玻璃陶瓷、玻璃陶瓷烧结体、玻璃陶瓷复合体、玻璃粉粒体、浆料状混合物以及光催化剂的制作方法

文档序号:4990258阅读:277来源:国知局
专利名称:玻璃陶瓷、玻璃陶瓷烧结体、玻璃陶瓷复合体、玻璃粉粒体、浆料状混合物以及光催化剂的制作方法
技术领域
本发明涉及玻璃陶瓷及其利用。
背景技术
已知氧化钛和氧化钨具有高光催化活性。这些具有光催化活性的化合物(以下有时简记为“光催化剂”)一旦被照射带隙能量以上的能量的光,就会生成电子或空穴,因此在含有光催化剂的成形体的表面附近,氧化还原反应得到强有力的促进。另外已知,含有光催化剂的成形体的表面呈现出易于被水浸润的亲水性,因此具有可以由雨水等的水滴清洗的所谓自清洁作用。作为光催化剂,主要研究的是氧化钛,然而由于氧化钛的带隙为3 3. 2eV,因此需要照射波长400nm以下的紫外线,具有无法利用可见光获得足够的光催化活性的缺点。 另一方面,氧化钨(例如WO3)的带隙约为2. kV,具备可见光响应性的光催化活性,因此具有即使在缺少紫外线的室内也可以利用的长处。但是,作为使基材担载光催化剂的方法,研究过在基材的表面形成含有光催化剂的膜的技术、使基材中含有光催化剂的技术等。作为在基材的表面形成含有光催化剂的膜的方法,除了利用涂布形成涂布膜的涂布法以外,还已知有溅射、蒸镀、溶胶凝胶、CVD(化学气相沉积)等方法。例如,在日本特开2009-56398号公报中,提出过含有平均粒子直径为 0. 01 0. 05 μ m的氧化钨微粒并且含有粘合剂的可见光响应型光催化剂涂料。另外,在日本特开2001-152130号公报中,提出过在氧气氛中在基材的表面溅射金属钨而形成氧化钨膜的方法。另一方面,作为使基材中含有光催化剂的技术,虽然是涉及氧化钛的技术,然而例如在日本特开平9-315837号公报中,公开有含有规定量的Si02、A1203、CaO, MgO, B203、ZrO2 以及TW2各成分的光催化用玻璃。如上所述,在众多以往技术中,采用了通过在基材的表面形成含有光催化剂的膜来担载光催化剂的想法。但是,作为以此种想法为根据的方法所共有的问题,可以举出难以确保基材和含有光催化剂的膜的密合性以及膜自身的耐久性的方面。也就是说,以这些方法制造出的光催化功能性产品有可能使含有光催化剂的膜与基材剥离、或膜发生劣化而损害光催化功能。例如在像日本特开2009-56398号公报那样使用涂料形成涂布膜的情况下, 残留于涂布膜中的树脂或有机粘合剂因紫外线等而被分解,或因光催化剂的催化作用而被氧化还原,其结果是,涂布膜易于随时间推移而劣化,存在耐久性不足的问题。另外,为了充分地发挥担载于膜中的光催化剂的活性,需要将光催化剂加工成纳米尺寸的超微粒子,然而纳米尺寸的超微粒子制作成本变高,并且因表面能量的增大而易于凝聚,存在难以处置的问题。在像日本特开2001-152130号公报那样利用溅射来形成光催化剂膜的情况下,不需要微粒化,基材与光催化剂膜的密合性也略微得到改善,然而存在成膜速度慢、需要溅射装置等大型的设备、可以应用的基材的材质或形状受到限定等问题。另一方面,日本特开平9-315837号公报中公开的光催化用玻璃在玻璃中含有氧化钛,在这一点上与其他以往技术想法不同。但是,日本特开平9-315837号公报的技术中, 作为光催化剂的氧化钛不具有晶体结构,以无定形的形式存在于玻璃中,因此其光催化活性弱,不够充分。

发明内容
本发明是鉴于上述实情而完成的,其目的在于,提供一种具有优异的光催化活性和可见光响应性、并且耐久性也很优异的光催化功能性原材料。本发明人等为了解决上述问题反复进行深入研究,结果发现,通过在玻璃中产生包含氧化钨和/或其固溶体的晶相,就可以提供具有优异的光催化功能的坯料及产品,从而完成了本发明。即,本发明在于以下的(1) 01)。(1) 一种玻璃陶瓷,其含有包含氧化钨和/或其固溶体的晶相。(2)根据上述(1)所述的玻璃陶瓷,其中,作为所述氧化钨,相对于氧化物换算组成的总物质量,以摩尔%计含有10 95%的WO3成分。(3)根据上述⑴或(2)所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 60%的P2O5成分、和/或0 60%的化03成分、和/或0 60%的SiO2成分、和/或0 60 %的GeA成分各成分。(4)根据上述(1)至(3)中任意一项所述的玻璃陶瓷,其中,还含有0 60%的 TiO2成分。(5)根据上述(1)至中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 40 %的Li2O成分、和/或0 40%的Na2O成分、和/或0 40 %的K2O成分、和/或0 10%的Rb2O成分、和/或0 10%的Cs2O成分各成分。(6)根据上述(1)至(5)中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 40 %的MgO成分、和/或0 40 %的CaO成分、和/或0 40 %的SrO成分、和/或0 40 %的BaO成分各成分。(7)根据上述(1)至(6)中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 30%的Al2O3成分、和/或
0 30 %的GEI2O3成分、和/或0 10%的In2O3成分各成分。(8)根据上述(1)至(7)中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 20 %的^O2成分、和/或0 10%的SnO成分各成分。(9)根据上述(1)至(8)中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 50 %的Nb2O5成分、和/或0 50 %的Tei2O5成分、和/或0 50 %的MoO3成分各成分。(10)根据上述(1)至(9)中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 50 %的SiO成分、和/或0 20%的Bi2O3成分、和/或0 20 %的1^ 成分、和/或合计0 30%的 Ln2O3 成分(式中,Ln 为选自 k、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、 Tb、Dy、Ho、Er、Tm、Yb以及Lu中的1种以上)、和/或合计0 5%的MxOy成分(式中,M为选自V、Cr、Mn、Fe、Co及Ni中的1种以上, X及y分别为满足X y = 2 M的化合价的最小的自然数。这里,V的化合价为5,Cr的化合价为3,Mn的化合价为2,Fe的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/ 或合计0 5%的As2O3成分和/或Sb2O3成分各成分。(11)根据⑴至(10)中任意一项所述的玻璃陶瓷,其中,以相对于玻璃总质量的外分比质量比计还含有15%以下的选自F、Cl、Br、S、N、以及C中的至少1种以上的成分。(12)根据上述⑴至(11)中任意一项所述的玻璃陶瓷,其中,以相对于玻璃总质量的外分比质量比计还含有10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1
种金属粒子。(13)根据上述(1)至(12)中任意一项所述的玻璃陶瓷,其中,还含有Ti02、TiP207、 (TiO)2P207、RnTi2 (PO4) 3、RTi4 (PO4)6(式中,Rn 为选自 Li、Na、K、Rb、Cs 中的 1 种以上,R 为选自Mg、Ca、Sr、Ba中的1种以上)以及它们的固溶体中的1种以上的晶体。(14)根据上述(1)至(1 中任意一项所述的玻璃陶瓷,其利用从紫外区域到可见区域的波长的光体现出催化活性。(15)根据上述⑴至(14)中任意一项所述的玻璃陶瓷,其中,照射了从紫外区域到可见区域的波长的光的表面与水滴的接触角为30°以下。(16) 一种光催化剂,其包含上述(1)至(1 中任意一项所述的玻璃陶瓷。(17) 一种玻璃陶瓷烧结体,是将粉碎玻璃烧结而成的玻璃陶瓷烧结体,其特征在于,在所述玻璃陶瓷烧结体中,含有上述(1)至(1 中任意一项所述的玻璃陶瓷。(18) 一种玻璃陶瓷复合体,是具有基材、和设于该基材上的玻璃陶瓷层的玻璃陶瓷复合体,其特征在于,所述玻璃陶瓷层含有上述(1)至(1 中任意一项所述的玻璃陶瓷。
(19) 一种玻璃粉粒体,其含有上述(1)至(1 中任意一项所述的玻璃陶瓷。(20) 一种玻璃粉粒体,其通过被加热而生成上述(1)至(1 中任意一项所述的玻
璃陶瓷。(21) 一种浆料状混合物,其含有上述(19)或00)所述的玻璃粉粒体和溶剂。


图1是有关本发明的实施例Al的玻璃陶瓷的XRD谱图。图2是表示有关本发明的实施例Al、A4的玻璃陶瓷的亲水性评价的结果的曲线图。图3是表示有关本发明的实施例A1、A4的玻璃陶瓷的另外的亲水性评价的结果的曲线图。图4是表示有关本发明的实施例A44、A48、AM的玻璃陶瓷的亚甲蓝分解活性评价的结果的曲线图。图5是有关本发明的实施例B1、B4、B18、B20的玻璃陶瓷烧结体的XRD谱图。图6是表示有关本发明的实施例Bl的玻璃陶瓷烧结体的亚甲蓝分解活性评价的结果的曲线图。图7是有关与本发明的实施例Cl相同的组成而改变了烧成、结晶化条件的玻璃陶瓷层的XRD谱图。图8是表示有关本发明的实施例Cl的玻璃陶瓷层的亚甲蓝分解活性评价的结果的曲线图。图9是有关本发明的实施例Dl的玻璃粉粒体(结晶化后)的XRD谱图。图10是有关本发明的实施例Dll的玻璃粉粒体(结晶化后)的XRD谱图。图11是表示有关本发明的实施例Dlb的玻璃粉粒体(结晶化后)的亚甲蓝分解活性评价的结果的曲线图。图12是表示有关本发明的实施例D14的玻璃粉粒体(结晶化后)的亚甲蓝分解活性评价的结果的曲线图。
具体实施例方式下面,对本发明的实施方式进行详细说明。本发明的第一实施方式涉及玻璃陶瓷及其制造方法。第二实施方式涉及玻璃陶瓷烧结体及其制造方法。第三实施方式涉及玻璃陶瓷复合体的制造方法。第四实施方式涉及玻璃粉粒体及含有它的料浆状混合物。第一实施方式玻璃陶瓷本实施方式的玻璃陶瓷含有包含氧化钨和/或其固溶体的晶相(以下有时记作 "WO3晶相”)。玻璃陶瓷是通过将玻璃热处理而在玻璃相中析出晶相而得的材料,也被称作 “结晶化玻璃”。玻璃陶瓷可以不仅包括具有玻璃相及晶相的材料,而且还包括玻璃相全都变为晶相的材料,即材料中的结晶量(结晶度)为100质量%的材料。本实施方式的玻璃陶瓷可以利用结晶化工序的控制来控制晶体的粒径、析出晶体的种类、结晶度。[组成]下面,对本实施方式的玻璃陶瓷的成分进行说明。而且,在本说明书中,在没有特别指出构成玻璃或玻璃陶瓷的各成分的含量的情况下,全都为以相对于氧化物换算组成的总物质量的摩尔%表示的量。这里,所谓“氧化物换算组成”,是在假定作为玻璃构成成分的原料使用的氧化物、复合盐、金属氟化物等在熔融时全都分解而变为氧化物的情况下,以该生成氧化物的总物质量作为100摩尔%来表述在玻璃或玻璃陶瓷中所含的各成分的组成。氧化钨是给玻璃陶瓷带来光催化特性的成分。氧化钨根据原料或制备方法而成为 2 6价的氧化物,存在恥3、10、1203、14011、102、1205、1308以及W5014。本实施方式的玻璃陶瓷中,只要具有光催化活性,则不管氧化钨的种类为何都可以,然而优选包含具有特别强的光催化活性的W03。所以,以下的说明中作为氧化钨的代表例举出WO3进行说明。WO3由于吸收波长直到480nm的可见光而起到光催化活性,因此对玻璃陶瓷赋予可见光响应性的光催化特性。已知WO3具有立方晶系、正方晶系、斜方晶系、单斜晶系以及三斜晶系的晶体结构, 然而只要具有光催化活性,则无论是哪种晶体结构都可以。WO3晶体也可以以与其他元素的固溶体的状态存在。这里,作为所述固溶体,例如可以举出选自Mo具―凡、^VraU3 JnqNWtlO3、RJr具-,OJ式中,Rn为选自Li、Na、K、Mk Cs中的1种以上,R为选自Mg、Ca、Sr、Ba中的1种以上,q是指在化学计量上可以取得的数)等。而且,固溶体既可以是置换型固溶体,也可以是填隙型固溶体。本实施方式的玻璃陶瓷优选相对于氧化物换算组成的总物质量,以摩尔%计优选在10 95%的范围内含有WO3成分。如果WO3成分的含量小于10%,则无法获得足够的光催化活性。另一方面,如果恥3成分的含量超过95%,则玻璃的稳定性就受到损害。所以, 相对于氧化物换算组成的总物质量来说,WO3成分的含量优选以10%、更优选以15%、最优选以20%为下限,优选以95%、更优选以80%、最优选以75%为上限。WO3成分可以通过作为原料例如使用WO3等来导入玻璃中。P2O5成分是构成玻璃的网眼结构的成分,是可以任意地添加的成分。通过将本实施方式的玻璃陶瓷为P2O5成分为网眼结构的主成分的磷酸盐系玻璃,就可以将更多的WO3成分引入玻璃。另外,通过配合P2O5成分,可以在更低的热处理温度下析出WO3晶体,并且在含有TW2成分的情况下,还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果P2O5的含量超过60%,则难以析出WO3晶相。所以,在添加P2O5成分的情况下,相对于氧化物换算组成的总物质量来说,P2O5成分的含量优选以1<%、更优选以5%、最优选以15%为下限,优选以60%、更优选以50%、最优选以40% 为上限。P2O5成分可以通过作为原料例如使用Al (PO3) 3、Ca(PO3)2、Ba(PO3)2、NaP03> BPO4, H3PO4等来导入玻璃中。化03成分是构成玻璃的网眼结构、提高玻璃的稳定性的成分,是可以任意地添加的成分。但是,如果其含量超过60%,则难以析出WO3晶相的倾向就会增强。所以,相对于氧化物换算组成的总物质量来说,B2O3成分的含量优选以60 %、更优选以50 %、最优选以40 % 为上限。B2O3成分可以通过作为原料例如使用H3B03、Na2B407、Na2B407 · IOH2O^BPO4等来导入玻璃中。SiO2成分是构成玻璃的网眼结构、提高玻璃的稳定性和化学的耐久性的成分,并且存在于析出Si4+离子的WO3晶相的附近,是有助于提高光催化活性的成分,是可以任意地添加的成分。但是,如果SiO2成分的含量超过60%,则玻璃的熔融性变差,难以析出WO3晶相。所以,在添加SiO2成分的情况下,相对于氧化物换算组成的总物质量来说,SiO2成分的含量优选以0. 1 %、更优选以0. 5 %为下限,优选以60 %、更优选以50 %、最优选以40 %为上限。SiO2成分可以通过作为原料例如使用Si02、K2SiF6、Na2SiF6等来导入玻璃中。GeO2成分是具有与上述的SiO2相似作用的成分,是可以在本实施方式的玻璃中任意地添加的成分。特别是,由于通过将GeO2成分的含量为60%以下,可以压缩对昂贵的 GeO2的使用,因此可以降低玻璃陶瓷的材料成本。所以,相对于氧化物换算组成的总物质量来说,GeO2成分的含量优选以60%、更优选以45%、最优选以30%为上限。GeO2成分可以通过作为原料例如使用GeA等来导入玻璃中。本实施方式的玻璃陶瓷优选在5以上60%以下的范围内含有选自P2O5成分、化03 成分、SiO2成分及GeA成分中的至少1种以上成分。特别是,通过将P2O5成分、B2O3成分、 SiO2成分及GeA成分的合计量为60%以下,玻璃的熔融性、稳定性及化学耐久性提高,并且在热处理后的玻璃陶瓷中难以产生裂纹,因此可以很简单地获得更高机械强度的玻璃陶瓷。所以,相对于氧化物换算组成的总物质量来说,合计量(P205+B203+SiA+Ge02)优选以 60%、更优选以55%、最优选以45%为上限。而且,如果这些成分的合计量小于5%,则难以获得玻璃,因此优选添加5%以上,更优选10%以上,最优选20%以上。TiO2成分是通过将玻璃结晶化,而作为TW2的晶体、或与磷的化合物的晶体从玻璃中析出,特别是在紫外线区域显示出强的光催化活性的成分,是任意成分。通过与WO3晶体组合地含有TiO2晶体,就可以对本实施方式的玻璃陶瓷赋予针对从紫外线到可见光的宽广范围的波长具有响应性的光催化活性。作为氧化钛的晶型,已知有锐钛(Anatase)型、金红石(Rutile)型以及板钛矿(Brookite)型,然而优选锐钛型及板钛矿型,特别优选是含有具备高的光催化特性的锐钛型的氧化钛。另外,通过与上述P2O5成分组合地含有TiO2成分, 可以在更低的热处理温度下析出TW2晶体,从而可以减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换。另外,由于TW2成分还具有起到WO3晶相的晶核生成剂的作用的效果,因此有助于WO3晶相的析出。但是,如果TW2成分的含量超过60%, 则玻璃化变得非常困难。所以,在添加TW2成分的情况下,相对于氧化物换算组成的总物质量来说,TiO2成分的含量优选以1<%、更优选以5%、最优选以10%为下限,优选以60%、 更优选以50%、最优选以45%为上限。TW2成分可以通过作为原料例如使用TiO2等来导入玻璃中。Li2O成分是提高玻璃的熔融性和稳定性、使得在热处理后的玻璃陶瓷中难以产生裂纹的成分,是可以任意地添加的成分。另外,是降低玻璃化转变温度而易于生成WO3晶体、 并且将热处理温度压制得更低的成分。另外,通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型T^2晶体向光催化活性低的金红石型的相转换的效果。但是,如果Li2O成分的含量超过40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,Li2O成分的含量优选以 40%、更优选以30%、最优选以25%为上限。Li2O成分可以通过作为原料例如使用Li2C03、 LiN03、LiF等来导入玻璃中。Na2O成分是提高玻璃的熔融性和稳定性、使得在热处理后的玻璃陶瓷中难以产生裂纹的成分,是可以任意地添加的成分。另外,是降低玻璃化转变温度而易于生成WO3晶体、 并且将热处理温度压制得更低的成分。另外,通过降低热处理温度,在含有TiO2成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果Na2O成分的含量超过40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,Na2O成分的含量优选以40%、 更优选以30%、最优选以25%为上限。Na2O成分可以通过作为原料例如使用Na20、Na2C03、 NaNO3> NaF、Na2S, Na2SiF6 等来导入玻璃中。K2O成分是提高玻璃的熔融性和稳定性、使得在热处理后的玻璃陶瓷中难以产生裂纹的成分,是可以任意地添加的成分。另外,是降低玻璃化转变温度而易于生成WO3晶体、 并且将热处理温度压制得更低的成分。另外,通过降低热处理温度,在含有TiO2成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果K2O成分的含量超过40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,K2O成分的含量优选以40%、 更优选以30%、最优选以25%为上限。K2O成分可以通过作为原料例如使用K2C03、KN03、KF、 KHF2, K2SiF6等来导入玻璃中。Rb2O成分是提高玻璃的熔融性和稳定性、使得在热处理后的玻璃陶瓷中难以产生裂纹的成分,是可以任意地添加的成分。另外,是降低玻璃化转变温度而易于生成WO3晶体、 并且将热处理温度压制得更低的成分。另外,通过降低热处理温度,在含有TiO2成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果Rb2O成分的含量超过10%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,Rb2O成分的含量优选以10%、 更优选以8%、最优选以5%为上限。Rb2O成分可以通过作为原料例如使用Rb2C03、RbN03等来导入玻璃中。Cs2O成分是提高玻璃的熔融性和稳定性、使得在热处理后的玻璃陶瓷中难以产生裂纹的成分,是可以任意地添加的成分。另外,是降低玻璃化转变温度而易于生成WO3晶体、 并且将热处理温度压制得更低的成分。另外,通过降低热处理温度,在含有TiO2成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果Cs2O成分的含量超过10%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,Cs2O成分的含量优选以10%、 更优选以8%、最优选以5%为上限。Cs2O成分可以通过作为原料例如使用&20)3、&而3等来导入玻璃中。本实施方式的玻璃陶瓷优选含有40%以下的选自Rn20(式中,1 是选自Li、Na、 K、Rb及Cs中的1种以上)成分中的至少1种以上的成分。特别是,通过使I^n2O成分的合计量为40%以下,玻璃的稳定性提高,易于析出WO3晶相,因此可以确保玻璃陶瓷的催化活性。所以,相对于氧化物换算组成的总物质量来说,I^n2O成分的合计量优选以40%、更优选以30%、最优选以25%为上限。另外,在含有I^n2O成分的情况下,为了体现出其效果,优选以0. 1%、更优选以0. 5%、最优选以为下限。MgO成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果MgO成分的含量超过 40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,MgO成分的含量优选以40%、更优选以30%、最优选以20%为上限。MgO 成分可以通过作为原料例如使用MgC03、MgF2等来导入玻璃中。CaO成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型TiA晶体向光催化活性低的金红石型的相转换的效果。但是,如果CaO成分的含量超过 40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,CaO成分的含量优选以40%、更优选以30%、最优选以25%为上限。CaO 成分可以通过作为原料例如使用CaC03、CaF2等来导入玻璃中。SrO成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型TiA晶体向光催化活性低的金红石型的相转换的效果。但是,如果SrO成分的含量超过 40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,SrO成分的含量优选以40%、更优选以30%、最优选以25%为上限。SrO 成分可以通过作为原料例如使用Sr (N03)2、SrF2等来导入玻璃中。BaO成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型TW2晶体向光催化活性低的金红石型的相转换的效果。但是,如果BaO成分的含量超过 40%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,BaO成分的含量优选以40%、更优选以30%、最优选以25%为上限。BaO 成分可以通过作为原料例如使用BaC03、Ba (NO3) 2、BaF2等来导入玻璃中。本实施方式的玻璃陶瓷优选含有50%以下的选自RO (式中,R是选自Mg、Ca、Sr 及Ba中的1种以上)成分中的至少1种以上的成分。特别是,通过使RO成分的合计量为 50%以下,玻璃的稳定性提高,易于析出WO3晶相,因此可以确保玻璃陶瓷的催化活性。所以,相对于氧化物换算组成的总物质量来说,RO成分的合计量优选以50%、更优选以40%、 最优选以30%为上限。另外,在含有RO成分的情况下,为了体现出其效果,优选以0. 1%, 更优选以0. 5%、最优选以为下限。另外,本实施方式的玻璃陶瓷优选含有50%以下的选自R0(式中,R是选自Mg、Ca、 Sr及Ba中的1种以上)成分及I^n2O(式中,1 是选自Li、Na、K、Rb、Cs中的1种以上)成分中的至少1种以上的成分。特别是,通过使RO成分及I^n2O成分的合计量为50%以下,玻璃的稳定性提高,玻璃化转变温度(Tg)降低,难以产生裂纹,可以更为容易地获得机械强度高的玻璃陶瓷。另一方面,如果RO成分及I^n2O成分的合计量大于50%,则玻璃的稳定性变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,合计量(RCHfoi2O)优选以50%、更优选以40%、最优选以30%为上限。另外,在含有RO成分及 Rn2O的情况下,为了体现出其效果,优选以0. 1%、更优选以0. 5%、最优选以为下限。这里,本实施方式的玻璃陶瓷通过含有选自RO (式中,R是选自Mg、Ca、Sr及Ba中的1种以上)成分及I^n2O(式中,to是选自Li、Na、K、Rb、Cs中的1种以上)成分中的成分当中的2种以上,玻璃的稳定性大幅度提高,热处理后的玻璃陶瓷的机械强度更高,并且更易于从玻璃中析出WO3晶相。所以,本实施方式的玻璃陶瓷优选含有选自RO成分及1 1120成分中的成分当中的2种以上。Al2O3成分是提高玻璃的稳定性及玻璃陶瓷的化学的耐久性、促进WO3晶相从玻璃中的析出、并且因Al3+离子固溶于WO3晶相中而有助于光催化特性的提高的成分,是可以任意地添加的成分。但是,如果其含量超过30%,则熔融温度明显上升,难以玻璃化。所以,在添加Al2O3成分的情况下,相对于氧化物换算组成的总物质量来说,Al2O3成分的含量优选以 0. 1%、更优选以0.5%、最优选以为下限,优选以30%、更优选以20%、最优选以15%为上限。Al2O3成分可以通过作为原料例如使用A1203、Al (OH) 3、AlF3等来导入玻璃陶瓷中。Ga2O3成分是提高玻璃的稳定性、促进WO3晶相从玻璃中的析出、并且因( 3+离子固溶于WO3晶相中而有助于光催化特性的提高的成分,是可以任意地添加的成分。但是,如果其含量超过30%,则熔融温度明显上升,难以玻璃化。所以,相对于氧化物换算组成的总物质量来说,Ga2O3成分的含量优选以30%、更优选以20%、最优选以10%为上限。(^2O3成分可以通过作为原料例如使用Ga203、GaF3等来导入玻璃陶瓷中。In2O3成分是具有与上述的Al2O3及Gii2O3成分相似的效果的成分,是可以任意地添加的成分。由于M2O3成分价格高,因此优选使其含量的上限为10%以下,更优选为8%以下,最优选为5%以下。In2O3成分可以通过作为原料例如使用ln203、InF3等来导入玻璃陶瓷中。本实施方式的玻璃陶瓷优选含有50%以下的选自Al2O3成分、Ga2O3成分及^i2O3成分中的至少1种以上成分。特别是,通过使这些成分的合计量为50%以下,更易于析出WO3 晶相,因此可以有助于玻璃陶瓷的光催化特性的进一步提高。所以,相对于氧化物换算组成的总物质量来说,合计量(Al203+G£i203+In203)优选以50%、更优选以40%、最优选以30%为上限。而且,虽然即使不含有Al2O3成分、Gii2O3成分及^i2O3成分,也可以获得具有高光催化特性的玻璃陶瓷,然而通过使这些成分的合计量为0. 以上,可以进一步促进WO3晶相的析出,因此可以有助于玻璃陶瓷的光催化特性的进一步提高。所以,相对于氧化物换算组成的总物质量来说,合计量(Al203+G£i203+In203)优选以0. 1%、更优选以0. 5%、最优选以
为下限。成分是提高玻璃陶瓷的化学耐久性、促进WO3晶相的析出、并且因&4+离子固溶于WO3晶相中而有助于光催化特性的提高的成分,是可以任意地添加的成分。但是,如果 &02成分的含量超过20%,则难以玻璃化。所以,相对于氧化物换算组成的总物质量来说,
成分的含量优选以20%、更优选以15%、最优选以10%为上限。&02成分可以通过作为原料例如使用&02、ZrF4等来导入玻璃陶瓷中。SnO成分是促进WO3晶相的析出、抑制W6+的还原而易于获得WO3晶相、并且固溶于 WO3晶相中而对提高光催化特性有效的成分,另外,在与具有提高光催化活性的作用的后述的Ag或Au或Pt离子一起添加的情况下,是起到还原剂的作用、间接地有助于光催化剂的活性提高的成分,是可以任意地添加的成分。但是,如果这些成分的含量超过10%,则玻璃的稳定性变差,光催化特性也容易降低。所以,相对于氧化物换算组成的总物质量来说,SnO 成分的含量优选以10%、更优选以8%、最优选以5%为上限。另外,在添加这些成分的情况下,优选以0. 01%、更优选以0. 02%、最优选以0. 03%为下限。SnO成分可以通过作为原料例如使用SnO、SnO2, SnO3等来导入玻璃陶瓷中。本实施方式的玻璃陶瓷优选含有20%以下的选自^O2成分、SnO成分中的至少1 种以上成分。特别是,通过使这些成分的合计量为20%以下,就可以确保玻璃陶瓷的稳定性,因此可以形成良好的玻璃陶瓷。所以,相对于氧化物换算组成的总物质量来说,合计量 (Zr02+Sn0)优选以20%、更优选以15%、最优选以10%为上限。而且,虽然即使不含有^O2 成分及SnO成分,也可以获得具有高光催化特性的玻璃陶瓷,然而通过使这些成分的合计量为0. 01 %以上,可以进一步提高玻璃陶瓷的光催化特性。所以,相对于氧化物换算组成的总物质量来说,合计量(Zr02+Sn0)优选以0. 01%、更优选以0. 02%、最优选以0. 03%为下限。Nb2O5成分是提高玻璃的熔融性和稳定性的成分,并且是通过固溶于WO3晶相中、 或者存在于其附近而提高光催化特性的成分,是可以任意地添加的成分。但是,如果Nb2O5 成分的含量超过50%,则玻璃的稳定性明显变差。所以,相对于氧化物换算组成的总物质量来说,Nb2O5成分的含量优选以50%、更优选以30%、最优选以20%为上限。Nb2O5成分可以通过作为原料例如使用Nb2O5等来导入玻璃陶瓷中。Ta2O5成分是提高玻璃的稳定性的成分,并且是通过固溶于WO3晶相中、或者存在于其附近而提高光催化特性的成分,是可以任意地添加的成分。但是,如果Ta2O5成分的含量超过50%,则玻璃的稳定性明显变差。所以,相对于氧化物换算组成的总物质量来说, Ta2O5成分的含量优选以50%、更优选以30%、最优选以20%为上限。Ta2O5成分可以通过作为原料例如使用Tii2O5等来导入玻璃陶瓷中。MoO3成分是提高玻璃的熔融性和稳定性的成分,并且是通过固溶于WO3晶相中、或者存在于其附近而提高光催化特性的成分,是可以任意地添加的成分。但是,如果MoO3成分的含量超过50%,则玻璃的稳定性明显变差。所以,相对于氧化物换算组成的总物质量来说,MoO3成分的含量优选以50%、更优选以30%、最优选以20%为上限。MoO3成分可以通过作为原料例如使用MoO3等来导入玻璃陶瓷中。本实施方式的玻璃陶瓷优选含有50%以下的选自Nb2O5成分、Ta2O5成分及MoO3成分中的至少1种以上成分。特别是,通过使这些成分的合计量为50%以下,就可以确保玻璃陶瓷的稳定性,因此可以形成良好的玻璃陶瓷。所以,相对于氧化物换算组成的总物质量来说,合计量(Nb205+T£i205+MO03)优选以50%、更优选以30%、最优选以20%为上限。而且,虽然即使不含有Nb2O5成分、Ta2O5成分及MoO3成分,也可以获得具有高光催化特性的玻璃陶瓷,然而通过使这些成分的合计量为0. 以上,可以进一步提高玻璃陶瓷的光催化特性。 所以,相对于氧化物换算组成的总物质量来说,合计量(Nb205+Ta205+Mo03)优选以0. 1%、更优选以0. 5%、最优选以为下限。ZnO成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型TiA晶体向光催化活性低的金红石型的相转换的效果。但是,如果ZnO成分的含量超过 50%,玻璃的稳定性反而变差,WO3晶相的析出也会变得困难。所以,相对于氧化物换算组成的总物质量来说,ZnO成分的含量优选以50%、更优选以40%、最优选以30%为上限。ZnO 成分可以通过作为原料例如使用&ι0、ZnF2等来导入玻璃陶瓷中。
13
Bi2O3成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型 TiO2晶体向光催化活性低的金红石型的相转换的效果。但是,如果Bi2O3成分的含量超过 20%,玻璃的稳定性就会变差,WO3的析出变得困难。所以,相对于氧化物换算组成的总物质量来说,Bi2O3成分的含量优选以20%、更优选以15%、最优选以10%为上限。Bi2O3成分可以通过作为原料例如使用Bi2O3等来导入玻璃陶瓷中。TeO2成分是提高玻璃的熔融性和稳定性的成分,是可以任意地添加的成分。另外, 是降低玻璃化转变温度而易于生成WO3晶体、并且将热处理温度压制得更低的成分。另外, 通过降低热处理温度,在含有TiA成分的情况下还可以期待减少从光催化活性高的锐钛型 TiO2晶体向光催化活性低的金红石型的相转换的效果。但是,如果TeO2成分的含量超过 20%,玻璃的稳定性就会变差,WO3的析出变得困难。所以,相对于氧化物换算组成的总物质量来说,TeO2成分的含量优选以20%、更优选以15%、最优选以10%为上限。TeO2成分可以通过作为原料例如使用TeA等来导入玻璃陶瓷中。Ln2O3 成分(式中,Ln 为选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb以及Lu中的1种以上)是提高玻璃的化学耐久性的成分,并且是通过固溶于WO3晶相中、或者存在于其附近而提高光催化特性的成分,是可以任意地添加的成分。但是,如果 Ln2O3成分的含量的合计超过30%,则玻璃的稳定性明显变差。所以,相对于氧化物换算组成的总物质量来说,Ln2O3成分的合计量优选以30 %、更优选以20 %、最优选以10 %为上限。 Ln2O3成分当中,特别是Ce52O3成分可以防止W6+的还原、促进WO3的析出,因此具有明显有助于提高光催化特性的效果。Ln2O3成分可以通过作为原料例如使用L 03、La(NO3)3 · XH2O(X 是任意的整数)、Gd203、GdF3> Y2O3> YF3> CeO2, CeF3、Nd2O3> Dy2O3> Yb2O3> Lu2O3 等来导入玻璃陶瓷中。MxOy成分(式中,M为选自V、Cr、Mn、Fe、Co、Ni中的1种以上,χ及y分别为满足 χ y = 2 M的化合价的最小的自然数。这里,V的化合价为5,Cr的化合价为3,Mn的化合价为2 Je的化合价为3,Co的化合价为2,Ni的化合价为2。)是通过固溶于WO3晶相中、或者存在于其附近而有助于光催化特性的提高、并且吸收一部分的波长的可见光而对玻璃陶瓷赋予外观颜色的成分,是本实施方式的玻璃中的任意成分。特别是,通过使MxOy成分的合计量为10%以下,可以提高玻璃陶瓷的稳定性,很容易地调节玻璃陶瓷的外观的颜色。所以,相对于氧化物换算组成的总物质量来说,MxOy成分的合计量优选以10%、更优选以8%、最优选以5%为上限。另外,在添加这些成分的情况下,优选以0. 0001%、更优选以 0. 002%、最优选以0. 005%为下限。As2O3成分和/或Sb2O3成分是使玻璃清澈、脱泡的成分,另外,在与具有提高光催化活性的作用的后述的Ag或Au或Pt离子一起添加的情况下,由于具有还原剂的作用,因此是间接地有助于提高光催化活性的成分,是可以任意地添加的成分。但是,如果这些成分的含量合计超过5%,则玻璃的稳定性就会变差,光催化特性也容易降低。所以,相对于氧化物换算组成的总物质量来说,As2O3成分和/或Sb2O3成分的含量的合计优选以5%、更优选以3%、最优选以为上限。另外,在添加这些成分的情况下,优选以0.001%、更优选以0. 002%、最优选以0. 005%为下限。As2O3成分及Sb2O3成分可以通过作为原料例如使用
14As2O3> As2O5, Sb2O3> Sb2O5, Na2H2Sb2O7 · 5H20 等来导入玻璃陶瓷中。而且,使玻璃清澈、脱泡的成分并不限定于上述的As2O3成分及Sb2O3成分,例如可以使用CeO2成分或1^02成分等之类的在玻璃制造的领域中公知的清澈剂或脱泡剂、或者它们的组合。在本实施方式的玻璃陶瓷中,也可以含有选自F成分、Cl成分、Br成分、S成分、N 成分以及C成分中的至少1种以上的非金属元素成分。这些成分是通过固溶于WO3晶相中、 或者存在于其附近而提高光催化特性的成分,是可以任意地添加的成分。但是,如果这些成分的含量合计超过15%,则玻璃的稳定性明显变差,光催化特性也容易降低。所以,为了确保良好的特性,相对于氧化物换算组成的玻璃陶瓷总质量来说,非金属元素成分的含量的外分比质量比的合计优选以15%、更优选以10%、最优选以5%为上限。这些非金属元素成分优选以碱金属或碱土类金属的氟化物、氯化物、溴化物、硫化物、氮化物、碳化物等形式导入玻璃中。而且,本说明书中的非金属元素成分的含量是如下得到的值,即,假定构成玻璃陶瓷的阳离子成分全都以与电荷正好平衡的氧结合而得的氧化物出现,将以这些氧化物出现的玻璃整体的质量为100%,以质量%表示非金属元素的成分的质量(相对于氧化物基准的质量的外分比质量% )。非金属元素成分的原料没有特别限定,然而例如可以通过作为 F成分的原料使用&F4、AlF3、NaF、CaF2等、作为Cl成分的原料使用NaCl、AgCl等、作为Br 成分的原料使用NaBr等、作为S成分的原料使用NaS、Fe2S3^ CaS2等、作为N成分的原料使用A1N3、SiN4等、作为C成分的原料使用TiC、SiC或ZrC等来导入玻璃中。而且,这些原料既可以组合添加2种以上,也可以单独添加。在本实施方式的玻璃陶瓷中,也可以含有选自Cu成分、Ag成分、Au成分、Pd成分、 Ru成分、Rh成分、Re成分及Pt成分中的至少1种金属元素成分。这些金属元素成分是通过存在于WO3晶相的附近而提高光催化活性的成分,是可以任意地添加的成分。特别是Cu 成分和^Vg成分由于即使没有光的照射也具有抗菌效果,因此优选含有其中一种或两种。但是,如果这些金属元素成分的含量的合计超过10%,则玻璃的稳定性明显变差,光催化特性反而容易降低。所以,相对于氧化物换算组成的玻璃陶瓷总质量来说,上述金属元素成分的含量的外分比质量比合计优选以10%、更优选以5%、最优选以为上限。这些金属元素成分可以通过作为原料例如使用 CuO、Cu2O, Ag2O, AuC13、PtCl2^PtCl4, H2PtCl6, RuO2, RhCl3、 ReCl3、PdCl2等来导入陶瓷玻璃中。而且,本说明书中的金属元素成分的含量是如下得到的值,即,假定构成玻璃陶瓷的阳离子成分全都以与电荷正好平衡的氧结合而得的氧化物出现,将以这些氧化物出现的玻璃整体的质量为100%,以质量%表示金属元素成分的质量(相对于氧化物基准的质量的外分比质量%)。另外,在添加这些成分的情况下,优选以 0. 0001%、更优选以0. 002%、最优选以0. 005%为下限。在本实施方式的玻璃陶瓷中,可以在不损害玻璃陶瓷的特性的范围中,根据需要添加上述成分以外的成分。但是,PbO等铅化合物、Th、Cd、Tl、Os、Se、Hg各成分近年来作为有害的化学物资有控制使用的趋势,不仅是玻璃陶瓷的制造工序,就连加工工序、以及产品化后的处置都需要环境对策上的措施。所以,在重视环境上的影响的情况下,除了不可避免的混入以外,实质上优选不含有它们。这样,在玻璃陶瓷中实质上就不含有污染环境的物质。由此,即使不采取特别的环境对策上的措施,也可以制造、加工以及废弃该玻璃陶瓷。本实施方式的玻璃陶瓷由于将其组成以相对于氧化物换算组成的总物质量的摩尔%表示,因此并非直接表述为质量%的记载,然而存在于满足本实施方式中所要求的各种特性的组合物中的各成分的基于质量%表示的组成以氧化物换算组成计大致上采取以下的值。
0119]
0120] 0121] 0122]
0123]
0124]
0125]
0126]
0127]
0128]
0129]
0130]
0131]
0132]
0133]
0134]
0135]
0136]
0137]
0138]
0139]
0140]
0141]
0142]
0143]
0144]
0145]
0146]
0147]
0148]
0149]
0150]
0151]
WO3成分10 以及
P2O5成分0 ‘ B2O3成分0 ‘ SiO2成分0 GeO2成分0 TiO2成分0 Li2O成分0 Na2O成分0 K2O成分0 -Rb2O成分0 Cs2O成分0 MgO成分0广 CaO成分0 -SrO成分0 -BaO成分0 -Al2O3成分0 Ga2O3成分0 In2O3成分0 ZrO2成分0 SnO成分0广 Nb2O5成分0 Ta2O5成分0 MoO3成分0 ZnO成分0广 Bi2O3成分0 TeO2成分0 Ln2O3成分合计0 MxOv成分合计0 ‘
90质量%
50质量%和/ 50质量%和/ )50质量%和 )40质量%和 )80质量%和 )15质量%和 )30质量%和 30质量%和/ )25质量%和 )30质量%和 20质量%和/ 25质量%和/ 45质量%和/ 45质量%和/ -35质量%和 -35质量%和 -10质量%和 )30质量%和 15质量%和/ -60质量%和 -70质量%和 )60质量%和 45质量%和/ -60质量%和 )20质量%和
‘50质量%和 20质量%和/
或或 ζ或 ζ或 ζ或 Z或 Z或或 Z或 Z或或 或或 或 /或 /或 /或 Z或
或 /或 /或 Z或
或 /或 Z或
As2O3成分及SId2O3成分合计0
/或 '或
10质量%
此外,
以相对于所述氧化物换算组成的玻璃陶瓷总质量100%的外分比质量比计, 选自F成分、Cl成分、Br成分、S成分、N成分以及C成分中的至少1种以上的非金属元素成分0 15质量%和/或 选自Cu成分、Ag成分、Au成分、Pd成分、Ru成分、1 成分、Re成分以及Pt成分中的至少1种金属元素成分0 10质量%。
本实施方式的玻璃陶瓷也可以在晶相中含有包含Ti02、TiP2O7及(TiO)2P2O7以及它们的固溶体当中的1种以上的晶体,该情况下,更优选含有包含锐钛(Anatase)型或板钛矿(Brookite)型的TiO2的晶体。通过含有这些晶体,玻璃陶瓷就可以具有高光催化功能。 其中,特别是锐钛型的氧化钛(TiO2)即使与金红石(Rutile)型相比光催化功能也很高,因此可以对玻璃陶瓷赋予更高的光催化功能。另外,本实施方式的玻璃陶瓷也可以含有钛磷酸化合物,特别是含有I^iTi2(PO4)3 晶体或其固溶体、或者RTi4 (PO4)6晶体或其固溶体(式中,1 为选自Li、Na、K、Rb、Cs中的 1种以上,R为选自Mg、Ca、Sr、Ba中的1种以上)。通过从玻璃中析出这些晶体,就可以体现出更高的光催化效果。作为此种钛磷酸化合物,可以例示出LiTi2(P04)3、NaTi2(PO4)3^ KTi2 (PO4) 3、MgTi4 (PO4) 6、CaTi4 (PO4)6, SrTi4 (PO4)6, B aTi4 (PO4) 6 等。[物性]本实施方式的玻璃陶瓷优选以相对于玻璃总体积的体积比计在以上95%以下的范围内含有包含 WO3、及 Ti02、TiP2O7, (Ti0)2P207> RnTi2 (PO4) 3、RTi4 (PO4) 6、以及它们的固溶体当中的1种以上的晶体(式中,1 为选自Li、Na、K、Rb、Cs中的1种以上,R为选自 Mg、Ca、Sr、Ba中的1种以上)。通过使上述晶相的含有率为1 %以上,玻璃陶瓷就可以具有良好的光催化特性。另一方面,通过使上述晶相的含有率为95%以下,玻璃陶瓷就可以获得良好的机械强度。另外,本实施方式的玻璃陶瓷的结晶化率以体积比计优选以1%、更优选以5%、 最优选以10%为下限,优选以98%、更优选以95%、最优选以90%为上限。对于所述晶体的大小,优选进行球近似后的平均直径为5nm 3μπι。通过控制热处理条件,可以控制析出的晶体的尺寸,然而为了发挥有效的光催化特性,优选将晶体的尺寸为5nm 3μπι的范围,更优选为IOnm 1 μ m的范围,最优选为IOnm 300歷的范围。可以利用XRD的衍射峰的半值宽度,基于Sierrer公式来估计晶体粒径及其平均值。在衍射峰较弱或叠加的情况下,可以根据使用扫描型电子显微镜(SEM)或透过型电子显微镜(TEM)测定出的晶体粒子面积,将其假定为圆,求出其直径来测定。在使用显微镜算出平均值时,优选随机地测定 100个以上的晶体直径。本实施方式的玻璃陶瓷优选利用从紫外区域到可见区域的波长的光来体现催化活性。这里,紫外区域的波长的光是波长比可见光线短而比软X射线长的不可见光线的电磁波,其波长大约处于10 400nm的范围。另外,可见区域的波长的光是电磁波当中的可以被人眼看到的波长的电磁波,其波长大约处于400nm 700nm的范围。通过在向玻璃陶瓷的表面照射这些从紫外区域到可见区域的任意波长的光、或者将它们复合而成的波长的光时体现出催化活性,附着于玻璃陶瓷的表面的污垢物质或细菌等就被利用氧化或还原反应分解,因此可以将玻璃陶瓷用于防污用途或抗菌用途等。而且,虽然TiO2晶体对于紫外线的照射显示出高催化效果,然而对于可见光的响应性比对紫外线的响应性低,而在本实施方式中WO3晶体对于可见光显示出优异的响应性,因此在含有WO3晶体和TW2晶体二者的情况下,可以获得对从紫外线到可见光线的宽广波长的光具有特别优异的响应性的玻璃陶瓷。另外,本实施方式的玻璃陶瓷的照射了从紫外区域到可见区域的波长的光的表面与水滴的接触角优选为30°以下。这样,玻璃陶瓷的表面呈现出亲水性,具有自清洁作用,因此可以用水很容易地清洗玻璃陶瓷的表面,可以抑制由污垢造成的光催化特性的降低。 照射了光的玻璃陶瓷表面与水滴的接触角优选为30°以下,更优选为25°以下,最优选为 20°以下。[玻璃陶瓷的制造方法]下面,通过例示出以下的第一方法及第二方法,来对本实施方式的玻璃陶瓷的制造方法进行说明。但是,本实施方式的玻璃陶瓷的制造方法并不限定于第一方法及第二方法中所示的方法。〈第一方法〉本实施方式的第一方法的玻璃陶瓷的制造方法可以通过将原料的混合物保持为 1250°C以上的温度而熔融,其后将其冷却、固化来进行。这里,熔融液可以由至少1种以上的原料组成生成,还可以考虑因加入2种以上的化合物造成的熔融液的生成温度的降低。 所以,所要保持的温度优选根据所要混合的原料的种类及量适当地变更,然而一般来说优选为1250°C以上,更优选为1300°C以上,最优选为1350°C以上。更具体来说,将规定的起始原料均勻地混合后放入包含钼或耐火物等的容器,用电炉以1250°C以上的规定温度加热并保持,制作熔融液。其后,将熔融液流入模具而使之固化,得到所需的玻璃陶瓷。像这样,通过不经由借助玻璃化及再加热的结晶化过程,而是在控制冷却速度的同时将溶液冷却,在冷却的过程中使之以规定的时间穿过结晶化温度区域,就可以从液体中直接析出WO3晶相而制作所需的玻璃陶瓷。这里,在熔融液冷却的过程中引起晶核的生成及生长。该方法例如在富集地析出所需的晶相而玻璃熔融液的状态比较不稳定等情况下是有效的。[蚀刻工序]生成晶体后的玻璃陶瓷可以直接使用,或者在实施了研磨等机械的加工的状态下发挥高光催化特性,然而也可以对该玻璃陶瓷进行蚀刻。由于利用蚀刻,去掉晶相周围的玻璃相,在表面露出的晶相的比表面积增大,因此可以进一步提高玻璃陶瓷的光催化特性。另外,通过控制蚀刻工序中所用的溶液或蚀刻时间,可以获得残留WO3晶相的多孔体。这里, 作为蚀刻的方法,例如可以举出干式蚀亥IJ、借助向溶液中的浸渍进行的湿式蚀亥IJ、以及它们的组合等方法。浸渍中所用的酸性或碱性的溶液只要可以腐蚀玻璃陶瓷的表面,就没有特别限定,例如也可以是含有氟或氯的酸(氢氟酸、盐酸)。而且,该蚀刻工序例如可以通过将氟化氢气体、氯化氢气体、氢氟酸、盐酸等向玻璃陶瓷的表面吹送来进行。〈第二方法〉本实施方式的第二方法的玻璃陶瓷的制造方法可以具有混合原料而得到其熔液的熔融工序、冷却所述熔液而得到玻璃的冷却工序、将所述玻璃的温度升高到结晶化温度区域的再加热工序、在所述结晶化温度区域内维持所述温度而产生晶体的结晶化工序、将所述温度降低到所述结晶化温度区域外而得到晶体分散玻璃的再冷却工序。而且,对于与第一方法相同的工序适当地省略说明。[熔融工序]熔融工序是将具有上述的组成的原料混合而得到其熔液的工序。更具体来说,以使玻璃陶瓷的各成分处于规定的含量的范围内的方式调合原料,均勻地混合,将制作出的混合物投入钼坩埚、石英坩埚或氧化铝坩埚,用电炉以1200 1600°C的温度范围熔融1 24小时,搅拌均勻化,制作出熔液。而且,原料的熔融的条件并不限定于上述温度范围,可以根据原料组合物的组成及配合量等适当地设定。[冷却工序]冷却工序是通过将利用熔融工序得到的熔液冷却而玻璃化来制作玻璃的工序。具体来说,通过流出熔液而适当地冷却,来形成玻璃化了的玻璃体。这里,玻璃化的条件没有特别限定,可以根据原料的组成及量等适当地设定。另外,利用本工序得到的玻璃体的形状没有特别限定,可以是板状、粒状等,然而从可以迅速并且大量地制作玻璃体的方面考虑, 优选为板状。[再加热工序]再加热工序是将利用冷却工序得到的玻璃的温度升高到结晶化温度区域的工序。 该工序中,由于升温速度及温度对晶相的形成或晶体尺寸会造成很大的影响,因此精密地控制它们十分重要。[结晶化工序]结晶化工序是通过在结晶化温度区域中保持规定的时间来生成WO3等晶体的工序。通过在该结晶化工序中在结晶化温度区域保持规定时间,就可以将具有从纳米到微米单位的所需的尺寸的WO3等晶体均勻地分散于玻璃体的内部地形成。结晶化温度区域例如为超过玻璃化转变温度的温度区域。由于玻璃化转变温度随着玻璃组成而不同,因此优选根据玻璃化转变温度来设定结晶化温度。另外,结晶化温度区域优选为比玻璃化转变温度高10°C以上的温度区域,更优选高20°C以上,最优选高30°C以上。优选的结晶化温度区域的下限为450°C,更优选为500°C,最优选为550°C。另一方面,如果结晶化温度过高,则析出目标以外的未知相的倾向增强,光催化特性容易消失,因此结晶化温度区域的上限优选为 1200°C,更优选为1100°C,最优选为1050°C。该工序中,由于升温速度及温度对晶体的尺寸会造成很大影响,因此根据组成或热处理温度适当地控制十分重要。另外,用于结晶化的热处理时间需要根据玻璃的组成或热处理温度等,在使晶体生长到一定程度、并且能够析出足够量的晶体的条件下设定。热处理时间可以根据结晶化温度在各种范围中设定。如果降低升温速度,则也有只要加热到热处理温度即可的情况,然而在作为目标来说是较高温度的情况下,优选设定为短时间,在较低温度的情况下,优选设定为长时间。结晶化过程既可以经过1个阶段的热处理过程,也可以经过2个阶段以上的热处理过程。(再冷却工序)再冷却工序是在结晶化结束后,使温度降低到结晶化温度区域外而得到具有WO3 晶相的晶体分散玻璃的工序。(蚀刻工序)在本第二方法中,也优选实施蚀刻工序。蚀刻可以与第一方法相同地进行。 上述第一方法及第二方法中,可以根据需要设置成形工序而将玻璃或玻璃陶瓷加工为任意的形状。[光催化剂]如上所述地制造的玻璃陶瓷可以直接使用,或者加工为任意的形状后作为光催化剂使用。这里的“光催化剂”例如为块材的状态、粉末状等,无论其形状为何都可以。另外, 光催化剂只要是具有利用紫外线等光分解有机物的作用、和减小与水的接触角而赋予亲水性的作用的任意一方的活性的材料即可,然而优选为具有二者的活性的材料。该光催化剂例如可以作为光催化材料、光催化构件(例如水的净化材料、空气净化材料等)、亲水性材料、亲水性构件(例如窗户、镜子、面板、瓷砖等)等利用。[玻璃陶瓷成形体]通过将如上所述地制造的玻璃陶瓷以任意的形状成形,就可以作为光催化功能性的玻璃陶瓷成形体和/或亲水性的玻璃陶瓷成形体用于各种机械、装置、器具类等用途中。 特别是,优选用于瓷砖、窗框、建材等用途中。这样,就可以在玻璃陶瓷成形体的表面发挥光催化功能,杀灭附着于玻璃陶瓷成形体的表面的霉菌,因此在用于这些用途时可以将表面保持卫生。另外,由于玻璃陶瓷成形体的表面具有亲水性,因此在用于这些用途时可以利用雨滴等很容易地洗掉附着于玻璃陶瓷成形体的表面的污垢。另外,本实施方式的玻璃陶瓷成形体可以根据用途加工为各种形态。特别是,例如通过采用玻璃珠或玻璃纤维(glassfiber)的形态,可以增加WO3晶相的露出面积,因此可以进一步提高玻璃陶瓷成形体的光催化活性。下面,作为玻璃陶瓷的代表性的加工形态,以玻璃珠及玻璃纤维为例举出而进行说明。[玻璃珠]本实施方式的玻璃珠并非装饰用、手工艺用的珠子,而是涉及工业用的珠子。对于工业用的珠子,从耐久性等优点考虑,主要使用玻璃制作,一般来说,将玻璃制的微小球 (直径数μ m到数mm)称作玻璃珠。作为具有代表性的用途,例如有道路的标识板、路面显示线中所用的涂料、反光布、过滤材料、喷丸研磨材料等。如果向道路标识涂料、反光布等中混入、分散玻璃珠,则在夜间从车灯等中射出的光就会经由珠子向原来的地方反射(循环反射),可见性提高。玻璃珠的此种功能还可以用于慢跑用服装、施工用马甲、自行车手用背心等中。如果向涂料中混入本实施方式的玻璃陶瓷珠,则可以利用光催化功能将附着于标识板或线中的污垢分解,因此可以一直维持洁净的状态,从而可以大幅度减少维护的劳动。此外,本实施方式的玻璃陶瓷珠还可以通过调整组成、析出晶体的尺寸、以及晶相的量, 而同时具有循环反射功能和光催化功能。而且,为了获得循环反射性更高的玻璃陶瓷珠,构成该珠子的玻璃基质相和/或晶相的折射率优选为1. 8 2. 1的范围内,特别是更优选为 1.9左右。作为其他的用途,工业用的玻璃珠可以作为过滤材料使用。玻璃珠与沙子或石头等不同,全部是球形,因此填充率高,还可以计算间隙率,因此可以单独使用,或者与其他的过滤材料组合而广泛地使用。本实施方式的玻璃陶瓷珠除了此种玻璃珠本来的功能以外, 还兼具光催化功能。特别是,不具有膜或涂覆层等,单独地呈现出光催化特性,因此没有由剥离造成的催化活性劣化,省去更换或维护的劳动,例如可以适用于过滤器及净化装置中。 另外,利用了光催化功能的过滤器构件及净化构件多为在装置内与成为光源的构件相邻的构成,而玻璃陶瓷的珠子可以很简单地收纳在装置内的容器等中,因此可以恰当地利用。此外,玻璃珠由于化学稳定性优异,且为球形,因此不太会损伤被加工物,可以用于喷丸研磨用材料中。所谓喷丸是指,通过喷射粒材而与被加工面碰撞,来进行清扫、装饰、 喷丸强化等。本实施方式的玻璃陶瓷珠除了该优点以外,还兼具光催化功能,因此可以实现在喷丸的同时进行应用了光催化反应的同时加工。本实施方式的玻璃珠的粒径可以根据其用途适当地决定。在配合到涂料中的情况下,例如可以为100 2500 μ m,优选为100 2000 μ m的粒径。在用于反光布中的情况下, 例如可以为20 100 μ m,优选为20 50 μ m的粒径。在用于过滤材料中的情况下,例如可以为30 8000 μ m,优选为50 5000 μ m的粒径。下面,对本实施方式的玻璃陶瓷珠的制造方法进行说明。本实施方式的玻璃陶瓷珠的制造方法可以包括混合原料而得到其熔液的熔融工序、使用熔液或由熔液得到的玻璃而成形为珠体的成形工序、使珠体的温度升高到超过玻璃化转变温度的结晶化温度区域并以该温度保持规定的时间而析出所需的晶体的结晶化工序。而且,由于上述第一及第二方法中说明过的玻璃陶瓷的传统的制造方法也可以在不矛盾的范围中应用于该具体例中, 因此适当地引用这些方法而省略重复的记载。(熔融工序)可以与上述第二方法相同地实施。(成形工序)其后,由在熔融工序中得到的熔液成形为微粒状的珠体。在珠体的成形方法中有各种方法,只要适当地选择即可,然而一般来说,可以经由玻璃熔液或玻璃一粉碎一粒度调整一球状化的过程来制作。有如下等方法,即,在粉碎工序中,通过将冷却固化了的玻璃粉碎,或将熔液状的玻璃流入水中而进行粒化,继而用球磨机加以粉碎等,来获得粒状玻璃。 其后,使用筛子等来调整粒度,再次加热而利用表面张力以球状成形,或与石墨等粉末材料一起加入圆桶中,在使之旋转的同时利用物理力以球状成形。或者,也可以采取不经过粉碎工序而由熔融玻璃直接球状化的方法。例如有如下的方法等,即,将熔融玻璃向空气中喷射而利用表面张力球状化,用旋转的刀具之类的构件细碎地切飞从流出喷嘴中出来的熔融玻璃而球状化,向流体中滴下而在下落中使之球状化。通常来说,成形后的珠子在再次调整粒度后形成产品。只要考虑成形温度下的玻璃的粘性或失透容易度等,从这些方法中选择最佳的方法即可。(结晶化工序)将利用上述过程得到的珠体再次加热,进行使所需的晶体析出的结晶化工序。结晶化工序中,需要对每种玻璃组成根据玻璃化转变温度设定结晶化温度,然而具体来说,优选在比玻璃化转变温度高10°c以上的温度区域中进行热处理。例如在玻璃化转变温度为 500°C以上的情况下,优选的热处理温度的下限为510°C,更优选为600°C,最优选为650°C。 另一方面,如果热处理温度过高,则包括WO3晶体、乃至任意成分的TW2晶体、TiP2O7晶体、 (TiO)2P2O7晶体、RnTi2(PO4)3晶体、以及RTi4(PO4)6晶体等的晶相减少的倾向就会加强,光催化特性容易消失。所以,热处理温度的上限优选为1200°C,更优选为1100°C,最优选为 1050°C。如果高于1200°C,则WO3晶体的析出变少,并且作为任意成分的TW2的晶体易于变为活性度低于锐钛型的金红石型。特别是从析出I^nTi2(PO4)3晶体及RTi4 (PO4)6晶体的方面考虑,优选为1000°C以下。由于结晶化的温度及时间对晶相的形成或晶体尺寸造成很大的影响,因此精密地控制它们是非常重要的。得到所需的晶体后,冷却到结晶化温度区域之外,得到分散有晶体的玻璃陶瓷珠。而且,除了如前所述的在珠体成形后结晶化的方法以外,也可以利用由熔液直接球状化、冷却的过程来析出晶相。进行结晶化工序而产生晶体后的玻璃陶瓷珠即使直接使用的状态下也可以发挥很高的光催化特性,然而可以对该玻璃陶瓷珠进行蚀刻工序。由于利用蚀刻,去掉晶相周围的玻璃相,在表面露出的晶相的比表面积变大,因此可以进一步提高玻璃陶瓷珠的光催化特性。另外,通过控制蚀刻工序中所用的溶液或蚀刻时间,可以得到仅残留光催化晶相的多孔体珠子。蚀刻工序可以与上述第一及第二方法相同地实施。[玻璃陶瓷纤维]本实施方式的玻璃陶瓷纤维具有玻璃纤维的普遍的性质。即,与普通的纤维相比, 具有拉伸强度·比强度大、弹性模量·比弹性模量大、尺寸稳定性好、耐热性大、不可燃、耐化学性好等物性上的优点,可以用于有效利用它们的各种用途中。另外,由于在纤维的内部及表面具有光催化晶体,因此除了所述的优点以外,还具有光催化特性,从而可以提供能够用于更为广泛的领域的纤维结构体。这里所说的纤维结构体是指将纤维例如作为织物、编制物、层叠物、或它们的复合体形成的三维的结构体,例如可以举出无纺布。作为有效利用玻璃纤维的耐热性、不可燃性的用途,例如有窗帘、床单、墙纸、防虫网、衣服类、或隔热材料等,然而如果使用本实施方式的玻璃陶瓷纤维,则还会对所述用途的物品赋予由光催化作用带来的除臭功能、污垢分解功能等,可以大幅度减少清扫或维护的劳动。另外,虽然玻璃纤维由于其耐化学性而多被作为过滤材料使用,然而本实施方式的玻璃陶瓷纤维并不单纯地进行过滤,还利用光催化反应分解被处理物中的恶臭物质、污垢、细菌等,因此可以提供具有更为积极的净化功能的净化装置及过滤器。此外,由于基本上不会产生由光催化层的剥离 脱离造成的特性的劣化,因此有助于这些产品的长寿命化。下面,对本实施方式的玻璃陶瓷纤维的制造方法进行说明。本实施方式的玻璃陶瓷纤维的制造方法可以包括混合原料而得到其熔液的熔融工序、使用熔液或由熔液得到的玻璃而以纤维状成形的纺纱工序、使该纤维的温度升高到超过玻璃化转变温度的温度区域并以该温度保持规定的时间而析出所需的晶体的结晶化工序。而且,由于上述第一及第二方法中说明过的玻璃陶瓷的传统的制造方法也可以在不矛盾的范围中应用于该具体例中,因此适当地引用这些方法而省略重复的记载。(熔融工序)可以与上述第二方法相同地实施。(纺纱工序)然后,由在熔融工序中得到的熔液成形为玻璃纤维。纤维体的成形方法没有特别限定,只要使用公知的方法成形即可。例如,在以连续地卷绕在卷绕机上的类型的纤维(长纤维)成形的情况下,只要用公知的DM法(直熔拉丝法)或匪法(坩埚拉丝法)纺纱即可,在以纤维长度数十cm左右的短纤维成形的情况下,也可以使用离心法、或切割所述长纤维。纤维直径只要根据用途适当地选择即可。不过,越细则越会形成挠曲性高、手感好的织物,然而纺纱的生产效率变差、成本升高,相反如果过粗则虽然纺纱生产性变好,然而加工性或处置性变差。在制成织物等纤维产品的情况下,优选将纤维直径为3 24 μ m的范围,在制成适于净化装置、过滤器等用途的层叠结构体等的情况下,优选将纤维直径为9μπι 以上。其后,可以根据用途制成棉花状、或制作粗纱、布等纤维结构体。(结晶化工序)然后,将利用上述过程得到的纤维或纤维结构体再次加热,进行在纤维中及表面体的结晶化工序。该结晶化工序可以与玻璃珠的结晶化工序相同地实施。得到所需的晶体后,冷却到结晶化温度区域之外,得到分散有光催化晶体的玻璃陶瓷纤维或纤维结构体。而且,除了如前所述的在纤维体成形后结晶化的方法以外,也可以控制纺纱工序中的玻璃纤维的温度,同时地进行结晶化工序。进行结晶化工序而产生晶体后的玻璃陶瓷纤维即使直接使用的状态下也可以发挥很高的光催化特性,然而可以对该玻璃陶瓷纤维进行蚀刻工序。由于利用蚀刻,去掉晶相周围的玻璃相,在表面露出的晶相的比表面积变大,因此可以进一步提高玻璃陶瓷纤维的光催化特性。另外,通过控制蚀刻工序中所用的溶液或蚀刻时间,可以得到仅残留光催化晶相的多孔体纤维。蚀刻工序可以与上述第一及第二方法相同地实施。如上所述,本实施方式的玻璃陶瓷由于在其内部及表面均勻地析出具有光催化活性的氧化钨和/或其固溶体的晶相,因此具有优异的光催化活性和可见光响应性,并且耐久性也很优异。所以,不会有像仅在基材的表面设置光催化层的以往技术的光催化功能性构件那样因光催化层剥离而丧失光催化活性的情况。另外,假使表面受到切削而露出存在于内部的氧化钨和/或其固溶体的晶相,也可以维持光催化活性。另外,本实施方式的玻璃陶瓷可以由熔融玻璃的形态制造,因此加工大小或形状等时的自由度高,可以加工成要求光催化功能的各种物品。另外,根据本实施方式的玻璃陶瓷的制造方法,由于可以利用原料的配合组成和热处理温度的控制来生成氧化钨和/或其固溶体的晶相,因此就不需要一直作为光催化技术中的大问题的晶体粒子的微细化中所需的劳动,能够以工业化的规模很容易地制造具有优异的光催化活性和可见光响应性的玻璃陶瓷。第二实施方式玻璃陶瓷烧结体及其制造方法下面,对本发明的第二实施方式的玻璃陶瓷烧结体及其制造方法进行说明。本实施方式的玻璃陶瓷烧结体是将粉碎玻璃烧结而成的玻璃陶瓷烧结体,至少含有包含氧化钨和/或其固溶体的晶相(WO3晶相)。也就是说,本实施方式的玻璃陶瓷烧结体包含第一实施方式的玻璃陶瓷。本实施方式的玻璃陶瓷烧结体的制造方法作为主要的工序,具有玻璃化工序、粉碎工序、成形工序、以及烧结工序。以下对各工序的详细情况进行说明。而且,所谓“玻璃陶瓷烧结体”是指将包含玻璃粉的粉状的材料固化·烧结而得的材料。本实施方式的玻璃陶瓷烧结体至少含有WO3晶相,该晶相均勻地分散在玻璃陶瓷烧结体的内部及表面。[玻璃化工序]玻璃化工序中,通过将规定的原料组合物熔融并玻璃化,来制作玻璃体。具体来说,向包含钼或耐火物的容器中投入原料组合物,通过将原料组合物加热到高温而熔融。使由此得到的熔融玻璃流出,通过适当地加以冷却,形成玻璃化了的玻璃体。熔融及玻璃化的条件没有特别限定,可以根据原料组合物的组成及量等适当地设定。另外,玻璃体的形状没有特别限定,例如也可以是板状、粒状等。熔融的温度和时间随着玻璃的组成而不同,然而例如分别优选为1200 16500C U 24小时的范围。(原料组合物)原料组合物被制备成,所得的玻璃体以氧化物换算组成的摩尔%计,例如含有10 95%的氧化钨成分,还含有5 60%的P2O5成分、B2O3成分、SW2成分、以及GeR成分中的至少1种以上的成分。另外,原料组合物优选使用如下所示地制备的物质,S卩,除了上述WO3成分、以及 P2O5成分、B2O3成分、SiO2成分及GeA成分中的至少1种以上的成分以外,所得的玻璃体以氧化物换算组成的摩尔%计,还含有0 60% 的 TiO2 成分、0 50%的碱金属氧化物成分和/或碱土类金属氧化物成分、和/或0 50%的Ma0b(式中,M是选自Nb、Ta及Mo中的1种以上。a及b是满足a b =2 M的化合价的最小的自然数。这里,Nb的化合价为5,Ta的化合价为5,Mo的化合价为6。)成分、和/或0 20%的(OJ式中,M1是选自& 及Sn中的1种以上。c及d是满足c d = 2 M1的化合价的最小的自然数。这里,Zr的化合价为4,Sn的化合价为2。)成分、和/ 或0 50%的M2203 (式中,M2是选自Al、fei&h中的1种以上。)成分、和/或0 30% 的 Ln2O3 (式中,Ln 是选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb以及Lu中的1种以上。)成分、和/或0 10%的M3e0f(式中,M3是选自V、Cr、Mn、Fe、Co及Ni中的1种以上。e及f是满足e f = 2 M3的化合价的最小的自然数。这里,V的化合价为5,Cr的化合价为3, Mn的化合价为2,Fe的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/或0 20%的Bi2O3成分+TeO2成分、和/或0 5 %的Aii2O3成分+SId2O3成分各成分,以相对于所述玻璃体的氧化物换算组成的总质量的外分比质量%计,含有15%以下的选自N成分、S成分、F成分、Cl成分、Br成分、以及C成分中的至少1 种以上的非金属元素成分、和/或10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1种金属元素成分。本实施方式中,上述方面以外的、构成玻璃体的各成分的内容、组成范围及配合目的与第一实施方式相同,因此在这里引用第一实施方式的[组成]一栏中说明的内容而省略说明。[粉碎工序]粉碎工序中,将玻璃体粉碎而制作粉碎玻璃。粉碎玻璃的粒子直径或形状可以根据成形工序中制作的成形体的形状及尺寸的视为必需的精度来适当地设定。例如,在不用管玻璃陶瓷烧结体的形状或形态的情况下,粉碎玻璃的平均粒子直径也可以是数十mm的单位。另一方面,在将玻璃陶瓷烧结体以所需的形状成形、或与其他的晶体复合的倾向,如果粉碎玻璃的平均粒子直径过大,则成形就会变得困难,因此平均粒子直径越小越好。所以,粉碎玻璃的平均粒子直径的上限优选为100 μ m,更优选为50 μ m,最优选为ΙΟμπι。而且,粉碎玻璃的平均粒子直径例如可以使用利用激光衍射散射法测定时的 D50(累计50%直径)的值。具体来说,可以使用利用日机装株式会社的粒度分布测定装置 MICROTRAC (MT3300EXII)测定的值。而且,玻璃体的粉碎方法没有特别限定,然而例如可以使用球磨机、喷射式粉碎机等来进行。[成形工序]成形工序是将粉碎玻璃以所需形状的成形体成形的工序。在制成所需的形状的情况下,优选使用将粉碎玻璃放入模具中而加压的冲压成形。另外,也可以将粉碎玻璃堆积在耐火物上而成形。该情况下,也可以使用粘合剂。[烧结工序]烧结工序中,加热成形体而制作烧结体。这样,在构成成形体的玻璃体的粒子之间结合的同时生成WO3晶相,形成玻璃陶瓷烧结体。另外,例如在由向粉碎玻璃中添加了 WO3 和/或锐钛型TiA等的晶体的混合物来制造成形体的情况下,就会在玻璃陶瓷烧结体中生成更多的WO3和/或锐钛型Ti02。由此,就可以获得更高的光催化活性。烧结工序的具体的步骤没有特别限定,然而也可以包括对成形体加以预热的工序、将成形体慢慢地升温到设定温度的工序、将成形体以设定温度保持一定时间的工序、将成形体慢慢地冷却到室温的工序。烧结的条件可以根据构成成形体的玻璃体的组成来适当地设定。烧结工序中, 为了从玻璃中生成晶体,需要使热处理温度等条件符合构成成形体的玻璃的结晶化条件。 如果烧结温度过低,则无法获得具有所需的晶相的烧结体,因此至少需要高于玻璃体的玻璃化转变温度(Tg)的温度下的烧结。具体来说,本实施方式中,烧结温度的下限是玻璃体的玻璃化转变温度(Tg)以上,优选为Tg+50°C以上,更优选为Tg+100°C以上,最优选为 Tg+150°C以上。另一方面,如果烧结温度过高,则WO3晶体的析出变少,并且作为任意成分的T^2的晶体相转化为活性度低于锐钛型的金红石,因析出目标以外的晶体等而使光催化活性大幅度减少的倾向变强。所以,对于烧结温度的上限,在本实施方式中,优选为玻璃体的Tg+600°C以下,更优选为Tg+500°C以下,最优选为Tg+450°C以下。另外,在成形体包含晶体状态的WO3和/或TW2等的情况下,需要考虑WO3和/或 TiO2的量、晶体尺寸以及晶型等来设定烧结条件。另外,烧结时间的下限需要根据烧结温度来设定,然而在较高温度的情况下,优选设定为短时间,在较低温度的情况下,优选设定为长时间。具体来说,本实施方式中,从可以充分地进行烧结的方面考虑,优选以3分钟、更优选以20分钟、最优选为以30分钟为下限。另一方面,如果烧结时间超过M小时,则目标的晶体就会变得过大、或生成其他的晶体而有可能无法获得足够的光催化特性。所以,对于烧结时间的上限,在本实施方式中,优选为M小时,更优选为19小时,最优选为为18小时。而且,这里所说的烧结时间,是指烧结工序当中烧成温度被保持一定(例如上述设定温度)以上的时间的长度。烧结工序例如优选在煤气炉、微波炉、电炉等中一边更换空气一边进行。但是,并不限于该条件,例如也可以在惰性气体气氛、还原气体气氛、氧化气体气氛等中进行。本实施方式中,由于构成利用烧结工序形成的玻璃陶瓷烧结体的各成分的内容、 组成范围及配合目的与第一实施方式相同,因此在这里引用第一实施方式的[组成]一栏中说明过的内容而省略说明。[混合工序]本实施方式的制造方法可以包括通过向粉碎玻璃中混合任意的成分而使该成分增加的混合工序。该工序是可以在粉碎工序之后、成形工序之前进行的任意的工序。作为
25在混合工序中向粉碎玻璃中添加的成分,没有特别限制,然而优选混合可以通过在粉碎玻璃的阶段中增加来增强该成分的功能的成分、或由于使玻璃化变得困难而只能少量地配合在熔融玻璃的原料组合物中然而会促进光催化作用的成分等。而且,本实施方式中,有时将在本工序中向粉碎玻璃中混合其他成分后的状态总称为“混合物”。在进行混合工序的情况下,在混合工序以后进行的各工序中,除了将未进行混合工序时的“粉碎玻璃”替换为“混合物”以外,可以同样地实施。(TO3和/或TW2的添加)本实施方式的制造方法也可以具有向粉碎玻璃中混合晶体状态的WO3和/或TW2 而制作混合物的工序。本实施方式的方法中,即使不混合晶体状态的WO3和/或TiO2,也可以由玻璃体生成WO3晶相。但是,通过将已经是晶体状态的WO3和/或TiO2添加到粉碎玻璃中,可以增加晶体的量,丰富地含有包含WO3晶体、乃至TiO2晶体的晶相,从而可以可靠地制造增强了光催化功能的玻璃陶瓷烧结体。晶体状态的WO3和/或TW2的混合量可以根据玻璃体的组成、制造工序的温度等, 以在玻璃陶瓷烧结体中生成所需的量的WO3晶体和/或TiA晶体的方式适当地设定。晶体状态的WO3和/或TW2的混合是任意的,然而如果晶体状态的wo3和/或TW2的添加量过小,则很难使玻璃陶瓷烧结体中的wo3晶体和/或TW2晶体的量丰富,如果添加量过多,则容易产生烧结变得困难等障碍。所以,所混合的晶体状态的wo3和/或T^2的量的下限以相对于混合物的质量比计优选为0. 5%,更优选为1%,最优选为3%。另一方面,所混合的晶体状态的WO3和/或TiA的量的上限以相对于混合物的质量比计优选为95%,更优选为 80%,最优选为60%。而且,在混合WO3晶体及TiA晶体二者的情况下,WO3晶体及TiA晶体的合计量优选为上述上限值及下限值的范围内。已知本工序中添加的WO3晶体具有立方晶系、正方晶系、斜方晶系、单斜晶系以及三斜晶系的晶体结构,然而只要具有光催化活性,无论是哪种晶体结构的都可以。另外,一般来说,在TiA晶体的晶型中,有锐钛、金红石、板钛矿这3种。其中,本工序中所用的晶体状态的TiO2可以是这3种当中的1种或2种以上,然而从光催化功能优异的方面考虑,优选为锐钛与板钛矿的组合,更优选为锐钛。对于添加到粉碎玻璃中的WO3晶体和/或TW2晶体的原料粒子尺寸,从提高光催化活性的观点考虑,越小越好。但是,如果原料粒子尺寸过小,则在烧结之时会与玻璃反应, 有可能无法保持晶体状态而消失。另外,如果原料粒子过于细小,则还会有制造工序中的处置变得困难的问题。另一方面,如果原料粒子尺寸过大,则容易以原料粒子的形态残留于最终产品中,难以获得所需的光催化特性的倾向变强。所以,原料粒子的尺寸优选为11 500nm的范围内,更优选为15 IOOnm的范围内,最优选为20 50nm的范围内。(非金属元素成分的添加)本实施方式的制造方法也可以具有将含有选自N成分、S成分、F成分、Cl成分、Br 成分以及C成分中的1种以上的添加物混合到所述的粉碎玻璃或混合物中的工序。这些非金属元素成分也可以在如前所述地制作玻璃体前的制作配合料或碎玻璃的阶段作为原料组合物的成分的一部分配合。但是,在制作玻璃体后将这些非金属元素成分混合到粉碎玻璃中的做法更容易导入,并且可以更为有效地发挥其功能,因此能够很容易地获得具有更高的光催化特性的玻璃陶瓷烧结体。
在添加非金属元素成分的情况下,其混合量可以根据玻璃体的组成等适当地设定。从充分地提高玻璃陶瓷烧结体的光催化功能的观点考虑,有效的做法是,作为非金属成分的合计,以相对于粉碎了的玻璃体或其混合物的质量比计优选添加0.01%以上,更优选添加0. 05%以上,最优选添加0. 以上。另一方面,如果过多地添加,则光催化特性容易降低,因此对于混合量的上限,作为非金属成分的合计,以相对于粉碎了的玻璃或其混合物的质量比计优选为20%,更优选为10%,最优选为5%。作为添加非金属元素成分时的原料,没有特别限定,然而N成分可以使用A1N3、 SiN4等,S成分可以使用NaS, Fe2S3> CaS2等,F成分可以使用ZrF4、AlF3、NaF、CaF2等,Cl成分可以使用NaCl、AgCl等,Br成分可以使用NaBr等,C成分可以使用TiC、SiC或ZrC等。 而且,这些非金属元素成分的原料既可以组合2种以上地添加,也可以单独地添加。(金属元素成分的添加)本实施方式的制造方法也可以具有向粉碎玻璃或混合物中混合包含选自Cu、Ag、 AU、Pd、RU、I h、Re以及Pt中的1种以上的金属元素成分的工序。这些金属元素成分也可以在如前所述地制作玻璃体之前的制作配合料或碎玻璃的阶段作为原料组合物的成分的一部分配合。但是,在制作玻璃体后将这些非金属元素成分混合到粉碎玻璃中的做法更容易导入,并且可以更为有效地发挥其功能,因此能够很容易地获得具有更高的光催化特性的玻璃陶瓷烧结体。在添加金属元素成分的情况下,其混合量可以根据玻璃体的组成等适当地设定。 从充分地提高玻璃陶瓷烧结体的光催化功能的观点考虑,有效的做法是,作为金属成分的合计,以相对于粉碎了的玻璃体或其混合物的质量比计优选添加0.001%以上,更优选添加
0.005%以上,最优选添加0. 01 %以上。另一方面,如果过多地添加,则光催化特性容易降低,因此对于混合量的上限,作为非金属成分的合计,以相对于粉碎了的玻璃或其混合物的质量比计优选为10%,更优选为5%,最优选为3%。而且,作为添加金属元素成分时的原料,没有特别限定,然而例如可以使用 CuO, Cu2O, Ag2O, AuC13、PtCl4, H2PtCl6, RuO2, RhCl3、 ReCl3、PdCl2等。而且,这些金属元素成分的原料既可以组合2种以上地添加,也可以单独地添加。金属元素成分的粒子直径或形状可以根据玻璃体的组成、WO3的量、晶型等适当地设定,然而为了最大限度地发挥玻璃陶瓷烧结体的光催化功能,金属元素成分的平均粒子直径越小越好。所以,金属元素成分的平均粒子直径的上限优选为5.0μπι,更优选为
1.0 μ μ m,最优选为 0. 1 μ m。[浆料化工序]本实施方式的制造方法由于在烧结工序中玻璃体的粒子熔合而牢固地结合,因此玻璃粒子自身担负有作为玻璃陶瓷烧结体的粘合剂的作用,然而也可以具有将粉碎玻璃或混合物分散到任意的流体中而制成浆料状态的工序(浆料化工序)。这样,成形工序中的成形就会变得容易。该工序是在粉碎工序或混合工序之后成形工序之前、或者可以与粉碎工序同时地进行的任意的工序。具体来说,可以通过向粉碎玻璃或混合物中优选添加有机 无机粘合剂和/或溶剂来制备浆料。作为有机粘合剂,例如可以使用作为冲压成形或橡胶冲压、挤出成形、注射成形用的成形助剂惯用的市售的粘合剂。具体来说,例如可以举出丙烯酸树脂、乙基纤维素、聚乙烯基缩丁醛、甲基丙烯酸树脂、聚氨酯树脂、甲基丙烯酸丁酯、乙烯基系的共聚物等。作为无机粘合剂,例如可以举出金属醇盐、硅酸钠、氧化铝(Al2O3 · IiH2O)等,从对光催化作用的耐久性方面考虑,优选无机粘合剂。对于相对于浆料来说的粘合剂的含有率的下限值,从可以充分地使成形容易化的方面考虑,优选为40质量%,更优选为30质量%,最优选为20质量%。作为溶剂,例如可以使用聚乙烯醇(PVA)、异丙醇(IPA)、丁醇、水等公知的溶剂, 然而从可以减轻环境负担的方面考虑,优选醇或水。另外,为了获得更为均勻的成形体,也可以并用适量的分散剂,为了提高干燥时的除泡效率,也可以并用适量的表面活性剂。作为分散剂,没有特别限定,例如可以举出甲苯、二甲苯、苯、己烷、环己烷等烃类、溶纤剂、卡必醇、四氢呋喃(THF)、二噁烷等醚类、丙酮、甲乙酮、甲基异丁基酮、环己酮等酮类、乙酸甲酯、 乙酸乙酯、乙酸正丁酯、乙酸戊酯等酯类等,它们可以单独使用,或者组合2种以上地使用。[脱脂工序]本实施方式的制造方法中,在粉碎玻璃(或混合物)含有有机粘合剂时,优选在烧结工序之前,作为任意的工序,包括将成形体加热到350°C以上的温度的脱脂工序。这样,由于粉碎玻璃(或混合物)中所含的有机粘合剂等被分解、气化而排出,因此可以从玻璃陶瓷烧结体中除去有机物。对于脱脂工序中的加热温度的下限,从可以充分地除去有机物的方面考虑,优选为350°C,更优选为400°C,最优选为450°C。虽然根据有机粘合剂的种类而不同,然而例如优选用2小时左右的时间来进行脱脂工序。脱脂工序优选与烧结工序相同,例如在煤气炉、微波炉、电炉等中一边更换空气一边进行。但是,并不限于该条件,例如也可以在惰性气体气氛、还原气体气氛、氧化气体气氛等中进行。[表面处理工序]本实施方式的制造方法也可以还具有对烧结了的玻璃陶瓷烧结体进行蚀刻等表面处理的工序(表面处理工序)。也就是说,该表面处理工序是可以在烧结工序之后进行的任意工序。蚀刻例如可以通过向酸性或碱性的溶液中浸渍玻璃陶瓷烧结体来实施。如果如此操作,就可以使玻璃相溶解而将玻璃陶瓷烧结体的表面设为凹凸状态、或为多孔的状态。 其结果是,WO3晶相的露出面积增加,因此可以获得更高的光催化活性。浸渍中所用的酸性或碱性的溶液只要是可以腐蚀玻璃陶瓷烧结体的WO3晶相以外的玻璃相等,就没有特别限定,例如可以使用含有氟或氯的酸(氢氟酸、盐酸等)。另外,作为蚀刻的其他的方法,例如也可以通过向玻璃陶瓷烧结体的表面吹送氟化氢气体、氯化氢气体、氢氟酸、盐酸等来进行蚀刻。利用以上的方法制造的玻璃陶瓷烧结体由于在其内部及表面均勻地析出具有光催化活性的WO3晶相,因此具有优异的光催化活性和可见光响应性,并且耐久性也很优异。 所以,不会有像仅在基材的表面设置光催化层的以往技术的光催化功能性构件那样因光催化层剥离而丧失光催化活性的情况。另外,假使表面受到切削而露出存在于内部的WO3晶相,也可以维持光催化活性。另外,本实施方式的玻璃陶瓷烧结体是经由粉碎玻璃的形态制造,因此加工大小或形状等时的自由度高,可以加工成要求光催化功能的各种物品。[玻璃陶瓷烧结体的组成]构成玻璃陶瓷烧结体的各成分的含量优选为,即使在向原料的玻璃粉体中加入各种添加物而烧结后,也是与上述的原料玻璃体的组成相同的范围内。这样,就可以对玻璃陶瓷烧结体赋予优异的光催化特性及耐久性。具体来说,玻璃陶瓷烧结体以氧化物换算组成的摩尔%计,以10 95%的范围含有氧化钨成分,以5 60%的范围含有P2O5成分、化03 成分、SiO2成分、以及G^2成分中的至少1种以上的成分。此外,玻璃陶瓷烧结体以氧化物换算组成的摩尔%计,还含有0 60%的TiO2成分、和/或0 50%的碱金属氧化物成分和/或碱土类金属氧化物成分、和/或0 50%的Ma0b(式中,M是选自Nb、Ta及Mo中的1种以上。a及b是满足a b =2 (M的化合价)的最小的自然数。这里,Nb的化合价为5,Ta的化合价为5,Mo的化合价为6。)成分、和/或0 20%的(OJ式中,M1是选自& 及Sn中的1种以上。c及d是满足c d = 2 (M1的化合价)的最小的自然数。这里,Zr的化合价为4,Sn的化合价为2。)成分、和 /或0 50%的M2203 (式中,M2是选自Al、fei&h中的1种以上。)成分、和/或0 30% 的 Ln2O3 (式中,Ln 是选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb以及Lu中的1种以上。)、和/或0 10%的M3e0f(式中,M3是选自V、Cr、Mn、Fe、Co及Ni中的1种以上。e及f是满足e f = 2 (M3的化合价)的最小的自然数。这里,V的化合价为5,Cr的化合价为 3,Mn的化合价为2,Fe的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/或0 20%的Bi2O3成分+TeR成分、和/或0 5 %的Aii2O3成分+SId2O3成分各成分,以相对于氧化物换算组成的总质量的外分比质量%计,含有15%以下的选自N成分、S成分、F成分、Cl成分、Br成分、以及C成分中的至少1 种以上的非金属元素成分、和/或10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1种金属元素成分。〈光催化功能性构件〉利用以上的方法制造的玻璃陶瓷烧结体作为光催化功能性构件,在因暴露于外部环境中并附着有机物等而受到污染、或在易于悬浮霉菌的气氛等中使用的机械、装置、器具等中十分有用。例如,通过将本实施方式的玻璃陶瓷烧结体作为光催化功能性构件用作瓷砖、窗框、灯、建材等的构成构件,就可以使这些构件具有光催化功能。<亲水性构件>另外,利用上述方法制造的玻璃陶瓷烧结体作为亲水性构件也十分有用。例如,通过将本实施方式的玻璃陶瓷烧结体作为亲水性构件用于建筑用面板、瓷砖、窗户等的构成构件中,就可以使这些构件具有自清洁功能。如上所述,根据本实施方式的方法,可以制造含有具备可见光响应性的光催化活性的WO3晶相并且具有足够的耐久性的玻璃陶瓷烧结体。由于在玻璃陶瓷烧结体的内部及表面,均勻地存在WO3晶相,因此具有优异的光催化活性和可见光响应性。另外,本实施方式的方法中,可以在粉碎玻璃的阶段设置混合任意成分的混合工序,该情况下,可以很容易地增加以光催化成分为主的特定的成分而大幅度增强光催化活性。此外,由于玻璃陶瓷烧结体是经由粉碎玻璃制造的,因此可以根据用途高自由度地设计其形状。另外,本实施方式的方法中,由于利用原料的配合组成和热处理温度的控制由玻璃相生成呈现出光催化活性的晶体,因此不一定需要易于凝聚而难以处置的纳米尺寸的光催化剂的晶体材料,也不需要使用特殊的设备。所以,根据本实施方式的方法,能够以工业化的规模很容易地制造具备优异的光催化活性和可见光响应性、例如作为光催化功能性构件或亲水性构件等在各种用途中十分有用的玻璃陶瓷烧结体。第三实施方式玻璃陶瓷复合体及其制造方法下面,对本实施方式的第三实施方式的玻璃陶瓷复合体及其制造方法进行说明。 本实施方式中,所谓玻璃陶瓷复合体(以下有时记作“复合体”),是具备通过将玻璃热处理使之生成晶相而得的玻璃陶瓷层、和基材的材料。复合体的玻璃陶瓷层至少含有包含氧化钨和/或其固溶体的晶相(WO3晶相)。也就是说,本实施方式的玻璃陶瓷复合体包含第一实施方式的玻璃陶瓷。<玻璃陶瓷复合体的制造方法>本实施方式的玻璃陶瓷复合体的制造方法具有将由原料组合物得到的粉碎玻璃在基材上烧成而形成至少含有WO3晶相的玻璃陶瓷层的工序(烧成工序)。本实施方式的方法的优选的方式中,可以包括通过熔融原料组合物并玻璃化而制成玻璃体的玻璃化工序、 粉碎玻璃体而制作粉碎玻璃的粉碎工序、以及通过将粉碎玻璃在基材上烧成而形成玻璃陶瓷层的烧成工序。而且,本实施方式中所说的“粉碎玻璃”是通过将由原料组合物得到的玻璃体粉碎而得的材料,包含i)非晶体状态的玻璃的粉碎物、ii)将具有晶相的玻璃陶瓷粉碎而得的粉碎物、iii)在玻璃的粉碎物中析出晶相的材料这三个意思。即,“粉碎玻璃”有具有晶相的情况和不具有晶相的情况。在粉碎玻璃具有晶相的情况下,既可以通过在热处理玻璃体而析出晶相后将其粉碎来制造,也可以通过在粉碎玻璃体后进行热处理而使粉碎玻璃中析出晶相来制造。而且,在“粉碎玻璃”不含有晶相的情况下,可以通过将粉碎玻璃配置于基材上,控制烧成温度,来析出晶相。将如上所述地使玻璃中析出晶相的热处理称作“结晶化处理”。这里,结晶化处理例如可以在(a)玻璃化工序后·粉碎工序前、(b)粉碎工序后·烧成工序前、(c)与烧成工序同时的各时刻实施。其中,从玻璃陶瓷层的烧结容易而不需要粘合剂、借助过程的简化而提高生产能力、节能等观点考虑,优选上述(c)的与烧成工序同时地在烧成中进行结晶化处理。但是,在作为构成复合体的基材使用耐热性低的材料的情况下,优选在上述(a)玻璃化工序后 粉碎工序前、或(b)粉碎工序后 烧成工序前的时刻进行结晶化。下面,对各工序的详细情况进行说明。而且,对于与第一及第二实施方式相同的内容,适当地省略说明。[玻璃化工序]玻璃化工序可以与第二实施方式的玻璃化工序同样地实施。这里,用于制作玻璃体的原料组合物被制备成,所得的玻璃体以氧化物换算组成的摩尔%计,例如含有10 95%的氧化钨成分,还含有5 60%的I32O5成分、B2O3成分、SW2成分、以及GeR成分中的至少1种以上的成分。
另外,原料组合物优选使用如下所示地制备的物质,S卩,除了上述WO3成分、以及 P2O5成分、B2O3成分、SiO2成分及GeA成分中的至少1种以上的成分以外,所得的玻璃体以氧化物换算组成的摩尔%计,还含有0 60%的 TiO2 成分、0 50%的碱金属氧化物成分和/或碱土类金属氧化物成分、和/或0 50%的Ma0b(式中,M是选自Nb、Ta及Mo中的1种以上。a及b是满足a b =2 M的化合价的最小的自然数。这里,Nb的化合价为5,Ta的化合价为5,Mo的化合价为6。)成分、和/或0 20%的(OJ式中,M1是选自& 及Sn中的1种以上。c及d是满足c d = 2 M1的化合价的最小的自然数。这里,Zr的化合价为4,Sn的化合价为2。)成分、和/ 或0 50%的M2203 (式中,M2是选自Al、fei&h中的1种以上。)成分、和/或0 30% 的 Ln2O3 (式中,Ln 是选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb以及Lu中的1种以上。)、和/或0 10%的M3e0f(式中,M3是选自V、Cr、Mn、Fe、Co及Ni中的1种以上。e及f是满足e f = 2 M3的化合价的最小的自然数。这里,V的化合价为5,Cr的化合价为3, Mn的化合价为2,Fe的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/或0 20%的Bi2O3成分+TeO2成分、和/或0 5 %的Aii2O3成分+SID2O3成分各成分,以相对于所述玻璃体的氧化物换算组成的总质量的质量%计,含有15%以下的选自N成分、S成分、F成分、Cl成分、Br成分、以及C成分中的至少1 种以上的非金属元素成分、和/或10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1种金属元素成分。本实施方式中,上述方面以外的、构成玻璃体的各成分的内容、组成范围及配合目的与第一实施方式相同,因此在这里引用第一实施方式的[组成]一栏中说明的内容而省略说明。[粉碎工序]粉碎工序中,将玻璃体粉碎而制作粉碎玻璃。通过制作粉碎玻璃,而将玻璃体的粒径变得比较小,因此易于应用到基材上。另外,通过制成粉碎玻璃,就很容易混合其他的成分。粉碎玻璃的粒子直径或形状可以根据基材的种类以及对复合体要求的表面特性等来适当地设定。具体来说,如果粉碎玻璃的平均粒子直径过大,则很难在基材上形成所需形状的玻璃陶瓷层,因此平均粒子直径越小越好。所以,粉碎玻璃的平均粒子直径的上限优选为 100 μ m,更优选为50 μ m,最优选为10 μ m。而且,粉碎玻璃的平均粒子直径例如可以使用利用激光衍射散射法测定时的D50(累计50%直径)的值。具体来说,可以使用利用日机装株式会社的粒度分布测定装置MICR0TRAC(MT3300EXII)测定的值。而且,玻璃体的粉碎方法没有特别限定,然而例如可以使用球磨机、喷射式粉碎机等来进行。[烧成工序]烧成工序中,通过将粉碎玻璃配置于基材上后加热而进行烧成,来制作复合体。这CN 102421718 A
说明书
29/74 页
样,就在基材上形成含有WO3晶相的玻璃陶瓷层。这里,烧成工序的具体的步骤没有特别限定,然而可以包括将粉碎玻璃配置于基材上的工序、将配置于基材上的粉碎玻璃慢慢地升温到设定温度的工序、将粉碎玻璃以设定温度保持一定时间的工序、将粉碎玻璃慢慢地冷却到室温的工序。(向基材上的配置)本实施方式的制造方法中,将粉碎玻璃配置于基材上。这样,就可以对种类范围更宽的基材赋予光催化特性及亲水性。这里所用的基材的材质没有特别限定,然而从容易与含有WO3晶体的玻璃陶瓷复合化的方面考虑,例如优选使用玻璃、陶瓷等无机材料或金属寸。在将粉碎玻璃配置于基材上时,优选将含有粉碎玻璃的浆料以规定的厚度·尺寸配置于基材上。这样,就可以在基材上很容易地形成具有光催化特性的玻璃陶瓷层。这里, 所形成的玻璃陶瓷层的厚度可以根据复合体的用途适当地设定。可以宽范围地设定玻璃陶瓷层的厚度也是本实施方式的方法的特长之一。从使玻璃陶瓷层不剥落而具有足够的耐久性的观点考虑,其厚度例如优选为500 μ m以下,更优选为200 μ m以下,最优选为100 μ m以下。作为将浆料配置于基材上的方法,例如可以举出刮刀法或砑光法、旋涂法或浸涂法等涂布法、喷墨、Bubblejet (注册商标)、胶版等印刷法、模具涂覆法、喷雾法、注射成形法、挤出成形法、压延法、冲压成形法、辊轧成形法等。而且,作为将粉碎玻璃配置于基材上的方法,并不限于上述的使用浆料的方法,也可以将粉碎玻璃的粉末直接放置于基材上。另外,在配置于基材上的粉碎玻璃因热处理而已经含有晶体的情况下,也可以根据其结晶度,与有机或无机粘合剂成分混合,或者在其与基材之间夹设粘合剂层地配置。该情况下,从对于光催化作用的耐久性的方面考虑,作为粘合剂优选无机粘合剂。(烧成)烧成工序中的烧成的条件可以根据构成粉碎玻璃的玻璃体的组成、所混合的添加物的种类及量等适当地设定。具体来说,对于烧成时的气氛温度,可以根据配置于基材上的粉碎玻璃的状态进行后述的两种控制。第一烧成方法是在配置于基材上的粉碎玻璃中已经生成所需的WO3晶相的情况, 例如可以举出对玻璃体或粉碎玻璃实施了结晶化处理的情况。该情况下的烧成温度可以在考虑基材的耐热性的同时在1100°c以下的温度范围中适当地选择,然而如果烧成温度超过 1100°C,则所生成的WO3晶相容易转化为其他的晶相。所以,烧成温度的上限优选为1100°C, 更优选为1050°c,最优选为1000°C。第二烧成方法是配置于基材上的粉碎玻璃尚未被结晶化处理,因而不具有WO3晶相的情况。该情况下需要与烧成同时地进行玻璃的结晶化处理。如果烧成温度过低,则无法获得具有所需的晶相的烧结体,因此需要至少比玻璃体的玻璃化转变温度(Tg)高的温度下的烧成。具体来说,烧成温度的下限为玻璃体的玻璃化转变温度(Tg),优选为Tg+50°C, 更优选为Tg+100°c,最优选为Tg+150°C。另一方面,如果烧成温度过高,则WO3晶相减少, 从而有光催化特性消失的倾向,因此烧成温度的上限优选为玻璃体的Tg+600°c,更优选为 Tg+500°C,最优选为 Tg+450°C。另外,烧成时间需要根据玻璃的组成或烧成温度等来设定。如果降低升温速度,则
32也有只要加热到热处理温度即可的情况,然而在作为目标来说是较高温度的情况下,优选设定为短时间,在较低温度的情况下,优选设定为长时间。具体来说,从使晶体生长到一定程度并且析出足够量的晶体的方面考虑,优选以3分钟、更优选为以5分钟、最优选以10分钟为下限。另一方面,如果热处理时间超过M小时,则目标的晶体变得过大、或生成其他的晶体而有可能无法获得足够的光催化特性。所以,烧成时间的上限优选为M小时,更优选为19小时,最优选为为18小时。而且,这里所说的烧成时间,是指烧成工序当中烧成温度被保持一定(例如上述设定温度)以上的期间的长度。烧成工序例如优选在煤气炉、微波炉、电炉等中一边更换空气一边进行。但是,并不限于该条件,例如也可以在惰性气体气氛、还原气体气氛、氧化气体气氛等中进行。本实施方式中,由于构成利用烧成工序形成的玻璃陶瓷层的各成分的内容、组成范围及配合目的与第一实施方式相同,因此在这里引用第一实施方式的[组成]一栏中说明过的内容而省略说明。另外,由于本实施方式的玻璃陶瓷层的物性与第一实施方式相同, 因此在这里引用第一实施方式的[物性]一栏中说明过的内容而省略说明。[结晶化工序]本实施方式的制造方法中,在玻璃化工序后 粉碎工序前、或粉碎工序后 烧成工序前的时刻进行结晶化处理的情况下,可以分别作为独立的工序(结晶化工序)来实施。如上所述,结晶化处理的目的是对玻璃体或粉碎玻璃实施热处理而使内部析出晶体。由于利用结晶化处理,在玻璃体或粉碎玻璃的内部及表面析出WO3晶相,因此可以使玻璃陶瓷层中可靠地含有WO3晶相。热处理的条件(温度、时间)可以根据玻璃体的组成、所必需的结晶化的程度等适当地设定。具体来说,热处理温度的下限为玻璃体的玻璃化转变温度(Tg),优选为Tg+10°C, 更优选为Tg+20°C,最优选为Tg+30°C。另一方面,如果温度过高,则WO3晶相减少的倾向就会变强,因此光催化特性容易消失。所以,热处理中的温度的上限优选为玻璃体的 Tg+600°C,更优选为Tg+500°C,最优选为Tg+450°C。用于结晶化的热处理的时间与上述烧成工序相同。而且,在与烧成工序同时地进行结晶化处理的情况下,通过如上所述,使用在内部及表面未析出晶体的粉碎玻璃,并且将烧成工序中的烧成温度控制为可以结晶化的温度, 就可以从玻璃相中析出所需的晶体。[混合工序]本实施方式的制造方法可以包括通过向粉碎玻璃中混合任意的成分来增加该成分的混合工序。该工序可以在粉碎工序之后、烧成工序之前进行。由于该混合工序可以与第二实施方式的混合工序同样地实施,因此在这里引用第二实施方式的[混合工序]一栏中说明过的内容而省略说明。[浆料化工序]本实施方式的制造方法也可以具有将粉碎玻璃或混合物分散于任意的流体中而制成浆料状态的工序(浆料化工序)。这样,就可以使配置于基材上的工序容易化。具体来说,可以优选通过向粉碎玻璃或混合物中添加溶剂来制备料浆。另外,本实施方式的制造方法由于在烧成工序中玻璃体的粒子熔合而牢固地结合,因此玻璃粒子自身担负有作为玻璃陶瓷的粘合剂的作用,然而在配置于基材上时的粉碎玻璃的结晶度高的情况下,由于玻璃自身的作为粘合剂的功能有变弱的倾向,因此也可以添加有机或无机粘合剂。作为有机粘合剂,例如可以使用作为冲压成形或橡胶冲压、挤出成形、注射成形用的成形助剂惯用的市售的粘合剂。具体来说,例如可以举出丙烯酸树脂、乙基纤维素、聚乙烯基缩丁醛、甲基丙烯酸树脂、聚氨酯树脂、甲基丙烯酸丁酯、乙烯基系的共聚物等。作为无机粘合剂,例如可以举出金属醇盐、硅酸钠、氧化铝(Al2O3 ·ηΗ20)等。它们可以在加热固化的情况下、和在常温附近固化的情况下分开使用。对于相对于浆料来说的粘合剂的含有率的下限值,从可以充分地使成形容易化的方面考虑,优选为40质量%,更优选为30质量%, 最优选为20质量%。作为溶剂,例如可以使用聚乙烯醇(PVA)、异丙醇(IPA)、丁醇、水等公知的溶剂, 然而从可以减轻环境负担的方面考虑,优选醇或水。另外,为了获得更为均勻的成形体,也可以并用适量的分散剂,为了提高干燥时的除泡效率,也可以并用适量的表面活性剂。作为分散剂,没有特别限定,然而例如可以举出甲苯、二甲苯、苯、己烷、环己烷等烃类、溶纤剂、 卡必醇、四氢呋喃(THF)、二噁烷等醚类、丙酮、甲乙酮、甲基异丁基酮、环己酮等酮类、乙酸甲酯、乙酸乙酯、乙酸正丁酯、乙酸戊酯等酯类等,它们可以单独使用,或者组合2种以上地使用。[脱脂工序]本实施方式的制造方法中,在粉碎玻璃(或混合物)含有有机粘合剂时,优选在烧成工序之前,作为任意的工序,包括将成形体加热到350°C以上的温度的脱脂工序。这样,由于粉碎玻璃(或混合物)中所含的有机粘合剂等被分解、气化而排出,因此可以从玻璃陶瓷层中除去有机物。对于脱脂工序中的加热温度的下限,从可以充分地除去有机物的方面考虑,优选为350°C,更优选为4000C,最优选为450°C。虽然根据有机粘合剂的种类而不同,然而例如优选用2小时左右的时间来进行脱脂工序。脱脂工序优选与烧成工序相同,例如在煤气炉、微波炉、电炉等中一边更换空气一边进行。但是,并不限于该条件,例如也可以在惰性气体气氛、还原气体气氛、氧化气体气氛等中进行。[表面处理工序]本实施方式的制造方法也可以还具有对烧成了的复合体、特别是复合体的玻璃陶瓷层进行蚀刻等表面处理的工序(表面处理工序)。本实施方式的表面处理工序可以与第二实施方式的表面处理工序相同地实施,因此在这里引用第二实施方式的[表面处理工序]一栏中说明过的内容而省略说明。利用以上的方法制造的玻璃陶瓷复合体由于在玻璃陶瓷层的内部及表面均勻地析出具有光催化活性的WO3晶相,因此具有优异的光催化活性和可见光响应性,并且耐久性也很优异。另外,由于本实施方式的玻璃陶瓷复合体的玻璃陶瓷层是经由粉碎玻璃的形态制造的,因此根据基材的形状来加工大小或形状等时的自由度高,可以加工成要求光催化功能的各种物品。[玻璃陶瓷层的组成]在本实施方式的玻璃陶瓷复合体中,构成玻璃陶瓷层的各成分的含量优选为,即使在向原料的玻璃粉体中加入各种添加物而烧结后,也是与上述的原料玻璃体的组成相同的范围内。这样,就可以对玻璃陶瓷层赋予优异的光催化特性、与基材的密合性及耐久性。具体来说,玻璃陶瓷层以氧化物换算组成的摩尔%计,以10 95%的范围含有氧化钨成分,以5 60%的范围含有P2O5成分、B2O3成分、SW2成分、以及GeA成分中的至少1种以上的成分。此外,玻璃陶瓷复合体以氧化物换算组成的摩尔%计,还含有0 60%的TiO2成分、和/或0 50%的碱金属氧化物成分和/或碱土类金属氧化物成分、和/或0 50%的Ma0b(式中,M是选自Nb、Ta及Mo中的1种以上。a及b是满足a b =2 (M的化合价)的最小的自然数。这里,Nb的化合价为5,Ta的化合价为5,Mo的化合价为6。)成分、和/或0 20%的(OJ式中,M1是选自& 及Sn中的1种以上。c及d是满足c d = 2 (M1的化合价)的最小的自然数。这里,Zr的化合价为4,Sn的化合价为2。)成分、和 /或0 50%的M2203 (式中,M2是选自Al、fei&h中的1种以上。)成分、和/或0 30% 的 Ln2O3 (式中,Ln 是选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb以及Lu中的1种以上。)、和/或0 10%的M3e0f(式中,M3是选自V、Cr、Mn、Fe、Co及Ni中的1种以上。e及f是满足e f = 2 (M3的化合价)的最小的自然数。这里,V的化合价为5,Cr的化合价为 3,Mn的化合价为2,Fe的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/或0 20%的Bi2O3成分+TeR成分、和/或0 5 %的Aii2O3成分+SId2O3成分各成分,以相对于氧化物换算组成的总质量的外分比质量%计,含有15%以下的选自N成分、S成分、F成分、Cl成分、Br成分、以及C成分中的至少1 种以上的非金属元素成分、和/或10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1种金属元素成分。<光催化功能性构件>玻璃陶瓷复合体例如作为光催化功能性构件,在因暴露于外部环境中并附着有机物等而受到污染、或在易于悬浮霉菌的气氛等中使用的机械、装置、器具等中十分有用。例如,通过将本实施方式的玻璃陶瓷复合体作为光催化功能性构件用于瓷砖、窗框、灯、建材等的构成构件中,就可以使之具有光催化功能。<亲水性构件>另外,玻璃陶瓷复合体作为亲水性构件也十分有用。例如,通过将本实施方式的玻璃陶瓷复合体作为亲水性构件用于例如建筑用面板、瓷砖、窗户等的构成构件中,就可以使这些构件具有自清洁功能。如上所述,根据本实施方式的方法,可以制造如下的玻璃陶瓷复合体,S卩,在基材上形成了含有具备可见光响应性的光催化活性的氧化钨的晶体并且具有足够的耐久性的玻璃陶瓷层。该玻璃陶瓷层因玻璃自身的粘合剂效应而与基材的密合性高。此外,由于在玻璃陶瓷层的内部及表面,均勻地存在WO3晶相,因此具有优异的光催化活性和可见光响应性。另外,本实施方式的方法中,可以在粉碎玻璃的阶段设置混合任意成分的混合工序, 该情况下,可以很容易地使以光催化成分为主的特定的成分丰富化而大幅度增强光催化活性。此外,所制造的玻璃陶瓷复合体的厚度或形状可以根据用途或基材的形状高自由度地设计。另外,本实施方式的方法中,由于利用原料的配合组成和热处理温度的控制由玻璃相生成呈现出光催化活性的晶相,因此不一定需要易于凝聚而难以处置的纳米尺寸的光催化剂的晶体材料,也不需要使用特殊的设备。所以,根据本实施方式的方法,能够以工业化的规模很容易地制造具备优异的光催化活性和可见光响应性、例如作为光催化功能性构件或亲水性构件等在各种用途中十分有用的玻璃陶瓷复合体。第四实施方式玻璃粉粒体本实施方式的玻璃粉粒体在玻璃内含有具有光催化特性的晶体,或者是可以通过受到加热而在玻璃内生成所述晶体的材料。该晶体均勻分散于构成玻璃粉粒体的非晶体的玻璃的内部及表面地存在或生成。在“玻璃粉粒体”含有晶体的情况下,玻璃粉粒体具有光催化特性。此种玻璃粉粒体可以通过如下操作来获得,即,在将由原料组合物得到的玻璃体粉碎后使之结晶化,或者在将由原料组合物得到的玻璃体热处理而使之结晶化后加以粉碎。本实施方式中,有时将像这样含有晶体的玻璃粉粒体记作“玻璃陶瓷粉粒体”。另一方面,在“玻璃粉粒体”不含有晶体的情况下,玻璃粉粒体不具有光催化特性,可以通过加热玻璃粉粒体而使之析出晶体。 本实施方式中,有时将像这样可以利用热处理生成具有光催化特性的晶体的玻璃粉粒体记作“未结晶化玻璃粉粒体”。在简称为玻璃粉粒体时,是以包含“玻璃陶瓷粉粒体”和“未结晶化玻璃粉粒体” 二者的意思。[玻璃陶瓷粉粒体]下面,对本实施方式的玻璃陶瓷粉粒体的组成进行说明。用于制作玻璃陶瓷粉粒体的原料组合物优选使用如下所示地制备的物质,s卩,所得的玻璃体以相对于氧化物换算组成的总质量的摩尔%计,含有10 95%的WO3成分以及TiO2成分中的至少1种以上、和/或5 60%的P2O5成分、化03成分、SW2成分以及GeR成分中的至少1种以上的成分、和/或0 30%的Al2O3成分、和/或0 30 %的gei2o3成分、和/或0 10%的In2O3成分、和/或0 20 %的^O2成分、和/或0 10%的SnO成分、和/或0 40 %的Li2O成分、和/或0 40 %的nei2o成分、和/或0 40 %的K2O成分、和/或0 10%的Rb2O成分、和/或0 10%的Cs2O成分、和/或0 40%的MgO成分、和/或0 40 %的CaO成分、和/或0 40 %的SrO成分、和/或
0 40 %的BaO成分、和/或0 50 %的Nb2O5成分、和/或0 50 %的tei2o5成分、和/或0 50 %的MoO3成分、和/或0 50 %的SiO成分、和/或0 20%的Bi2O3成分、和/或0 20 %的1^ 成分、和/或合计0 30%的 Ln2O3 成分(式中,Ln 是选自 k、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、 Tb、Dy、Ho、Er、Tm、Yb以及Lu中的1种以上。)、和/或合计0 10%的M3eOf成分(式中,M3是选自V、Cr、Mn、Fe、Co及Ni中的1种以上。e及f是分别满足e f = 2 M3的化合价的最小的自然数。这里,V的化合价为5, Cr的化合价为3,Mn的化合价为2 Je的化合价为3,Co的化合价为2,M的化合价为2。)、 和/或合计0 5 %的As2O3成分和/或Sb2O3成分、和/或以相对于氧化物基准的玻璃总质量的质量比计为0 15%的选自F、Cl、Br、S、N 以及C中的至少1种以上的成分、和/或以相对于氧化物基准的玻璃总质量的质量比计为0 10%的选自Cu、Ag、Au、Pd、 Ru、Rh, Re以及Pt中的至少1种金属粒子。本实施方式的玻璃陶瓷粉粒体优选相对于氧化物换算组成的总物质量,以摩尔% 计在10 95%的范围内含有WO3成分、以及TiO2成分中的至少1种以上。特别是,通过将 WO3成分、以及TW2成分的合计量为10%以上,就可以获得足够的光催化活性,并且通过为 95%以下,就可以获得玻璃的稳定性。所以,相对于氧化物换算组成的总物质量来说的合计量(W03+Ti02)以摩尔%计优选以10%、更优选以15%、最优选以20%为下限,优选以95%、 更优选以80%、最优选以75%为上限。另外,单独地含有WO3成分、或TiO2成分时的WO3成分、或TiO2成分的含量以相对于氧化物换算组成的总物质量的摩尔%计,优选以10%、更优选以15%、最优选以20%为下限,优选以95%、更优选以80%、最优选以75%为上限。本实施方式的玻璃陶瓷粉粒体优选在晶相中含有包含W03、TiO2、它们的固溶体中的1种以上的晶体。另外,更优选在晶相中还含有包含TiP2o7、以及(TiO)2P2O7中的1种以上的晶体。另外,TiO2晶体更优选为锐钛(Anatase)型或板钛矿(Brookite)型的晶体。通过含有这些晶体,玻璃陶瓷粉粒体就可以具有很高的光催化功能。本实施方式中,上述方面以外的、构成玻璃粉粒体的各成分的内容、组成范围及配合目的与第一实施方式相同,因此在这里引用第一实施方式的[组成]一栏中说明的内容而省略说明。另外,本实施方式中,玻璃陶瓷粉粒体的物性与第一实施方式相同,因此在这里引用第一实施方式的[物性]一栏中说明过的内容而省略说明。[未结晶化玻璃粉粒体]本实施方式的未结晶化玻璃粉粒体由于利用加热(热处理)生成晶相,因此具有与上述玻璃陶瓷粉粒体实质上相同的组成范围。该未结晶化玻璃粉粒体是如下的潜在性的光催化功能性坯料,即,例如在通过制成浆料状混合物向任意的基材等上涂布等而应用后,或在作为固化成形物成形后(也就是在涂膜形成物或固化形成物的阶段)实施热处理,很容易析出具有光催化特性的晶体。由于未结晶化玻璃粉粒体还不具备光催化活性,因此在保管或处置的便利性方面优异。具体来说,例如即使与任意的有机物接触、或者在与有机物混合的状态下保存,也不用担心因光催化活性而将该有机物分解。另外,由于还不具备光催化活性,因此也不用担心在保存中因晶体结构变化等而丧失或降低光催化活性。此外,通过在应用于基材等上之前不久,或在涂膜形成物或固化成形物的阶段(也就是产品化的阶段)进行热处理而使光催化剂的晶体析出,就可以对产品赋予总是稳定的光催化功能。(玻璃粉粒体粒子)本实施方式的玻璃粉粒体(玻璃陶瓷粉粒体及未结晶化玻璃粉粒体)的粒径或形状可以根据其用途等适当地设定。为了发挥足够的光催化活性,平均粒径越小越好,形状越接近球形越好。并非意图特别地加以限定,如果要举出优选的平均粒径的范围,例如为 0. 05 μ m 5000 μ m的范围内。例如,在将玻璃粉粒体配合到涂料中而制成光催化功能性涂料的情况下,为了获得在涂料中的分散性和具有足够的光催化特性,例如优选为0. 05 80 μ m的平均粒径。另外,在将玻璃粉粒体与适当的溶剂等流体混合而制成浆料状混合物的情况下,例如优选为 0. 05 300 μ m的平均粒径。另外,在将玻璃粉粒体利用烧结等方法固化成形而制成光催化功能性构件的情况下,例如优选为0. 1 2000 μ m的平均粒径。如果玻璃粉粒体的粒度分布宽而存在大的粒子,就无法获得均一性或致密性,有可能在材料内的结构中出现差别。由此,优选减少玻璃陶瓷粉粒体中所含的极端大于平均粒径的粒子。所以,在具有上述各平均粒径的玻璃粉粒体中,玻璃粉粒体的最大粒径优选为平均粒径的10倍以下,更优选为5倍以下,最优选为3倍以下。而且,平均粒径越大、与最大粒径的差越小越好。根据玻璃粉粒体的用途,也有可能使用mm单位的大粒径的玻璃粉粒体。通过由大的粒子来制作具有通孔的烧结体,例如还可以应用在过滤材料(过滤器)、或喷泉等中所用的建材等中。而且,玻璃粉粒体的平均粒径例如可以使用利用激光衍射散射法测定时的 D50(累计50%直径)的值。具体来说,可以使用利用日机装株式会社的粒度分布测定装置 MICROTRAC (MT3300EXII)测定的值。而且,在玻璃粉粒体的最小直径超过2000 μ m的情况下,可以用JIS A120中规定的筛分析法来求出平均粒径。<玻璃粉粒体的制造方法>下面,对本实施方式的玻璃粉粒体的制造方法,分成玻璃陶瓷粉粒体和未结晶化玻璃粉粒体来进行说明。而且,本实施方式的玻璃粉粒体的制造方法可以包含以下说明的工序以外的任意的工序。(1)玻璃陶瓷粉粒体的制造方法虽然没有特别限定,然而玻璃陶瓷粉粒体可以利用以下的2种方法来制造。制造方法Al 该制造方法Al可以具有通过将原料组合物熔融并玻璃化而制作玻璃体的玻璃化工序、对玻璃体实施热处理而制作玻璃陶瓷的结晶化工序、将玻璃陶瓷粉碎而制作玻璃
38陶瓷粉粒体的粉碎工序。[玻璃化工序]玻璃化工序中,通过将规定的原料组合物熔融并玻璃化,来制作玻璃体。具体来说,向包含钼或耐火物的容器中投入原料组合物,通过将原料组合物加热到高温而熔融。使由此得到的熔融玻璃流出,通过适当地加以冷却,形成玻璃化了的玻璃体。熔融及玻璃化的条件没有特别限定,可以根据原料组合物的组成及量等适当地设定。另外,玻璃体的形状没有特别限定,例如也可以是板状、粒状等。熔融的温度和时间随着玻璃的组成而不同,然而例如分别优选为1200 16500C U 24小时的范围。[结晶化工序]结晶化工序中,对玻璃体实施热处理,制作玻璃陶瓷。由于利用结晶化工序,在玻璃体的内部及表面析出包含WO3晶体和/或TiO晶体的晶相,因此可以在其后使玻璃粉粒体中可靠地含有包含WO3晶体和/或TiO晶体的晶相。热处理的条件(温度、时间)可以根据玻璃体的组成、所必需的结晶化的程度等适当地设定。具体来说,热处理温度的下限为玻璃体的玻璃化转变温度(Tg),优选为Tg+10°C,更优选为Tg+20°C,最优选为Tg+30°C。另一方面,如果温度过高,则析出目标以外的未知相的倾向就会变强,因此光催化特性容易消失。所以,热处理中的温度的上限优选为玻璃体的Tg+600°C,更优选为Tg+500°C,最优选为 Tg+450°C。另外,该工序中,由于升温速度对晶体尺寸造成很大的影响,因此根据组成或热处理温度恰当地加以控制十分重要。另外,用于结晶化的热处理时间需要根据玻璃的形状或热处理温度等来设定。如果降低升温速度,则也有只要加热到热处理温度即可的情况,然而在作为目标来说是较高温度的情况下,优选设定为短时间,在较低温度的情况下,优选设定为长时间。具体来说,从使晶体生长到一定程度并且析出足够量的晶体的方面考虑,优选以3分钟、更优选为以5分钟、最优选以10分钟为下限。另一方面,如果热处理时间超过M小时,则目标的晶体变得过大、或生成其他的晶体而有可能无法获得足够的光催化特性。所以,烧成时间的上限优选为M小时,更优选为19小时,最优选为为18小时。[粉碎工序]粉碎工序中,将玻璃陶瓷粉碎而制作玻璃陶瓷粉粒体。而且,玻璃的粉碎方法没有特别限定,然而例如可以使用球磨机、喷射式粉碎机等来进行。另外,也可以在改变粉碎机的种类的同时进行粉碎工序,直至达到目标的粒径为止。制造方法A2 制造方法A2可以具有通过将原料组合物熔融并玻璃化而制作玻璃体的玻璃化工序、将玻璃体粉碎而制作未结晶化玻璃粉粒体的粉碎工序、对未结晶化玻璃粉粒体实施热处理而制作玻璃陶瓷粉粒体的结晶化工序。[玻璃化工序]玻璃化工序通过将原料组合物熔融并玻璃化,来制作玻璃体。该玻璃化工序可以与制造方法Al的玻璃化工序相同地实施。[粉碎工序]粉碎工序中,将玻璃体粉碎而制作未结晶化玻璃粉粒体。该粉碎工序除了将未被结晶化的玻璃体粉碎而制作未结晶化玻璃粉粒体以外,可以与制造方法Al的粉碎工序相同地实施。[结晶化工序]结晶化工序中,对未结晶化玻璃粉粒体实施热处理,制作玻璃陶瓷粉粒体。利用结晶化工序,在玻璃陶瓷的内部及表面析出包含WO3晶体和/或T^2晶体的晶相。该结晶化工序中的热处理的条件(温度、时间)除了取代玻璃体而对未结晶化玻璃粉粒体进行热处理这一点以外,可以与制造方法Al的结晶化工序相同地实施。(2)未结晶化玻璃粉粒体的制造方法制造方法A3:未结晶化玻璃粉粒体的制造方法没有特别限定,然而可以具有通过将原料组合物熔融并玻璃化来制作玻璃体的玻璃化工序、将玻璃体粉碎而制作未结晶化玻璃粉粒体的粉碎工序。也就是说,除了玻璃陶瓷粉粒体的制造方法A2的结晶化工序以外,可以与上述制造方法A2相同地实施。这样,就可以制造虽然不含有具有光催化特性的晶体然而可以利用其后的加热来生成该晶体的未结晶化玻璃粉粒体。而且,加热未结晶化玻璃粉粒体而生成晶体时的热处理的方法可以与玻璃陶瓷粉粒体的制造方法中说明过的上述结晶化工序相同地实施。但是,在通过向任意的基材上涂布等来担载的情况下,优选根据基材的耐热温度来调节热处理温度。[添加工序]本实施方式的制造方法Al A3可以包括通过向玻璃粉粒体中混合任意的成分来增加该成分的添加工序。该工序优选在制造方法Al A3中在粉碎工序之后进行,最优选在粉碎工序之后进行热处理(结晶化工序)的制造方法A2中在热处理(结晶化工序)之前进行。作为添加工序中添加到玻璃粉粒体中的成分,没有特别限制,然而优选混合可以通过在玻璃粉粒体的阶段增加来增强该成分的功能的成分、或由于难以玻璃化而只能少量地配合到熔融玻璃的原料组合物中的成分等。而且,本说明书中,有时将在本工序中向玻璃粉粒体中混合其他成分后的状态总称为“粉粒混合物”。在进行了添加工序的情况下,在添加工序以后进行的各工序中,除了将未进行添加工序时的“玻璃粉粒体”替换为“粉粒混合物” 以夕卜,可以相同地实施。(WO3和/或TiA的添加)本实施方式的制造方法Al A3也可以具有向玻璃粉粒体中添加晶体状态的WO3 和/或T^2而制作粉粒混合物的添加工序。本实施方式的方法中,即使不混合晶体状态的 WO3和/或Tio2,也可以由玻璃体生成含有WO3晶体和/或TW2晶体的晶相。但是,通过将已经是晶体状态的WO3和/或TW2添加到玻璃粉粒体中,就可以增加晶相的量,丰富地含有 WO3晶体、以及TW2晶体的晶相,从而可以制造增强了光催化功能的玻璃粉粒体。晶体状态的WO3和/或TiO2的混合量可以根据玻璃体的组成、制造工序中的温度等,以在使用了玻璃粉粒体的材料中存在所需的量的WO3晶体和/或TiA晶体的方式适当地设定。从提高玻璃粉粒体的光催化功能的观点考虑,所混合的晶体状态的WO3和/或TiA 的量的下限以相对于粉粒混合物的质量比计,优选为1%,更优选为5%,最优选为10%。另一方面,所混合的晶体状态的WO3和/或TiA的量的上限以相对于粉粒混合物的质量比计, 优选为95 %,更优选为80 %,最优选为60 %。而且,在将WO3及TiA 二者混合的情况下,WO3 及TiO2的合计量优选为上述的上限值及下限值的范围内。
已知本工序中添加的WO3晶体具有立方晶系、正方晶系、斜方晶系、单斜晶系以及三斜晶系的晶体结构,然而只要具有光催化活性,无论是哪种晶体结构的都可以。另外,一般来说,在T^2晶体的晶型中,有锐钛、金红石、板钛矿这3种。其中,本工序中所用的晶体状态的TiO2可以是这3种当中的1种或2种以上,然而从光催化功能优异的方面考虑,优选为锐钛与板钛矿的组合,更优选为锐钛。对于添加到玻璃粉粒体中的WO3和/或TW2晶体的原料粒子尺寸,从提高光催化活性的观点考虑,越小越好。但是,如果原料粒子尺寸过小,则在热处理之时会与玻璃反应, 有可能无法保持晶体状态而消失。另外,如果原料粒子过于细小,则还会有制造工序中的处置变得困难的问题。另一方面,如果原料粒子尺寸过大,则容易以原料粒子的形态残留于最终产品中,难以获得所需的光催化特性的倾向变强。所以,原料粒子的尺寸优选为11 500nm的范围内,更优选为21 200nm的范围内,最优选为31 IOOnm的范围内。(非金属元素成分的添加)本实施方式的制造方法Al A3也可以具有将含有选自N成分、S成分、F成分、Cl 成分、Br成分以及C成分中的1种以上的添加物添加到所述的玻璃粉粒体或粉粒混合物中的添加工序。这些非金属元素成分也可以在如前所述地制作玻璃体前的制作配合料或碎玻璃的阶段作为原料组合物的成分的一部分配合。但是,在制作玻璃体后将这些非金属元素成分混合到玻璃粉粒体中的做法更容易导入,并且可以更为有效地发挥其功能,因此能够很容易地获得具有更高的光催化特性的玻璃粉粒体。在添加非金属元素成分的情况下,其混合量可以根据玻璃体的组成等适当地设定。从充分地提高玻璃粉粒体的光催化功能的观点考虑,有效的做法是,作为非金属成分的合计,以相对于粉碎了的玻璃体或其粉粒混合物的质量比计优选添加0.01%以上,更优选添加0. 05%以上,最优选添加0. 以上。另一方面,如果过多地添加,则光催化特性容易降低,因此对于混合量的上限,作为非金属成分的合计,以相对于粉碎了的玻璃或其混合物的质量比计优选为20%,更优选为10%,最优选为5%。作为添加非金属元素成分时的原料,没有特别限定,然而N成分可以使用A1N3、 SiN4等,S成分可以使用NaS, Fe2S3> CaS2等,F成分可以使用ZrF4、AlF3、NaF、CaF2等,Cl成分可以使用NaCl、AgCl等,Br成分可以使用NaBr等,C成分可以使用TiC、SiC或ZrC等。 而且,这些非金属元素成分的原料既可以组合2种以上地添加,也可以单独地添加。(金属元素成分的添加)本实施方式的制造方法Al A3也可以具有向玻璃粉粒体或粉粒混合物中混合包含选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的1种以上的金属元素成分的添加工序。这些金属元素成分也可以在如前所述地制作玻璃体之前的制作配合料或碎玻璃的阶段作为原料组合物的成分的一部分配合。但是,在制作玻璃体后将这些非金属元素成分混合到玻璃粉粒体中的做法更容易导入,并且可以更为有效地发挥其功能,因此能够很容易地获得具有更高的光催化特性的玻璃粉粒体。在添加金属元素成分的情况下,其混合量可以根据玻璃体的组成等适当地设定。从充分地提高玻璃粉粒体的光催化功能的观点考虑,有效的做法是,作为金属成分的合计,以相对于粉碎了的玻璃体或其粉粒混合物的质量比计优选添加0. 001 %以上,更优选添加0. 005%以上,最优选添加0. 01 %以上。另一方面,如果过多地添加,则光催化特性容易降低,因此对于混合量的上限,作为非金属成分的合计,以相对于粉碎了的玻璃或其粉粒混合物的质量比计优选为10%,更优选为5%,最优选为3%。而且, 作为添加金属元素成分时的原料,没有特别限定,然而例如可以使用Cu0、Cu20、Ag20、AuCl3、 PtCl4, H2PtCl6, RuO2, RhCl3、ReCl3、PdCl2等。而且,这些金属元素成分的原料既可以组合2 种以上地添加,也可以单独地添加。作为添加物的金属元素成分的粒子直径或形状可以根据玻璃体的组成、WO3和/ 或TiO2的量、晶型等适当地设定,然而为了最大限度地发挥玻璃粉粒体的光催化功能,金属元素成分的平均粒子直径越小越好。所以,金属元素成分的平均粒子直径的上限优选为 5. Oym,更优选为1. Oym,最优选为0. 1 μ m。[表面处理工序]本实施方式的制造方法Al A3也可以还具有对如上所述地得到的玻璃粉粒体进行蚀刻等表面处理的工序(表面处理工序)。该工序特别优选对利用制造方法Al及A2得到的玻璃陶瓷粉粒体进行。本实施方式的表面处理工序可以与第二实施方式的表面处理工序相同地实施,因此在这里引用第二实施方式的[表面处理工序]一栏中说明过的内容而省略说明。<浆料状混合物>通过将如上所述地得到的本实施方式的玻璃粉粒体(玻璃陶瓷粉粒体及未结晶化玻璃粉粒体)与任意的溶剂等混合,可以制备浆料状混合物。这样,例如向基材上的涂布等就会变得容易。具体来说,可以通过向玻璃粉粒体中优选添加无机或有机粘合剂和/或溶剂来制备料浆。作为无机系粘合剂,没有特别限定,然而优选透过紫外线或可见光线的性质的材料,例如可以举出硅酸盐系粘合剂、磷酸盐系粘合剂、无机胶体系粘合剂、氧化铝、二氧化硅、氧化锆等的微粒等。作为有机粘合剂,例如可以使用作为冲压成形或橡胶冲压、挤出成形、注射成形用的成形助剂惯用的市售的粘合剂。具体来说,例如可以举出丙烯酸树脂、乙基纤维素、聚乙烯基缩丁醛、甲基丙烯酸树脂、聚氨酯树脂、甲基丙烯酸丁酯、乙烯基系的共聚物等。作为溶剂,例如可以使用水、甲醇、乙醇、丙醇、丁醇、异丙醇(IPA)、乙酸、二甲替甲酰胺、乙腈、丙酮、聚乙烯醇(PVA)等公知的溶剂,然而从可以减轻环境负担的方面考虑,优选醇或水。另外,为了实现浆料的均勻化,也可以并用适量的分散剂。作为分散剂,没有特别限定,例如可以举出甲苯、二甲苯、苯、己烷、环己烷等烃类、溶纤剂、卡必醇、四氢呋喃 (THF)、二噁烷等醚类、丙酮、甲乙酮、甲基异丁基酮、环己酮等酮类、乙酸甲酯、乙酸乙酯、乙酸正丁酯、乙酸戊酯等酯类等,它们可以单独使用,或者组合2种以上地使用。在本实施方式的浆料状混合物中,可以根据其用途,除了上述成分以外还配合例如用于调节固化速度、比重的添加剂成分等。本实施方式的浆料状混合物中的玻璃粉粒体的含量可以根据其用途适当地设定。 所以,浆料状混合物中的玻璃粉粒体的含量没有特别限定,然而如果要举出一例,则从充分地发挥光催化特性的观点考虑,优选以2质量%、更优选以3质量%、最优选以5质量%为下限,从确保作为浆料的流动性和功能性的观点考虑,优选以80质量%、更优选以70质量%、最优选以65质量%为上限。
42
[浆料状混合物的制造方法]本实施方式的浆料状混合物可以通过将玻璃粉粒体分散于溶剂中来制造。S卩,本实施方式的浆料状混合物的制造方法可以利用以下的制造方法Bl B3的任意一种来进行。而且,本实施方式的浆料状混合物的制造方法可以包括以下说明的工序以外的任意的工序。制造方法Bi:制造方法Bl是制造含有玻璃陶瓷粉粒体和溶剂的浆料状混合物的方法,可以具有通过将原料组合物熔融并玻璃化来制作玻璃体的玻璃化工序、对玻璃体实施热处理而制作玻璃陶瓷的结晶化工序、将玻璃陶瓷粉碎而制作所述玻璃陶瓷粉粒体的粉碎工序、将玻璃陶瓷粉粒体分散于溶剂中的混合工序。制造方法B2 制造方法B2是制造含有玻璃陶瓷粉粒体和溶剂的浆料状混合物的另外的方法, 可以具有通过将原料组合物熔融并玻璃化来制作玻璃体的玻璃化工序、将玻璃体粉碎而制作未结晶化玻璃粉粒体的粉碎工序、对未结晶化玻璃粉粒体实施热处理而制作玻璃陶瓷粉粒体的结晶化工序、将玻璃陶瓷粉粒体分散于溶剂中的混合工序。制造方法B3 制造方法B3是制造含有未结晶化玻璃粉粒体和溶剂的浆料状混合物的方法,可以具有通过将原料组合物熔融并玻璃化来制作玻璃体的玻璃化工序、将玻璃体粉碎而制作未结晶化玻璃粉粒体的粉碎工序、将未结晶化玻璃粉粒体分散于溶剂中的混合工序。以上的制造方法Bl B3中,由于除了混合工序以外,可以与上述制造方法Al A3相同地实施,因此对各工序的详细情况省略说明。混合工序可以通过将玻璃陶瓷粉粒体或未结晶化玻璃粉粒体分散于上述溶剂中来进行。另外,也可以包括上述的添加工序或表面处理工序。本实施方式的浆料状混合物的制造方法Bl B3可以还具有除去玻璃粉粒体的凝聚体的工序。玻璃粉粒体随着其粒径变小,表面能量变大,从而有易于凝聚的倾向。一旦玻璃粉粒体凝聚,则无法在浆料状混合物中均勻地分散,因而会有无法获得所需的光催化活性的情况。由此,优选设置除去玻璃粉粒体的凝聚体的工序。凝聚体的除去例如可以通过过滤浆料状混合物来实施。浆料状混合物的过滤例如可以使用规定的网眼的筛网等过滤材料来进行。利用以上的方法得到的本实施方式的玻璃粉粒体及含有它的浆料状混合物可以作为光催化功能性坯料,配合到例如涂料、可以成形/固化的混炼物等中而使用。<固化形成物>本实施方式的玻璃粉粒体可以通过将其固化而制备任意的形状的固化成形物。玻璃粉粒体由于是粉粒状,因此成形时的形状选择的自由度高,可以形成各种形状的光催化功能性构件。固化成形物既可以仅由玻璃粉粒体构成,也可以例如包含基材,也可以还含有任意的粘合剂等。[固化成形物的制造方法]固化成形物的制造方法没有特别限定,然而例如可以利用包括将玻璃粉粒体烧结、加热冲压的热处理的方法来制造。该情况下,利用用于固化成形的热处理,构成固化成形物的玻璃粉粒体的粒子之间结合,同时在以未结晶化玻璃粉粒体为原料的情况下,会生成包含WO3晶体和/或TW2晶体的晶相。而且,也可以不施加热处理,而仅利用例如粘合剂的粘合力来固化成形。但是,基于以下的理由,优选伴随着热处理的过程,即,由于玻璃粉粒体原本是以玻璃作为母体,因此通过采用包括规定温度下的热处理的固化成形方法,即使不使用粘合剂,也可以将玻璃粒子之间结合;在未结晶化玻璃粉粒体的情况下,利用固化成形时的热处理还可以析出晶体。而且,也可以在将玻璃粉粒体暂时制成上述的浆料状混合物的形态后,以所需的形状成形而制备固化成形物。烧结或加热冲压中的热处理的条件可以根据构成玻璃粉粒体的玻璃的组成、所被混合的添加物的种类及量等适当地设定。具体来说,热处理温度可以根据玻璃粉粒体的状态,例如进行以下的两种控制。第一热处理方法是由具有包含所需的WO3晶体和/或TW2晶体的晶相的玻璃陶瓷粉粒体来成形的情况,该情况下的热处理温度可以在1200°C的温度范围中适当地选择。如果热处理温度超过1200°C,则包含WO3晶体和/或TW2晶体的晶相容易转化为包含其他晶体的晶相。所以,热处理温度的上限优选为1200°C,更优选为1100°C,最优选为1050°C。第二热处理方法是由未结晶化玻璃粉粒体来成形的情况,该情况下可以与固化成形同时地进行玻璃的结晶化处理。如果热处理温度过低,则无法析出所需的晶相,因此需要至少高于构成玻璃粉粒体的玻璃的玻璃化转变温度(Tg)的温度下的加热。具体来说,热处理温度的下限为玻璃的玻璃化转变温度(Tg),优选为Tg+10°C,更优选为Tg+20°C,最优选为Tg+30°C。另一方面,如果热处理温度过高,则晶相减少,从而有光催化特性消失的倾向, 因此热处理温度的上限优选为构成玻璃粉粒体的玻璃的Tg+600°C,更优选为Tg+500°C,最优选为Tg+400°C。另外,用于烧结或加压冲压的热处理时间需要根据热处理温度来设定,在较高温度的情况下优选设定为短时间,在较低温度的情况下,优选设定为长时间。具体来说,从可以充分地进行固化成形的方面、以及在同时地进行结晶化处理的情况下可以析出足够量的晶体的方面考虑,优选以3分钟、更优选为以5分钟、最优选以10分钟为下限。另一方面, 如果热处理时间超过M小时,则W03、TiO2等晶体与玻璃的反应就会推进,有可能无法获得足以在玻璃中发挥光催化功能的大小的包括WO3和/或TW2的晶体。所以,热处理时间的上限优选为M小时,更优选为19小时,最优选为为18小时。如上所述,本实施方式的玻璃粉粒体含有具有光催化特性的晶体,或者可以通过被加热而在粉粒体内部生成所述晶体,因此作为具有优异的光催化活性的光催化功能性坯料,或者作为潜在地具有光催化功能的坯料十分有用。另外,本实施方式的玻璃粉粒体由于制成粉粒状,因此容易混合其他成分,在基材等上的应用也很容易,此外,例如也很容易加工为浆料状、固体状等任意的形态。另外,可以直接以粉粒体的状态填充于容器状的构件中,例如用于过滤用途等中。所以,可以根据其用途、所被应用的基材等的种类或形状以最佳的形态提供,可以适用于各种光催化功能性构件或亲水性构件中。另外,就本实施方式的玻璃粉粒体而言,由于可以利用原料的配合组成和热处理温度、温度及升温速度的控制,由玻璃相生成呈现出光催化活性的晶体,因此不一定需要使用易于凝聚而难以处置的纳米尺寸的光催化剂晶体材料,也不需要使用特殊的设备。下面,利用实施例对本发明进行进一步详细说明,然而本发明并不受以下的实施例制约。而且,在以下的实施例中,只要没有特别指出,各种测定的评价就是基于下述的方法。[析出晶体的种类·结构·尺寸]使用X射线衍射装置(Philips公司制、商品名-X Pert-MPD),鉴定出析出晶相。 另外,根据X射线衍射分析(XRD)的衍射峰的半值宽度,基于谢勒(Scherrer)公式D = 0.9X/(i3cose)估计出析出晶体的尺寸。这里,D是晶体的大小,λ是X射线的波长,θ 是布拉格角(衍射角2 θ的一半)。[光催化特性的有无]利用乙醛的气相分解确认光催化特性的有无。[亲水性]通过利用θ/2法测定样品表面与水滴的接触角来评价。即,向紫外线照射前及照射后的玻璃陶瓷的表面分别滴下水,使用协和界面科学公司制的接触角仪(DM501)测定从玻璃陶瓷的表面到水滴的顶点的高度h、水滴的与试验片接触的面的半径r,根据θ = 2tan-1(h/r)的关系式,求出与水的接触角θ。而且,紫外线照射只要没有特别指出,就是使用水银灯,以lOmW/cm2的照度、30分钟的照射时间进行的。实施例Al A56 表1 5中,表示出成为本发明的实施例Al A56的玻璃陶瓷的原料的玻璃组成、 结晶化温度、以及在这些玻璃陶瓷中析出的主晶相的种类。实施例Al A56的玻璃陶瓷都是作为各成分的原料选择使用了各自对应的氧化物、氢氧化物、碳酸盐、硝酸盐、氟化物、 氯化物、偏磷酸化合物等通常的玻璃中所用的高纯度的原料。在将这些原料以达到表1 5中所示的各实施例的组成的比例的方式称量而均勻地混合后,投入石英坩埚,根据玻璃组成的熔融难易度用电炉在1200°C 1600°C的温度范围中熔化1 M小时,搅拌均勻化而进行玻璃熔液的消泡等。其后,对于实施例Al A43,将玻璃熔液的温度降低到1500°C以下而搅拌均勻化后浇注到模具中,慢慢地冷却而制作出玻璃。对所得的玻璃,加热到表1 表4中的实施例Al A43中记载的结晶化温度,以所记载的时间保持而进行结晶化。其后, 从结晶化温度起冷却而得到具有目标的晶相的玻璃陶瓷。另一方面,对于表4及表5中的实施例A44 A56,通过将搅拌均勻化了的玻璃熔液向流水中投下,而得到粒状或片状的玻璃体。将该玻璃体在表4及表5中的实施例A44 A56中所示的结晶化条件下结晶化。如表1 5所示,在实施例Al A56的玻璃陶瓷的析出晶相中,都作为主晶相含有光催化活性高的WO3晶体。另外,利用XRD判明,WO3晶体的尺寸为200nm以下。然后,以与实施例Al相同的成分组成而改变结晶化条件(温度、时间)地进行结晶化,研究了 WO3晶体的结构。结晶化温度在实施例Ala中是750°C,Alb是900°C,Aid是 1000°C,结晶化的热处理时间都为4小时。将XRD的结果表示于图1中。在实施例Ala、Alb 的XRD谱图中,以入射角2 θ =23.6°附近为主产生以“〇”表示的峰,可以确认WO3的立方晶的存在。另外,在实施例Alc、Ald的XRD谱图中,以入射角2 θ =23.1°、23. 7°附近为主产生以“□”表示的峰,可以确认WO3的单斜晶或三斜晶的存在。所以可以认为,实施例 Ala Ald的玻璃陶瓷具有可见光响应性的光催化活性。此外,实施例Alb Ald中,在XRD谱图中在入射角2 θ =25.3°附近观察到以 “Δ”表示的锐钛型的TW2晶体的峰。所以,实施例Alb Ald的玻璃陶瓷以混合的状态存在有在紫外区域具有优异的光催化作用的锐钛型的T^2晶体和在可见光区域具有强的光催化作用的WO3晶体,可以推测,从紫外区域到可见光区域利用宽范围波长的光发挥光催化活性。另外,根据图1的结果还可以清楚地看到,通过改变结晶化温度,可以控制WO3的晶体结构。使用这些实施例利用乙醛的气相分解确认了光催化特性的有无,其结果是,利用高压水银灯的照射,确认有由乙醛分解所致的CO2的生成,表明具有光催化特性。另外,对实施例Al A56的一部分玻璃陶瓷的亲水性,通过利用θ /2法测定样品表面与水滴的接触角进行了评价。即,对实施例Α1、Α2、Α4、Α7、Α11、Α32、Α35的玻璃陶瓷评价了亲水性,其结果是,如表6所示,利用30分钟的紫外线的照射,可以确认,与水的接触角达到20°以下。由此显而易见,本发明的实施例的玻璃陶瓷具有高亲水性。然后,以与实施例Al及Α4相同的组成而仅改变结晶化条件地制作出玻璃陶瓷的样品。结晶化条件在实施例Ale中为750°C下4小时,实施例Alf为850°C下8小时,实施例A^为850°C下4小时。对所得的各样品,使用浓度为4. 6质量%的氢氟酸,进行10秒的蚀刻。对蚀刻后的各样品,使用300W的氙灯作为光源,在lOmW/cm2的紫外线照度的条件下进行紫外线照射。将紫外线照射时间和与上述相同地利用θ/2法求出蚀刻后的玻璃陶瓷与水的接触角θ而评价亲水性的结果表示于图2中。对实施例Ale、Alf及A4a的所有样品,只是利用30分钟的紫外线照射,与水的接触角就达到10°以下,因而具有高亲水性。 显而易见,通过像这样蚀刻本发明的实施例的玻璃陶瓷,可以提高光催化活性。另外,对上述实施例Ale、Alf、A4a的玻璃陶瓷的蚀刻后的各样品,使用 Blacklight Blue荧光灯FL10BLB(东芝公司制),在lmW/cm2的照度的条件下进行紫外线照射。对于紫外线照射时间和蚀刻后的玻璃陶瓷与水的接触角θ,与上述相同地利用θ/2 法求出,评价亲水性。将其结果表示于图3中。根据图3,实施例Ale、Alf及A4a的所有样品即使将紫外线照度降低为lmW/cm2,也可以利用300分钟的紫外线照射使与水的接触角达到20°以下,因而具有充分的亲水性。另外,结晶化温度为850°C的实施例Alf、A^中, 即使紫外线照度为lmW/cm2,也可以利用仅仅60分钟的紫外线照射将与水的接触角降低至 20°。从而表明,在相同的组成的情况下,通过提高结晶化温度,可以提高亲水性。然后,对实施例A44、A48及A54中得到的各玻璃陶瓷的样品,进行了亚甲蓝(MB) 分解活性的评价。首先,向聚苯乙烯制的容器中,加入5ml的浓度0. Olmmol/L的亚甲蓝(MB) 水溶液,将各样品在暗处浸渍M小时。将至此为止的处理为前处理。然后,更换为相同浓度的溶液,在有·无可见光照射的条件下测定出MB浓度的变化。即,将各样品在暗处或可见光照射的基础上分别浸渍于MB水溶液中。这里,作为光源使用300W的氙灯,去掉波长 400nm以下的光,将照度为10,000勒克斯的可见光向样品照射。其结果是,如图4所示,可以确认,与暗处相比,照射可见光的一方MB浓度的减少更大。由此显而易见,本发明的实施例的玻璃陶瓷具有借助可见光的优异的光催化活性。[表 1]
权利要求
1.一种玻璃陶瓷,其含有包含氧化钨和/或其固溶体的晶相。
2.根据权利要求1所述的玻璃陶瓷,其中,作为所述氧化钨,相对于氧化物换算组成的总物质量,以摩尔%计含有10 95%的WO3成分。
3.根据权利要求1或2所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 60%的P2O5成分、和/或 0 60%的化03成分、和/或 0 60%的SiO2成分、和/或 0 60%的GeR成分各成分。
4.根据权利要求1至3中任意一项所述的玻璃陶瓷,其中,还含有0 60%的T^2成分。
5.根据权利要求1至4中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 40%的Li2O成分、和/或 0 40%的Na2O成分、和/或 0 40%的K2O成分、和/或 0 10%的Rb2O成分、和/或 0 10%的Cs2O成分各成分。
6.根据权利要求1至5中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 40%的MgO成分、和/或 0 40%的CaO成分、和/或 0 40%的SrO成分、和/或 0 40 %的BaO成分各成分。
7.根据权利要求1至6中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 30%的Al2O3成分、和/或 0 30%的Ga2O3成分、和/或 0 10%的M2O3成分各成分。
8.根据权利要求1至7中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 20%的^O2成分、和/或 0 10%的SnO成分各成分。
9.根据权利要求1至8中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 50%的Nb2O5成分、和/或 0 50%的Ta2O5成分和/或 0 50%的MoO3成分各成分。
10.根据权利要求1至9中任意一项所述的玻璃陶瓷,其中,相对于氧化物换算组成的总物质量,以摩尔%计,还含有0 50%的ZnO成分、和/或0 20%的Bi2O3成分、和/或0 20%的TeA成分、和/或合计 0 30% 的 Ln2O3 成分(式中,Ln 为选自 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、 Dy、Ho、Er、Tm、Yb以及Lu中的1种以上)、和/或合计0 5%的MxOy成分(式中,M为选自V、Cr、Mn、Fe、Co及Ni中的1种以上,χ及 y分别为满足χ y = 2 M的化合价的最小的自然数。这里,V的化合价为5,Cr的化合价为3,Mn的化合价为2 Je的化合价为3,Co的化合价为2,Ni的化合价为2。)、和/或合计0 5%的As2O3成分和/或Sb2O3成分各成分。
11.根据权利要求1至10中任意一项所述的玻璃陶瓷,其中,以相对于玻璃总质量的外分比质量比计还含有15%以下的选自F、Cl、Br、S、N、以及C中的至少1种以上的成分。
12.根据权利要求1至11中任意一项所述的玻璃陶瓷,其中,以相对于玻璃总质量的外分比质量比计还含有10%以下的选自Cu、Ag、Au、Pd、Ru、Rh、Re以及Pt中的至少1种金属粒子。
13.根据权利要求1至12中任意一项所述的玻璃陶瓷,其中,还含有Ti02、TiP2O7, (TiO)2P207、RnTi2 (PO4) 3、RTi4 (PO4)6(式中,Rn 为选自 Li、Na、K、Rb、Cs 中的 1 种以上,R 为选自Mg、Ca、Sr、Ba中的1种以上)以及它们的固溶体中的1种以上的晶体。
14.根据权利要求1至13中任意一项所述的玻璃陶瓷,其利用从紫外区域到可见区域的波长的光体现出催化活性。
15.根据权利要求1至14中任意一项所述的玻璃陶瓷,其中,照射了从紫外区域到可见区域的波长的光的表面与水滴的接触角为30°以下。
16.一种光催化剂,其包含权利要求1至15中任意一项所述的玻璃陶瓷。
17.一种玻璃陶瓷烧结体,是将粉碎玻璃烧结而成的玻璃陶瓷烧结体,其特征在于,在所述玻璃陶瓷烧结体中,含有权利要求1至15中任意一项所述的玻璃陶瓷。
18.一种玻璃陶瓷复合体,是具有基材、和设于该基材上的玻璃陶瓷层的玻璃陶瓷复合体,其特征在于,所述玻璃陶瓷层含有权利要求1至15中任意一项所述的玻璃陶瓷。
19.一种玻璃粉粒体,其含有权利要求1至15中任意一项所述的玻璃陶瓷。
20.一种玻璃粉粒体,其通过被加热而生成权利要求1至15中任意一项所述的玻璃陶ο
21.一种浆料状混合物,其含有权利要求19或20所述的玻璃粉粒体和溶剂。
全文摘要
本发明公开了含有包含氧化钨和/或其固溶体的晶相并具有光催化活性的玻璃陶瓷、玻璃陶瓷烧结体、玻璃陶瓷复合体、玻璃粉粒体、浆料状混合物及光催化剂。玻璃陶瓷相对于氧化物换算组成的总物质量,以摩尔%计可以含有10~95%的WO3成分,此外可以含有0~60%的P2O5成分、0~60%的B2O3成分、0~60%的SiO2成分、和/或0~60%的GeO2成分各成分。
文档编号B01J27/188GK102421718SQ20108002083
公开日2012年4月18日 申请日期2010年7月30日 优先权日2009年7月31日
发明者傅杰 申请人:株式会社小原
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1