用于供热系统的分离器装置的制作方法

文档序号:14328404阅读:191来源:国知局
用于供热系统的分离器装置的制作方法

本发明涉及一种适用于从流体中分离颗粒物的分离器装置,特别涉及但又不仅限于一种用于液体循环供热系统中的分离器装置。



背景技术:

在典型的供热系统中,水通过泵在多个散热器,可能是热水器中的热交换器,以及锅炉内循环。在循环过程中,从散热器以及管道内部脱落的固体颗粒(例如氧化铁)会悬浮在水中。固体颗粒还可能是最初供给到系统中的水中的污染物,且当开放式膨胀水箱形成系统的一部分时,水也会被灰尘污染。如果这些固体颗粒积聚在锅炉或者泵内,就会造成故障,由于限制水的流动并阻塞散热器,降低供热系统的效率。因此,需要持续清洁供热系统中的水,尽可能地清除固体颗粒。

已知有多种用于从水流中去除悬浮颗粒物的装置。通常,这些装置包括用于吸引含铁颗粒的磁体,并且还可包括用于去除非磁性颗粒的机械分离装置。非磁性颗粒可以通过使一部分水流经分离腔体,由设置在分离腔体内的阻滞装置减缓水流,从而去除。然后,颗粒将不再悬浮,并留在腔体内,在年度维护时,很容易进行清洁。由于只有一部分水流减缓,因此不会明显降低供热回路中的整体水流速度。这种类型的装置在申请人的共同待审申请GB2486173以及GB2486172中公开。

这些现有装置通常包括圆柱形外壳、设置于外壳内沿其纵向轴的磁体以及设置于外壳下端的机械分离腔体。外壳侧壁上提供有入口和出口,通常上下排列。入口和出口配置为在外壳内形成水旋涡,并且与外壳相切或基本相切。

磁体通常具有套筒,以便磁性颗粒不会直接粘在磁体上,而是粘在环绕磁体的套筒上。当对装置进行清洁时,可将磁体从套筒内移除,这样颗粒就会脱落。然而,环绕磁体的套筒会降低磁场强度,从而也降低了过滤器的效率。因此,套筒应该尽量薄。由于生产工艺的限制,套筒的厚度通常都足以明显削弱磁场。

由于需要安装设备的空间非常狭窄,尤其是如果对已有安装进行改装时,切向的入口和出口会给安装者带来不利的限制。有些情况下,甚至根本无法安装具有切向或基本切向入口的合适容量的设备。为了使分离器正常运行,其还必须朝向特定的方向,通常其圆柱形外壳要基本垂直,以便使从水流中分离的非磁性碎片落入分离器底部的聚集区域。如果其安装朝向不正确,误差可能不会立即显现出来,可能直到进行维护时才会发现。在这段时间内,分离装置的效率将会明显降低,并且有可能完全不起作用。

分离装置通常安装在供热回路的供水管或回水管。管道上一定要以设定的距离隔开设置两个切口,然后将直角连接器安装在开口端。如果使用两个单独的直角连接器,那么安装工则必须谨慎,确保直角连接器装配到管道开口端的程度能够使直角连接器的垂直段的垂直距离恰好能够安装分离装置。由于可能需要切割或者替换一段供水管或回水管,因此纠正任何误差都很耗时。

本发明的目的在于提供一种减少或者基本消除上述问题的分离器装置。



技术实现要素:

根据本发明的第一方面,提供有一种用于从流体中去除悬浮颗粒的分离器装置,包括:

外壳,其具有用于流体进出外壳的第一和第二孔;

设置于外壳一端的第一分离器腔体;

设置于外壳另一端的第二分离器腔体,

以及设置于第一和第二分离器腔体之间的中心腔体,

第一和第二分离器腔体开设有用于流体从中心腔体进出的孔,并且分别包含用于减缓腔体内流体流动的阻滞装置。

这种设置是有利的,因为,通过在分离器的两端提供分离腔体,其中一个总是可以设置在最佳的位置,用于有效地从流体中去除悬浮颗粒,而不论是第一孔还是第二孔作为入口。该装置可以任何方式安装入口和出口,这为需要优先考虑空间的安装工提供了额外的灵活性。例如,该装置可以安装在锅炉的上方或者下方,安装在供热回路的供水管或回水管。申请人还发现,在这种类型的分离器中,在上分离腔体中可以获得最高效的分离。

可在外壳内设置形成流体漩涡的装置。

可在中心腔体内设置磁体。磁体从中心腔体中的流体吸引含铁颗粒。

位于第一和第二分离器腔体的至少其中一个中的阻滞装置至少可部分包括多个基本为平面的壁。平面壁可径向设置。阻滞装置可替换性地或者额外地包括多个基本为圆柱形的突出物。

在除平面壁外还设置有基本为圆柱形的突出物的情况下,该基本为圆柱形的突出物可延伸穿过并位于该基本为圆柱形的壁上方。

平面壁减缓了流体流动,并且还在相邻的壁之间限定了空腔,在该空腔内容易收集固体颗粒。圆柱形突出物为流体流动提供了进一步额外的挡板,并增加了流体必须穿过的总距离,从而增加了从腔体中的悬浮液中去除的固体颗粒的数量。

位于第一和第二分离器腔体的至少其中一个中的阻滞装置至少可部分包括一个或多个曲壁。曲壁限定了水必须流经的长而复杂的路径。

在提供曲壁的情况下,可包括至少一个逆向曲壁。不管是否包括逆向曲壁,曲壁均可形成用于收集颗粒的凹面收集区域。该凹面收集区域可面向不同的方向。

曲壁形成面向不同方向的凹面收集区域的好处在于,定位为任何朝向时都能够有效地从流体中去除颗粒,例如,如果分离器没有垂直安装,而是相对于垂直方向具有一定角度。

在第一和第二分离器腔体中的曲壁可设置为镜像和/或旋转对称的。

第一和第二分离腔体可从外壳中移除。第一和第二腔体可设置为单个可移除插入件的一部分,分离腔体安装在中心段的两端。从外壳中移除有利于毫不费力地清除聚集在腔体内的颗粒。

第一分离腔体可在外壳的上端通向外壳。第一腔体可在中心腔体的下侧具有入口,该入口螺旋向上进入到第一腔体。在入口螺旋向上的情况下,其可在相反的弧形方向上螺旋,不管中心腔体中的旋流的旋转方向如何,都将水流引导入腔体内。

第二分离腔体可包括托盘及顶部部分。顶部部分与中心段相连,托盘可以移除,以便清洗。流体进出第二分离腔体的进口孔和出口孔可位于腔体的顶部。

可在第二分离腔体的顶部部分提供导流板,从顶部部分向上且径向延伸,并且以相对方向悬在孔上方,用于将水流从导流板的两侧导向第二腔体中,用于捕获水流,而不管中心腔体中的旋流的旋转方向。

导流板用于引导一部分液体旋流流经分离腔体,同时使供热回路的整体流速基本保持不变。

外壳可由防水盖封闭。这使得装置在例如作为封闭供热回路的一部分正常运行时密封,但在维护期间要移除固体颗粒时很容易打开,这些固体颗粒是通过本装置已经从流体中去除的那些。

放泄阀可设置在外壳的上端,排水阀可设置在外壳的底部。在使用过程中,将该装置从供热回路中分离之后,打开上下阀,从外壳排放流体。然后关闭下阀,系统可通过上阀供给流体,例如阻蚀剂。然后将分离器装置重新连接到供热回路,空气从放泄阀排出。当所有的空气都已经排出时,放泄阀关闭,根据需要对系统进行重新填充和/或重新加压。

可以通过安装在外壳中的孔内的偏向器在外壳内形成流体旋流。偏向器可在一定程度上延伸入外壳的中心腔体,且可浇注到外壳的壁内。这种配置的好处在于,入口和出口管道可彼此平行地进入外壳,易于安装。

根据本发明的第二方面,提供空心圆柱形式的磁体套筒,该套筒具有厚度小于0.8mm的曲壁,优选地,小于0.7mm。薄壁套筒是有利的,这是因为能够最小化对磁场的削弱。

套筒可采用塑料铸造,还可设置加强肋或加强筋。加强肋或加强筋可保持磁体套筒的结构强度,从而可减小壁的厚度。加强肋或加强筋还提高了生产套筒时塑料在模具中的流动性,从而消除在最小化套筒厚度方面的其它限制。

根据本发明的第三方面,提供有一种用于将过滤器连接到管道的同轴装配件,包括第一和第二流体承载部分和用于连接第一和第二流体承载部分的非流体承载间隔装置,每个流体承载部分包括用于接收管道开口端的承槽和用于连接过滤器的连接器,第一流体承载部分的承槽的管道接收深度大于第二流体承载部分的承槽的管道接收深度,并且在流体承载部分通过间隔装置连接时,第一和第二流体承载部分的承槽位于共同的轴线上,且背向彼此。

根据本发明的另一方面,提供有一种用于将过滤器连接到管道的同轴装配件,包括第一和第二内嵌承槽,用于接纳流体承载管道的开口端,第一和第二承槽由间隔装置连接,且第一承槽的管道接收深度大于第二承槽的管道接收深度。

根据本发明的另一方面,提供有一种用于将过滤器连接到管道的同轴装配件,包括独立的第一和第二流体承载部分,以及用于设置流体承载部分之间的距离的间隔装置,每个流体承载部分包括用于接收管道开口端的承槽以及用于连接过滤器的连接器。

根据本发明的另一方面,提供有一种用于将过滤器连接到管道的同轴装配件,包括用于连接到管道的第一和第二独立流体承载部分,第一流体承载部分将流体引导向管路外,第二流体承载部分将流体引导回管路,第一和第二流体承载部分可通过用于设置流体承载部分之间的距离的间隔装置连接,第一和第二流体承载部分分别包括用于连接到管道的承槽,第一流体承载部分的承槽的管道接收深度大于第二流体承载部分的承槽的管道接收深度。

在一些实施例中,间隔装置可为中空的。但是,间隔装置不能承载流体,因此,其不能与第一和第二流体承载部分中的任一个的连接器或者承槽液体连通。

同轴装配件可用于将根据本发明第一方面的分离器装置安装至例如中心供热管道上。同轴装配件还适于与其它需要装配到流体承载管道的过滤、清洁或处理装置一起使用。

同轴装配件时有利的,这是因为其能够很容易地装配到管道。首先,从管道上切割一定长度的一段,使管道形成两个开口端。然后将第一承槽装配到管道的第一开口端。由于第一承槽具有更大的管道接收深度,装配件能够在与管道的第一开口端接合的同时,平行于管道移动。然后,通过朝向第一开口端滑动装配件,然后再向下滑过第二开口端,将第二承槽与管道的第二开口端接合。由于承槽通过间隔装置连接在一起,因此承槽之间的正确距离总能得以保持,同时实现装配到已经固定到壁上的管道。

间隔装置是可移除的,这样,装配件就可以用作一个连接件或两个独立的流体承载件。

可移除的间隔装置进一步有助于装配,这是因为两个承槽可独立地连接到管道的开口端,不需要对管道端部有任何操作。承槽之间的正确距离可以容易地实现,这是因为具有更大管道接收深度的第一承槽可平行于管道移动,且之后间隔装置重新安装在承槽之间。

可移除的间隔装置还允许具有纵向朝向的入口和出口端口的过滤器装配到非纵向朝向的管道的切割段。例如,具有纵向朝向的入口和出口端口的过滤器需要装配到水平或斜向的管道。还有,过滤器需要安装为入口管道与出口管道成直角。

每个流体承载部分的连接器的纵向轴分别与各个流体承载部分的承槽的纵向轴成直角。

通常,过滤器将会装配到平行于壁或其它平面的管道。在每个流体承载部分具有相对于管道承槽成直角的连接器,有效地形成90°弯曲,具有从过滤器一侧水平延伸的入口和出口端口的过滤器可安装为抵靠垂直壁,不再需要其它元件。

每个流体承载部分上可设置阀,用于控制流体承载部分的承槽和连接器之间的流体流动。阀可用于防止流体穿过流体承载部分,即,阻断每个流体承载部分的管道承槽与其各自的连接器。

在装配件用于将过滤器连接到中心供热系统时,能够将过滤器与中心供热回路隔离是很有用处的。这使过滤器能够打开,便于清洁,而不需要打开中心供热系回路并使供热液体泄漏。

每个流体承载部分上可设置有塞子,位于流体承载部分与承槽相对的一端,塞子与间隔装置上的承槽相对应,用于可松开地使间隔装置与流体承载部分接合。

塞子和承槽的连接为简易地装配或在流体承载部分之间定位间隔装置提供了条件。当流体承载部分装配到间隔装置时,在每个流体承载部分上具有彼此相对的塞子的情况下,只有在具有能够使流体承载部分相互远离和远离间隔装置移动的空间的情况下,间隔装置才能够被移除。换言之,当装配件没有安装时,间隔装置可以容易地装配和移除,但当装配件固定在管道的开口端时,间隔装置则不能脱离。

每个塞子包括圆段以及具有至少一个直边的卡爪段(dog section)。在圆段圆周周围设置有凹槽,凹槽内设置有O型环。具有O型环的圆段使塞子能够紧密地装配到对应的承槽内,但也可以容易地移除。卡爪段防止塞子在承槽内旋转,确保第一和第二流体承载部分的连接器保持正确的对齐,以用于过滤器的装配。

可提供一能够移除的盖帽,用于套在流体承载部分的塞子上。能够移除的盖帽由弹性塑料制成。当不需要间隔装置时,盖上塞子是有益的。

可提供一装配夹具,该装配夹具包括一具有两个穿过其的平行孔的刚性构件,平行孔适于接收第一和第二流体承载管道的连接器。刚性构件在平行于孔的方向上的厚度至少为连接器长度的一半。

在使用过程中,流体承载部分可连接到间隔装置,且装配夹具安装在连接器上。这确保了装配件的所有部件都正确地对齐。然后,第一流体承载部分可安装到管道的开口端,如上所述,第一流体承载部分的更大的管道接收深度使得第一流体承载部分能够移动到管道的开口端上,然后第二流体承载部分能够在另一方向上移动,到达管道的另一开口端。

附图说明

为了更好地理解本发明,并且更清楚地显示本发明是如何实现的,现在将通过实例参考附图进行描述,其中:

图1为根据本发明的第一方面,一种分离器装置的透视图;

图2为图1中的分离器装置的前视图;

图3为图1中的分离器装置的剖视透视图;

图4为根据本发明的第二方面,一种插入件的透视图,其为图1中的分离器装置的组件部分;

图5为图4中的插入件的前视图;

图6为图4中的插入件的俯视平面视图;

图7为托盘的透视图,托盘为分离器腔体的一部分,而分离器腔体为图1中的分离器装置的一部分;

图8为图7中的托盘的仰视平面图;

图9为根据本发明的第三方面,管道装配件的透视图;

图10为间隔装置的透视图,其为图9中的管道装配件的组成部分;

图11为图10中的间隔装置的俯视平面图;

图12为图9中的管道装配件的透视图,其中安装有装配夹具;

图13为图9中的管道装配件的透视图,其装配到图1中的分离器装置,用于安装到垂直管道;以及

图14为图9中的管道装配件的前视平面图,其中移除了间隔装置,并装配到图1中的分离器装置,用于安装到垂直管道和水平管道。

具体实施方式

首先参照图1-3,一种用于从液体中分离悬浮颗粒的分离器装置,用附图标记10表示。设置有外壳12,外壳包括主体部分14以及可拆除的封盖部分16。主体部分基本为一上端开口的圆柱壳体,即主体部分14包括底面和壁17。主体部分14的壁17的上端由外螺纹18以及外螺纹正下方的圆周边缘20形成。

封盖部分16为螺旋盖帽的形成,该螺旋盖帽包括圆形平面顶部26以及在顶部的边缘下方延伸的圆周壁28。壁28的内表面形成有螺纹22,用于与外壳主体部分14的壁17上端的外螺纹18配合。封盖部分16的壁28外侧均匀地分布有多个凹槽24,协助用户抓牢封盖部分16,以便有效地旋紧和旋开。

封盖部分16的顶部26下侧边缘周围设置有凹槽30。橡胶O型环32设置于凹槽30内,O型环32高度的一半左右延伸至顶部26下侧的下方。当封盖部分16旋紧到外壳12的主体部分14时,O型环32在封盖部分16的顶部26及外壳的主体部分14的壁17的上边缘之间压缩,形成防水密封。

入口和出口设置为外壳主体14的壁17上的第一和第二中空圆柱承槽96,每个承槽垂直于圆柱体的同一切线延伸,即,承槽从外壳14的壁向外延伸,并且在外壳12的直径上彼此平行。John Guest Speedfit(RTM)连接器98位于承槽96内,使得能够容易地装配到供热回路。

由于当设备安装好时,入口和出口位于同一直管路上,因此,同一直径上的平行入口和出口承槽96能够很容易地装配到供热回路。

最佳如图2所示,偏向器100设置在圆柱外壳12的每个承槽96内。偏向器100阻挡每个承槽96的一部分,将入口处的水流引导到一侧,从而在外壳12内形成旋流。偏向器100的边缘相对于垂直方向约成10°角,以便略微在垂直方向和水平方向上偏转水流。两个承槽96内均设置偏向器100,使得任何一个承槽都能够用作入口。

设置有一放泄阀102,其穿过旋转盖帽16的中心,并拧到外壳12内的塞子50上。放泄阀包括头部106和主体部分108,其中头部106的直径大于主体部分108的直径,这样,主体部分108就会穿过外壳12的封盖部分16的顶部26中心的圆孔,而头部106不能。设置有一通道120,其穿过头部和主体部分106、108的中心。头部106设置有外螺纹,螺旋盖帽104封闭放泄阀,并通过设置O型环密封。

外壳主体14的底面设置有排水阀116,所述排水阀包括带有密封件的螺纹塞。

在使用过程中,分离器装置10从供热系统隔离,放泄阀102及排水阀116打开,从外壳12内排放流体。然后关闭排水阀116,并通过放泄阀102向系统中加入阻蚀剂。可在头部的螺纹上固定一补给线。然后将分离器装置10重新连接到供热回路,空气从放泄阀102排出。当所有的空气已经排出时,关闭放泄阀102,根据需要对系统重新填充和/或重新加压。

参照图4-8,外壳12内包含一可拆除的插入件34。如图所示,安装于外壳中,所述插入件包括成型为空心圆柱的中心段36、位于插入件上端的第一分离腔体38以及位于插入件下端的第二分离腔体40。上下分离腔体38、40基本为圆柱形,并与中心段36共中心轴。上下分离腔体38、40的尺寸几乎完全延伸到外壳主体14的整个内部直径。

中空圆柱中心段36具有厚度约为0.65mm的曲壁。设置有四个均匀间隔的加强肋37,每个加固肋37环绕在圆柱中心段36的外表面边缘。设置有4个均匀间隔的加强筋33,与肋37垂直。肋37与筋33确定了矩形板35。

插入件34的中空中心段36内设置有圆柱形磁体,所述中心段形成环绕磁体的护套。在使用过程中,磁体吸引含铁颗粒,颗粒聚集在插入件34的中心护套段36外表面的板35上。当对供热系统进行维护时,将插入件34从外壳12内移除,并将磁体从中心护套段36内部移除。当移除磁体后,含铁颗粒很容易地脱落,从而清除。

上分离腔体38成型为具有开口上端的圆柱壳体,具有底面44和一个曲壁46的圆形托盘。底面44在其中心处具有一圆孔,该圆孔内直径与护套34的中空中心段36相同。在上分离腔体38内,突出物48从底面44处延伸,所述突出物48具有与壁46深度匹配的深度(vertical extent)。突出物48形成内壁,所述内壁确定了上分离腔体38内的通道。

突出物48的设置最佳如图6所示。其设置为关于两正交轴A-A、B-B镜像对称。第一类型的两个突出物56相互面对。第一类型的突出物56由曲壁58形成,曲壁58包括约90°的圆弧,圆弧的曲率半径略小于上分离腔体38的半径,且包括从曲壁58的中心向内延伸到腔体38的中心的直壁60。约三分之一长度的直壁60超出了曲面段58两端之间的直线C-C。曲壁58的凹面相互面向。

第一类型的突出物56设置为直壁60位于上分离腔体38的直径B-B上,这样,曲壁58就不会接触到上分离腔体38的壁46,水就能够绕突出物56的所有侧流动。

第二类型的突出物62以相对于第一类型的突出物56成90°角面向彼此。每个第二类型的突出物62包括从上分离腔体38的壁46延伸到腔体38中心的杆66,还包括两个钩状壁64。杆66随着接近上分离腔体38的中心而越来越宽。杆66接触到塞子50的表面,环绕塞子50表面弯曲。钩状壁64分别从杆66两侧在杆66接触塞子50处以相对于杆55°角延伸,以便使钩状壁64朝向上分离腔体38的外壁46弯曲回去。在钩状壁64接触到上分离腔体38的壁46之前,它们朝远离杆66的方向弯曲90°,形成钩端。90°弯曲后,钩的长度基本为弯曲前钩的长度的一半。

两个直突出物68具有与上述突出物56、62,以及上分离腔体38的壁46类似的深度,设置为临接上分离腔体38的直径B-B上的壁46,向内延伸到上分离腔体38的中心。

上分离腔体38的底面44上设置有4个狭缝118。所述狭缝用于将外壳12内一部分水旋流引导入上分离腔体38,同时不会明显降低供热系统中的整体流速。狭缝118以相反的弧形方向螺旋上升到第一分离腔体38,并穿过侧壁46。即,两个狭缝以一个弧形方向螺旋上升,另两个狭缝以相反的方向,用于将水流引导入上分离腔体38中,而不用考虑外壳12内旋流的方向。

下分离腔体40成型为托盘70,最佳如图7所示,其可以从盖子72上拆下。盖子72是可移除的插入件34的整合部分。托盘70为环形的,其具有内壁76、外壁78以及底面80。托盘70具有略小于外壳主体14的内直径的外直径,以及基本匹配可移除的插入件34的中心段36的外直径的内直径。

多个平面壁82从托盘底面80延伸,每个壁82将外托盘壁78连接到内托盘壁76,并且每个壁82的深度略小于托盘壁76、78的深度,从而水可以从平面壁82的上方,而非下方或者周围流过。平面壁82的数量为14,并且环绕环形托盘70以其周长的十六分之一的距离均匀隔开,有两个十六分之一处没有壁82,这两个十六分之一处彼此相对,并且壁82设置为关于没有平面壁82的十六分之一处所在的直径D-D镜像和旋转对称。因此,平面壁82排列成两部分,每部分具有七个壁82。

基本为圆柱形的突出物84从托盘底面延伸,并与平面壁82重合,从而该圆柱形突出物84通过并位于平面壁82上方。每部分端部处的平面壁82与两圆柱形突出物84重合,即,每部分有两个壁82,剩下的平面壁82与单个圆柱形突出物84重合。在平面壁82具有单个圆柱形突出物84的情况下,圆柱形突出物84位于壁82的中心处,与环形托盘的内外壁76、78等距。在壁82具有两个圆柱形突出物84的情况下,第一圆柱形突出物到外托盘壁78的距离等于第二圆柱形突出物到内托盘壁76的距离。每个上述距离约等于内外壁76、78之间距离的四分之一。

下分离腔体40的盖子72成型为环绕插入件34的中心段36的环形顶部86,壁88延伸至顶部86的边缘下方。盖子72的内直径与下分离腔体的托盘70的外直径基本匹配,这样盖子72就能够安装在托盘70上。

盖子72的顶部86上半径两侧提供有孔89,并成型为两个细长的矩形,每个矩形的纵向深度均略小于环形顶部86的内外侧之间的距离,并且每个矩形的纵向轴彼此平行。两个矩形孔89共同相对于两孔之间的径向轴镜像对称。

导流板90在孔之间的对称径向轴线上从盖子72的顶部86的上表面向上延伸,形成孔之间的壁。导流板90随着向上延伸而越来越宽,从而形成与每个孔相邻并悬于孔之上的倾斜偏向器。因此,导流板90将一部分旋流向下偏向到下分离腔体40中,而不必考虑外壳12内的回旋方向。

在形成两个由七个平面壁82组成的部分之间的间隔的托盘70的直径D-D上,两个圆柱形销92设置于外壁78的顶部附近,圆柱形销92从外壁78向外延伸。共同配合的狭缝94设置于盖子72的壁88内,从盖子的壁的底部垂直延伸,然后横向延伸。在使用过程中,托盘70装入到盖子72上,然后旋转,将托盘70以卡口连接器的方式锁定到盖子72上。

现在参照图9-14,一种用于将分离器装置10同轴装配到中心供热回路中的装配件,一般用附图标记130表示。装配件130包括用于接收管道开口端的第一和第二承槽132、每个承槽132上用于与管道端部形成密封连接的已知设计的螺杆压缩配件134、以及第一和第二John Guest Speedfit(RTM)连接器136,其分别流体连通地连接到第一和第二管道承槽,用于在分离器装置10的外壳12上装配到入口和出口96的Speedfit(RTM)连接器98。可以对第一阀门138进行操作,断开第一管道承槽132和第一Speedfit(RTM)连接136之间的流体连接,且可以对第二阀门140进行操作,断开第二管道承槽132和第二Speedfit(RTM)连接136之间的流体连接。两个承槽132中的其中一个比另一个具有更深的管道接收深度,例如两倍的管道接收深度。

管道承槽132的后面提供有塞子142。塞子包括临接管道承槽132后面的圆形段143,以及位于每个塞子142端部的方形卡爪段145。圆形段143的曲面周围提供有凹槽147,O型环149装入凹槽内,伸出曲面。

设置有一间隔装置144,用于装配在第一和第二管道承槽132的背部之间。间隔装置144的尺寸满足,当装配好后,装配件130上的Speedfit(RTM)连接器136与分离器装置10的外壳12上的承槽96上的Speedfit(RTM)98间距相等。

间隔装置144基本成型为圆柱形。间隔装置144的外壁152上提供有凹槽146,从而在不增加质量的情况下提供扭转刚性。承槽148从间隔装置的头部延伸并穿过底部,并形成为具有两个相反的截断段(truncated segment)的圆。在间隔装置144的两端,承槽148具有无截断段的圆形部分。承槽的圆端段的尺寸可以接收塞子142的圆段143。塞子142的圆段143不会穿过具有截断段的承槽148的部分,但是,塞子142的方形段145可以装配到截断的承槽段中。

当将塞子插入承槽148内时,塞子142的方形卡爪段145将进入到具有截断段的承槽148的部分中。因此,作用于其中一个压缩配件134上的回转力会通过间隔装置传递到另一个压缩配件134。通过使用两个板手,转移到分离器装置10的入口和出口96的净力矩明显减小,降低了损坏的可能性。可选地,如图12所示,装配件130还提供有装配夹具180。装配夹具包括至少两个孔182,用于套在连接器136上。该装配夹具确保在分离器装置10分离时,连接器136保持对齐。这消除了装配过程中损坏分离器装置10的可能性。如果需要,卡爪可具有不同的横截面,如六边形。

当塞子142完全插入承槽148中时,塞子142上的O型环149将塞子142保持在承槽148中并对齐,需要正向力才能移除。

在使用过程中,移除中心供热的供水或回水管道的一部分。如果对中心供热管道进行操作是可能的,那么就可以不移除间隔装置144而安装装配件130。先安装具有更深管道接收深度的承槽132,并越过管道端部,直到具有较小管道深度的承槽132面向管道的另一开口端。然后将装配件在另一方向滑动,越过开放口的管道端。以这种方式安装的装配件如图12所示,图13所示为还装配有过滤器10。

如图14所示,间隔装置144可替换性地全部移除,从而使分离器装置10能够装配到供水或回水供热管道的非垂直部分上。如果移除间隔装置,盖帽150可套在塞子142上。连接器136可分别装配到每个John Guest(RTM)Speedfit连接器98中,并且可旋转360°,以适配中心供热管道的倾斜路径。为了使分离器10达到最高的效率,必须以垂直朝向进行安装,放泄阀外壳106在最上端,排水阀116在最低点。优选的也是最普遍的选择是安装为垂直朝向,通过移除间隔装置144,利用装配件130的灵活性,分离器装置10可以安装到中心供热管道的非垂直切割部分。在图14中,装配件130安装在分离器装置10上,从而接收上管道承槽中的垂直管道以及下管道承槽中的水平管道。

通过使入口和出口连接对齐,分离器装置10容易安装。此外,入口和出口可互换,即,流动方向可以改变,且流体以任何方向流动,分离器都将有效地运行。所有的分离腔体都能够应对外壳内两个方向的旋流。通过提供三个腔体,可以实现过滤,同时流速不会受到明显的影响。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1