浸渍三遍。所述焙烧后的材料铅含量为25.5%(重),称为试样J。在300℃焙烧2小时后,将一部分试样J在400℃焙烧2小时得到试样K,第二部分试样J在550℃焙烧2小时得到试样M。
部分试样G、H、J、K和M在空气中于900℃加热2小时以上以确保硝酸铅分解成氧化铅。所有情况下都观测重量减轻,表明在900℃下加热之前,大部分硝酸铅未分解成氧化铅。加热至900℃之前和之后试样的铅含量示于表4中。
表4
如上所述用lppm HCl(测试方法2)测试试样G、H、J、K和M及商购催化剂(试样N),试样N包括负载于氧化铝之上的氧化铅,包含20.4%(重)铅。结果示于表5中。
表5-测试方法2-1ppm HCl
通过与表2中的数据对比可见,试样N(氧化铅/氧化铝)虽然铅含量高,但仅勉强优于对比X(用于制备本发明保护材料的氧化铝颗粒)。比较试样K和M(分别在400℃和550℃焙烧)表明试样M明显比试样K差,仅稍优于试样N,说明在550℃焙烧使硝酸铅过多地分解。
实施例11重复实施例10,但用含63g Pb(CH3CO2)2·3H2O/100ml的乙酸铅溶液代替所述硝酸铅溶液。
在300℃、300℃+400℃、和300℃+550℃焙烧后的试样分别称为试样P、Q和R,铅含量分别为34.3%、34.6%和34.9%(重)。红外分析显示,试样P、Q和R中,所述乙酸铅都经历部分分解,据推测分解成氧化铅。在220℃下与所述测试方法中所用水蒸汽/氢气/二氧化碳/一氧化碳/氮气混合气接触后,试样P的XRD分析显示,在所述测试条件下,试样P中的铅物质还原成元素铅。
如上(测试方法2)测试这些试样,结果示于表6中。
表6-测试方法2-1ppm HCl
通过与表2中数据对比可见,乙酸铅与所述γ-氧化铝颗粒(对比X)差不多。
权利要求
1.一种组合,包括含铜催化剂颗粒床和在所述催化剂床上游的粒状组合物保护床,所述组合物包含a)铅和/或至少一种与氯化氢反应的铅化合物和b)其载体。
2.权利要求1的组合,其中所述铅化合物是在300℃下加热2小时时不经历明显的分解或用225℃的氢气/一氧化碳混合气处理时不明显还原成元素铅的化合物。
3.权利要求2的组合,其中所述铅化合物是硝酸铅。
4.权利要求1至3之任一的组合,其中所述含铜催化剂是铜/氧化锌/氧化铝或铜/氧化锌/氧化铬催化剂。
5.权利要求4的组合,其中所述催化剂还包含氧化镁和/或稀土元素氧化物。
6.权利要求1至5之任一的组合,其中所述保护床颗粒的最大和最小尺寸在1至20mm的范围内。
7.权利要求1至6之任一的组合,其中所述载体选自氧化铝、氧化铬、氧化锆和氧化钛。
8.权利要求1至7之任一的组合,其中所述保护床颗粒含有至少2%(重)的铅。
9.权利要求1至8之任一的组合,其中所述保护床颗粒是通过用适合的铅盐浸渍所述载体的预制成形颗粒、然后加热除去水制备的。
10.权利要求1至9之任一的组合,其中所述保护床颗粒是通过所述铅化合物在所述载体颗粒存在下沉淀或通过铅和载体或载体前体化合物共沉淀、然后必要时加热、在此加热步骤之前或之后将所述沉淀的化合物制成成形颗粒制备的。
11.一种粒状组合物,适用于权利要求1至9之任一组合中的保护床,包括用硝酸铅浸渍的载体材料的颗粒。
12.权利要求11的组合物,其中所述载体材料是γ-氧化铝。
13.权利要求11或12的组合物,铅含量为至少10%(重)。
14.一种使用含铜催化剂床的催化反应,包括使工艺气体在通过所述含铜催化剂床之前通过粒状组合物保护床,所述组合物包含a)铅和/或至少一种与氯化氢反应的铅化合物和b)其载体。
15.权利要求14的方法,其中所述工艺气体包含一氧化碳和水蒸汽,可选地包含氢气、二氧化碳、甲烷和/或氮气。
16.权利要求15的方法,其中使所述工艺气体在150至250℃范围内的入口温度下通过所述含铜催化剂床。
17.权利要求15或16的方法,其中所述工艺气体含有1至4%(体积)的一氧化碳,和至少1mol水蒸汽/mol一氧化碳。
全文摘要
一种组合包括含铜催化剂颗粒床和在所述催化剂床上游的粒状组合物保护床,所述组合物包含a)铅和/或至少一种与氯化氢反应的铅化合物和b)其载体。所述铅化合物优选为硝酸铅。所述组合特别适用于低温变换反应,其中一氧化碳与水蒸汽反应生产氢气和二氧化碳。
文档编号B01J35/00GK1372491SQ0081252
公开日2002年10月2日 申请日期2000年8月11日 优先权日1999年9月6日
发明者M·J·瓦特森 申请人:帝国化学工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1