生物流体样本分析卡盒的制作方法

文档序号:11793757阅读:196来源:国知局
生物流体样本分析卡盒的制作方法与工艺

本申请要求以在2009年12月18日提交的美国临时专利申请序号为61/287,955、以及在2009年12月30日提交的美国临时专利申请序号为61/291,121的优先权,上述申请的内容在此以引用方式并入本文。

技术领域

本发明总体上涉及用于生物流体分析的装置,特别涉及用于采集、处理、以及容纳用于分析的生物流体样本的卡盒。



背景技术:

现有技术中,对于生物流体样本诸如全血、尿、脑脊髓液、体腔液等中的微粒或细胞内含物,通过在载玻片上涂抹较少量的未稀释流体,并且在显微镜下评估该涂片,对其进行评估。根据这种涂片,可以得到合理的结果,但细胞完整性、数据的精确性和可靠性主要取决于技术人员的经验和技术。

评估生物流体样本用的另一周知方法涉及:稀释一定量(a volume of)的样本,将其置于容器内,人工方式对稀释后样本内的组成物进行评估以及计数。如果样本内有高浓度的组成物则必须稀释,而对于常规血细胞计数会需要几种不同的稀释,因为现实中不可能为了补偿样本内组成物数目的不一致而使用多个计数室或装置来检验不同体积。在来自典型个体的全血样本中,例如,每微升(μl)血液样本有大约4.5×106个红细胞(RBC),但每微升血液样本只有大约0.25×106个血小板和0.007×106个白细胞(WBC)。为了确定白细胞总数,基于所使用的恰当稀释技术,必须在大约一份血液对二十份稀释液(1:20)的范围内稀释全血样本,高达近似1:256的稀释,以及,通常还必须选择性地用一种或多种试剂来裂解红细胞。裂解红细胞能有效地将其从视野中除去,从而能够看到白细胞。为了确定血小板总数,必须在1:100至大约1:50,000的范围内稀释血液样本。然而,血小板计数并不要求样本中红细胞裂解。按这种方式评估全血样本的不足包括,稀释处理费时费钱,由于样本数据内稀释液带来的误差概率增加,等等。

评估生物流体样本用的另一方法是阻抗或者光学流式细胞计数法,其涉及通过一个或多个小径量孔(orifice)循环经稀释的流体样本,小径量孔各自采用阻抗测量或者光学系统,在不同组成物依次通过液力聚焦的贯流分析池(flow cell)时可以散射光形式感测不同组成物。在全血的情况下,样本必须进行稀释,以减轻红细胞相对于白细胞和血小板的压倒性数量,以及,提供足够的细胞-细胞间隔并且使重合最小化,使得可以对个别细胞进行分析。与流式细胞计数法相关的不足包括,需要对分析样本所需的多种不同试剂进行流体处理和控制,这样会导致成本高而且需密集维护。

评估生物流体样本用的另一现代方法是评估白细胞的特定亚型,以获得总的白细胞计数。此方法利用了小杯(cuvette),其具有带一个透明板的大约25微米厚的内腔。透过透明板的光对用于白细胞的小杯进行扫描。当受到光激发时,小杯内的试剂促使白细胞发荧光。特定白细胞的荧光提供了特定类型白细胞存在的指示。在这种方法中因为红细胞形成暗层(obscuring layer),它们自身不能被计数或被评估,血小板亦不能被计数或评估。

对于评估基本未经稀释的生物流体样本所使用的方法及装置,要求:一是能提供精确的结果,一是不使用大量的一种或多种试剂,一是评估期间不要求样本流体流动,一是能执行微粒成分分析,以及一是费用低。



技术实现要素:

根据本发明的一方面,提供了一种生物流体样本分析卡盒。本卡盒包括壳体、流体模块、以及分析室。流体模块包括样本采集端口以及初级通道,并且与壳体连接。初级通道尺寸形成为能借助于毛细作用力吸取流体样本,并且与采集端口处于流体连通。初级通道相对于采集端口固定就位,使得布置在采集端口内的流体样本的至少一部分引入初级通道。分析室与壳体连接,并且与初级通道处于流体连通。

根据本发明的另一方面,提供了一种生物流体样本分析卡盒。卡盒包括壳体、流体模块、以及成像托盘。流体模块包括样本采集端口以及初级通道。流体模块与壳体连接,而初级通道与采集端口处于流体连通。成像托盘包括分析室。托盘相对于壳体可选择方式置于打开位置和闭合位置。在闭合位置中,分析室与初级通道处于流体连通。

根据本发明的另一方面,提供了一种生物流体样本分析卡盒。卡盒包括样本采集端口、通道、一个或更多个扰流器、以及分析室。采集端口安装于嵌板,而通道布置在嵌板中。通道与采集端口处于流体连通。扰流器布置在通道内。分析室与通道处于流体连通。

通过下文提供的本发明的具体描述、以及如附图中所示,本发明的特点以及优点将更为明了。

附图说明

图1图示一种生物流体分析装置;

图2是本发明卡盒实施例的示意性俯视图,图示处于闭合位置的成像托盘以及流体模块;

图3是本发明卡盒实施例的分解图,图示流体模块在壳体外部;

图4是本发明卡盒实施例的分解图,图示成像托盘在壳体外部;

图5示出流体模块处于打开位置的本发明卡盒实施例;

图6是本发明卡盒实施例的侧视图;

图7是流体模块的俯视图;

图8是流体模块的剖视图,包括采集端口;

图9和图10是图8所示采集端口的剖视图,图示处于打开位置以及闭合位置的阀实施例;

图11和图12是图8所示采集端口的剖视图,图示处于打开位置以及闭合位置的阀实施例;

图13是位于壳体封罩内的流体模块的仰视图,其中流体模块处于打开位置;

图14是位于壳体封罩内的流体模块的仰视图,其中流体模块处于闭合位置;

图15是次级通道的示意性轴测图,示出布置在通道内的扰流器实施例;

图16是次级通道的示意性轴测图,示出布置在通道内的扰流器实施例;

图17是次级通道的示意性轴侧图,示出通道几何形状变化的实施例;

图18是次级通道的示意性轴侧图,示出通道几何形状变化的实施例;

图19是示意性图示关于采集通道布置的样本放大镜;

图20是壳体基座的俯视图;以及

图21A-图21C是样本室的示意图。

具体实施方式

参照图1,本生物流体样本卡盒20可操作以收纳生物流体样本诸如全血样本或其他生物流体样品。在大部分实施方式中,承载样本的卡盒20与自动分析装置22一起使用,自动分析装置22具有成像元件以及用于控制流程处理并分析样本图像的处理器。分析装置22与美国专利No.6,866,823(其在此以引用方式并入本文)中所描述的类似,是一种可选的分析装置。然而,本卡盒20并不局限于和任何特定的分析装置一起使用。

现在,参照图2至图6,卡盒20包括流体模块24、成像托盘26、以及壳体28。流体模块24和成像托盘26二者各自从壳体28的横向端与壳体28连接。

流体模块

现在,参见图7至图10,流体模块24实施例包括样本采集端口30、溢流通路32、初级通道34、阀36、次级通道38、一个或多个闩部40、气压源42、外部气压端口44,并且具有外缘部46、内缘部48、第一横侧部50、以及第二横侧部52,横侧部50、52在外缘部46与内缘部48之间延伸。

样本采集端口30布置在外缘部46与第二横侧部52的相交处。采集端口30包括钵部54和边缘入口64之一或二者。钵部54在上表面56与底面58之间延伸。采集端口30进一步包括样本进口60、钵-进口通道62、以及边缘入口-进口通道66。在可选实施例中,采集端口30和样本进口在流体模块24中可以位于其他部位;例如,采集端口30可以位于外缘部内侧,而样本进口60可以布置成与钵部54直接连通,而不包括将钵部54和进口60连接的中间通道。

在图7至图10所示的实施例中,钵部54具有局部球形几何形状。诸如由局部球面几何形状提供的凹形几何形状便于样本重力汇集在钵底面58的中心内。其他的凹钵几何形状包括圆锥或角锥式几何形状。钵部54并不局限于任何特定的几何形状。选择钵部54的容积,以满足设计卡盒20所针对的应用;例如,对于血液样本分析,大约50μl的钵部容积通常是合适的。

钵-进口通道62布置在钵部54的底面58中,并且提供通路,通过该通路,沉积进钵部54的流体可以从钵部54行进至样本进口60。在一些实施例中,钵-进口通道62具有的截面几何形状能够促使布置在通道62内的样本由毛细作用力通过通道62朝样本进口60吸引。例如,钵-进口通道62可以具有大致直线状的截面几何形状,其侧壁-侧壁间距允许毛细作用力作用于样本,以吸引样本通过通道62。通道62中与样本进口60相邻的部分包括弯曲底面,以便于流体样本流入进口60。

边缘入口64紧邻外缘部46与第二横侧部52的相交处布置。在图7所示的实施例中,边缘入口64布置于楔形凸部的端部。楔形凸部给直接用户(最终用户)提供视觉帮助,标识可以吸进采集端口30的血液样本,例如来自手指或足跟的刺血、或者来自从动脉或静脉源抽取的样本。边缘入口64不是必需的;也就是,一些实施例只包括钵部54。

外缘入口-进口通道66在边缘入口64与样本进口60之间延伸。在一些实施例中,边缘入口-进口通道66具有的截面几何形状能够有助于使布置在通道66内的样本由毛细作用力通过通道66朝样本进口60吸引;例如,大致直线状的截面几何形状,侧壁间距允许毛细作用力作用于样本,以吸取样本通过通道66。通道66中与样本进口60相邻的部分包括弯曲底面,以便于流体样本流入进口60。

样本进口60是这样一种通路,其在通道62、66(于钵部54与边缘入口64之间延伸)与初级通道34之间提供流体连通。在图7至图10所示的实施例中,样本进口60大致垂直于通道62、66延伸。如上所述,在一些实施例中,样本进口60可以布置成与钵部54直接连通。

初级通道34在样本进口60与次级通道38之间延伸。初级通道34的容积大到足以保持适用于待分析的流体样本体积,而在一些实施例中,此容积大到足以允许样本在初级通道内进行混合。初级通道34的截面几何形状的尺寸形成为,允许经由毛细作用力通过该通道从进口60吸取布置在初级通道34内的样本流体。在一些实施例中,将一种或更多种试剂67(例如:肝素、EDTA(乙二胺四乙酸)等)沉积在初级通道34内。随着通过初级通道34吸取样本流体,使试剂67至少部分与样本混合。初级通道34中与样本进口60相反的端部通向次级通道38,从而,提供了从初级通道34进入次级通道38的流体连通路径。

在一些实施例中,一个或更多个标记端口(flag port)39(参见图7)紧邻次级通道38从初级通道34横向延伸而出。各标记端口39的几何形状是,使得在初级通道内传送的样本到达标记端口39,并且通过例如毛细作用被吸引在端口39中。可以感测端口39内样本的存在,以验证样本在初级通道内34的位置。优选地,标记端口39的高度相对小于其宽度,以提高端口39内样本的可见性,同时只需要一小部分样本。各标记端口39可以包括气孔。

在一些实施例中,初级通道34(或标记端口39)包括样本放大镜41(参见图19),优选该样本放大镜41紧邻次级通道38布置。样本放大镜41包括布置于通道34一侧或两侧(例如,顶部和底部)的透镜。透镜将初级通道34的对准部分放大,从而便于感测初级通道34内样本的存在。优选地,透镜的放大倍数足够大,以使对准的通道部分(或端口)内的样本容易由直接用户目视。

次级通道38在初级通道34与可包括排出端口68的末端之间延伸。次级通道38和初级通道34之间相交处的截面几何形状构造成,使得毛细作用力不能从初级通道34吸取样本进入次级通道38。在一些实施例中,次级通道38包括样本计量端口72。次级通道38的容积大到足以允许样本在次级通道38内来回移动,这种流体移动可以用来混合样本内的样本组成物和/或试剂。在一些实施例中,对于排出端口68布置透气但不透液体的膜74,以允许次级通道38内的空气离开通道38,但同时阻止流体样本经由端口68离开通道38。

样本计量端口72具有的截面几何形状允许样本被毛细作用力吸出次级通道38。在一些实施例中,样本计量端口72的容积是适用于即将进行的分析的预定容积;例如,大致等于分析用样本的期望体积。计量端口72从次级通道38延伸至托盘24的外表面(如下所述,当托盘处于闭合位置时,其外表面与样本分析室118中嵌板122部分的外表面对准)。

在流体模块24内的一位置处布置阀36,以在初级通道34的一部分与样本进口60之间阻止液流(包括气流)。阀36可在打开位置与闭合位置之间选择性地致动。在打开位置,阀36不会在样本进口60与初级通道34中连续到次级通道38的部分之间阻止液流。在闭合位置,阀36在初级通道34的至少一部分与样本进口60之间至少大致阻止液流。

在图9和图10所示的实施例中,阀36包括可偏移膜76(例如,亲水压敏胶带)和悬臂梁阀致动器78(参见图13至图14)。可以使致动器78偏移以使膜76移动传送至初级通道34,从而在通道34与进口60之间建立液封。图9图示阀36处于打开位置的实施例,其中,从样本进口60至初级通道34的液道(流体路径)打开。图10图示阀36处于闭合位置的实施例,其中膜76阻塞从样本进口60到初级通道34的液道,从而,阻止其间的液流(包括气流)。图9和图10中所示的阀36实施例是可选的阀36实施例的示例。阀36并不局限于这种实施例。例如,阀36可以可选择地布置成在初级通道34或样本进口60内的其他位置起作用;例如,可布置于任何位置点处,只要能够使初级通道34中位于阀36与次级通道38之间的部分内所布置的流体容积适用于待做的分析即可。

现在,参照图11和图12,在一可选实施方式中,阀36如上所述在打开位置和闭合位置之间操作,但阀的致动利用了磁性机构而不是单纯的机械机构。在这种实施方式中,阀36包括磁性被吸部件154(例如,钢珠轴承)和布置在钵盖136内的磁体156(参见图11)。流体模块24包括第一凹穴158和第二凹穴160。第一凹穴158布置在流体模块24内,位于可偏移膜76下方。第二凹穴160布置在流体模块24中,其位于可偏移膜76和初级通道34的上方,与第一凹穴158对准。当流体模块24处于闭合位置时(参见图12),第一凹穴158和第二凹穴160与流体模块中对准钵盖136的部分(例如,钵部54)大致对准。在没有磁吸引(例如,当流体模块24处于如图11所示的打开位置时)时,部件154位于第一凹穴158内,并且没有使可偏移膜76偏移;也就是,初级通道34未被堵塞。在流体模块24的闭合位置(参见图12),磁体156吸引部件154,导致部件154使可偏移膜76偏移进第二凹穴160。结果,可偏移膜76阻塞初级通道34,从而,阻止样本进口60与初级通道34之间的液流(包括气流)。在变化实施方式中,磁体156布置在流体模块壳体28内,而部件154和可偏移膜76布置在流体模块24中,位于初级通道34上方。在流体模块闭合位置,磁体156与部件154对准,并且向下拉磁体156和可偏移膜76,以阻塞样本进口60与初级通道34之间的液道。

在一些实施例中,气压源42(例如,参见图7)包括可选择性变化的容积(例如,隔膜、囊等)以及致动器80(参见图13至图14)。气压源42容纳预定量的空气,并且与气道82连接。在位于阀36接合初级通道34处与次级通道38之间的相交处,气道82继而与初级通道34连接。致动器80可操作以压缩容积,从而提供压缩空气进入气道和初级通道34。在图13至图14所示的实施例中,致动器80以悬臂梁式结构与流体模块24连接,其中,施加至致动器80的作用力促使自由端将源容积压缩。上述气压源42实施例是压缩空气的可选的源示例。本发明并不局限于此。

外部通气口44相邻于气压源42布置在流体模块24内(参见图7)。气道84使外部通气口44与延伸至初级通道34的气道82连接。外部通气口44构造成收纳与分析装置22相关联的气源,该分析装置22选择性地提供压缩空气或抽真空。盖件86(例如,可破裂膜)密封外部通气口44,以防止在外部气源与外部通气口44连接之前气体或流体于此通过。在一些实施例中,卡盒20只包括外部通气口44而不包括气压源42。

在一些实施例中,卡盒20包括一个或更多个样本扰流器,样本扰流器构造在或布置在初级通道34和次级通道38之一或二者内。在图15至图16所示的实施例中,扰流器是布置在次级通道38内的结构146,其成形为扰乱次级通道38内样本的流动。在正常流动状态下,扰乱是充分的,以促使样本内的组成物以大致均匀方式分布在样本内。扰流器结构146的示例是金属丝线圈146a,其具有不同直径的线圈(参见图15)。在另一示例中,扰流器结构146具有连接在一起的多个交叉结构146b(例如,“+”)(参见图16)。这些是扰流器结构146的示例,而本发明并不局限于这些示例。

在一些实施例中(参见图17至图18),通道34和通道38之一或二者构造成包括通道几何形状变化形式的样本扰流器146,其在正常操作条件(例如,速度等)下扰乱次级通道38内流动的样本。扰乱是充分的,以促使组成物至少大致均匀地分布在样本内。例如,图17中所示的次级通道38实施例具有截面面积收缩的部分148。收缩部分148的各端具有过渡区域150a、150b,在此过渡区域中,次级通道38的截面面积从第一横截面几何形状过渡到第二横截面几何形状。次级通道38内流动的流体到达第一过渡区域150a并随着进入收缩部分148而加速,然而随着通过第二过渡区域150b离开收缩部分而减速。可以改变过渡区域150a、150b内的面积变化比、以及收缩部分146与次级通道38中相邻部分之间的截面面积差,以在样本内建立期望程度的非层流(例如,紊流);例如,过渡区域150a、150b变化越大以及截面的面积差越大,紊流程度越大。样本流动为紊流(例如,非层流)所达到的程度可以定制,以针对给定样本分析应用建立期望的混合量。

图18图示扰乱次级通道38内样本流动的通道几何形状变化152的另一示例。在这种示例中,该通道接在一个曲线路径(而不是直线路径)之后,随着在曲线路径内流动改变方向,建立紊流的样本流动。曲线路径偏离直线路径的程度及比例将影响流动的紊流程度;例如,路径偏离越多和/或其偏离比率越大,样本流动中的紊流程度越大。

现在,回到图7至图10,溢流通路32包括入口88、通道90、以及排气口92。入口88在通路32与钵部54之间提供流体连通。在图9和图10中可以看出,入口88布置于钵部54内一定高度位置处,使得在流体可以进入入口88之前,预定量的流体可以聚集在钵部54内,并且填充初级通道34。通道90具有的截面几何形状允许样本流体(例如,借助于毛细作用)被吸引进入并且通过通道90。通道90具有的容积适合于保持大多数应用中预期的所有过量样本流体。排气口92紧邻通道90中与入口88相反的端部布置。排气口92允许布置在通道90内的空气随着过量样本被吸进通道90而逸出。

溢流通道90、初级通道34、气道82和84、以及次级通道38布置在流体模块24内部,并因而被围住。本发明流体模块24并不局限于特定构造。例如,流体模块24可以由对接起来的两个配合嵌板形成。上述通道34、90、38以及气道82、84的任何一个或者全部可以形成在一个嵌板中、形成两个嵌板中、或者共同地形成在嵌板之间。图2至图4所示的流体模块24具有外表面94(也就是,“顶”面)。在一些实施例中,顶板94的一个或多个部分(例如,布置在初级通道34以及次级通道38上方的部分)或者其它嵌板是透明的,因而,可以感测上述通道34、38内样本的存在以进行控制。在一些实施例中,整个顶板94是透明的,以及贴花纸96粘附于嵌板94的多个部分。

现在,参照图13和图14,流体模块闩部40中的至少一个具有与自壳体28伸出的零件98相接合的结构,如下文所述。在一些实施例中,各闩部40构造为悬臂,悬臂具有布置于一端的凸耳100。

成像托盘

现在,参照图4,成像托盘26包括在长度方向延伸的第一侧轨部102、在长度方向延伸的第二侧轨部104、以及在宽度方向延伸的端轨部106。侧轨部102、104大致互相平行,并且与端轨部106大致垂直。成像托盘26包括室窗部108,室窗部108布置在由侧轨部102、104和端轨部106限定的区域中。搁板(shelf)110在窗部108与上述轨部102、104、106之间围绕窗部108延伸。

成像托盘26包括至少一个闩件112,闩件112操作以选择性地将成像托盘26固定在壳体28内。例如,在图4所示的实施例中,一对闩件112自搁板110向外悬伸。各闩件112包括缝隙(开孔)114,用于收纳安装于壳体28内的凸耳142(参见图20)。当成像托盘26完全收纳于壳体28内时,闩件缝隙114对准并收纳凸耳142。如下文所述,壳体28包括相邻于各凸耳的进出端口144。贯穿各进出端口144延伸的致动器(例如,装在分析装置22内的致动器)可以选择性地使闩件112与凸耳142分离,以允许成像托盘26相对于壳体28移动。

样本分析室118安装于成像托盘26,与室窗部108对准。室118包括第一嵌板120和第二嵌板122,至少一个嵌板足够透明,以允许对布置在嵌板120与嵌板122之间的生物流体样本成像以进行分析。第一嵌板120和第二嵌板122典型地大致互相平行、大致互相对准、并且以在两个嵌板120、122的对置面之间延伸一定距离的方式彼此分隔开。嵌板120、122之间的对准限定一个区域,其中光可以垂直于一个嵌板传输,并且光穿过该嵌板、样本、以及如果另一嵌板也透明的情况下也穿过该另一嵌板。对置嵌板表面之间的间隔距离(也称为室的“高度”)是这样的,使得布置在两个表面之间的生物流体样本将与两个表面都接触。嵌板120、122之一或二者安装于(例如,通过焊接、机械固定、粘合剂等)绕成像托盘窗部108布置的搁板110。

现在,参照图21A至图21C,美国专利公开No.2007/0243117中描述了可选的室118的示例,该专利文献的全部内容在此以引用方式并入本文。在这种室实施例中,第一嵌板120和第二嵌板122由至少三个分隔件124(典型为球面珠)彼此隔开。嵌板120、122中的至少一个或分隔件124具有足够的挠性,以允许室高度126接近分隔件124的平均高度。尽管分隔件124中有较小的公差变化,但相对挠性使得室118具有大致均匀的高度126。例如,在分隔件124是相对挠性的这些实施例中(参见图21B),较大的分隔件124a压缩以让大多数分隔件124接触嵌板120、122的内表面,从而,使室高度126大致等于平均分隔件直径。相比较,如果第一嵌板120由比分隔件124和第二嵌板122更为挠性的材料形成(参见图21C),第一嵌板120将覆盖在分隔件上,并且达到这样的程度:特定分隔件124大于周围的分隔件124,则第一嵌板120以帐篷状方式绕较大分隔件124挠曲。以这种方式,尽管较小的局部区域偏离平均室高度126,但室的所有分区域(包括帐篷区域)的平均高度非常接近于平均分隔件直径。作用于样本的毛细作用力提供了压缩分隔件124和/或挠曲嵌板120、122所需的作用力。

可选的嵌板材料示例包括透明塑料膜,诸如丙烯酸、聚苯乙烯、聚对苯二甲酸乙二醇酯(PET)、环烯烃共聚物(COC)等。嵌板之一(例如,定位为底板的嵌板122)可以由具有大约50微米(50μ)厚度的材料条形成,而另一嵌板(例如,定位为顶板的嵌板120)可以由相同材料形成,但具有大约23微米(23μ)的厚度。可选的分隔件124的示例包括市场上可购买的聚苯乙烯球面珠,例如,来自美国加利福利亚州Fremont市Thermo Scientific的目录序号4204A的4微米(4μm)直径聚苯乙烯球面珠。本卡盒并不局限于嵌板和/或分隔件的这些示例。

室118典型尺寸形成为能够保持大约0.2至1.0μl的样本,但室118并不局限于特定容量,其容量可以变化以适合分析应用。室118可操作以静止地保持流体样本。使用术语“静止”以描述样本沉积在室118内用于分析,并且在分析期间不会自主移动。关于血液样本中存在的运动,占主导地位的是形成血液样本的组成物的布朗运动,这种运动不会使本发明的使用失效。本卡盒并不局限于这种特定的室118实施例。

壳体

现在,参照图3至图6、图14、以及图20,壳体28的实施例包括基座128、盖件130、用于收纳流体模块24的开口132、托盘缝隙134、钵盖136、阀致动零件138、以及气源致动零件140。基座128和盖件130彼此安装(例如,通过粘合剂、机械固定等)并且共同形成壳体28,包括布置在壳体28内的内腔。可选择地,基座128和盖件130可以是一体结构。用于收纳流体模块24的开口132至少局部布置在盖件130中。开口132构造为,使得当流体模块24收纳于开口132内时流体模块24的顶面94实质上露出。安装于(或者形成在)基座128和盖件130之一或二者的引导面,引导流体模块24相对于壳体28的直线状移动,并且允许相对滑动平移。引导面包括零件98,零件98与一个或更多个流体模块闩部40接合。如下文所述,零件98(参见图13至图14)与闩部40协作,以限制流体模块24的横向移动。钵盖136自盖件130伸出,并且垂悬于开口132的一部分之上(参见图2和图6)。

在安装于流体模块24的阀致动器78随着流体模块24滑进壳体28而将到达零件138的位置处,阀致动零件138向外伸进入壳体内腔。按类似方式,在安装于流体模块24的压力源致动器80随着流体模块24滑动进入壳体28而将到达零件140的位置处,气源致动零件140向外伸进入壳体内腔。

成像托盘26通过托盘缝隙134插进或拔出壳体28。安装于基座128和盖件130之一或二者上(或者形成在其中)的引导面引导成像托盘26相对于壳体28的线状移动,并且允许相对滑动平移。壳体28包括一个或更多个凸耳142,各凸耳142对准布置在成像托盘26闩件112内的缝隙114以与其接合。壳体28进一步包括与各凸耳142相邻的进出端口144。贯穿各进出端口144的致动器(其装在分析装置22中)可以选择性地使闩件122与凸耳142分离,以允许成像托盘26相对于壳体28移动。

分析装置

如上所述,本生物流体样本卡盒20适合于和自动分析装置22一起使用,该自动分析装置22具有成像硬件以及用于控制样本图像处理及分析的处理器。尽管本卡盒20并不局限于和任何特定的分析装置22一起使用,但类似于美国专利No.6,866,823中所描述的分析装置22是可选的装置的示例。为了便于描述以及理解本卡盒20,下面描述可选的分析装置22示例的一般特性。

分析装置22包括物镜、卡盒保持及操作装置、样本照明器、析像器、以及可编程分析器。物镜和卡盒保持装置之一或二者可互相移近或彼此远离,以改变相关的焦点位置。样本照明器使用以预定波长的光照射样本。利用析像器捕获透过样本的光或来自样本的荧光,并且将表示所捕获光的信号发送至可编程分析器,在该处将其处理成图像。按照允许以每单位为基础确定图像内所捕获的透光率(或荧光强度)的方式,生成图像。

可选的析像器的示例是电荷耦合器件(CCD)式图像传感器,其将透过(或来自)样本的光的图像转换成电子数据格式。互补金属氧化物半导体(CMOS)式图像传感器是可以使用的图像传感器的另一示例。可编程分析器包括中央处理器(CPU),并且与卡盒保持及操作装置、样本照明器、以及析像器连接。使CPU适合于(例如,通过编程)以接收信号,并且选择性地执行必要功能,以执行本方法。

操作

本卡盒20初始设置有流体模块24,该流体模块24设定(或可定位)处于打开位置,如图5和图13所示。在此位置,使采集端口30露出并且定位以接收生物流体样本。流体模块闩部40与安装于壳体28的零件98相接合,将流体模块24维持处于打开位置(例如,参见图13)。当流体模块24布置处于打开位置时,阀36布置处于打开位置,其中样本进口60与初级通道34之间的液道打开。

临床医师或其他直接用户将生物流体样本(例如,血液)注入入口边缘64或钵部54,该生物流体样本来自诸如注射器、患者指尖或足跟刺血的源,或来自从动脉或静脉源所抽取的样本。样本初始布置在通道62、66和/或钵部54之一或二者中,并且(例如,由毛细作用)吸进样本进口60。在沉积进钵部54的样本量足以与溢流通路入口88接合的情况下,作用于样本的毛细作用力将吸取样本进入溢流通道90。样本将继续被吸取进入分流溢流通路32,直至钵部54内的液面降到低于溢流通路入口88。吸进溢流通路32的样本之后将驻留在溢流通道90中。溢流排出端口92允许随着样本被吸进通道90使空气逸出。

钵部54内的样本被重力吸引进入布置在钵部底面58内的钵-进口通道62。一旦样本进入钵-进口通道62和/或入口边缘-进口通道66,重力和毛细作用力之一或二者使样本移动进入样本进口60,继而进入初级通道34。由毛细作用力吸进初级通道34的样本将继续在初级通道34内行进,直至样本“团块”的前端抵达往次级通道38的入口。在初级通道34和/或标记端口39对直接用户可视见的那些实施例中(包括借助于放大镜41的那些实施例),直接用户能容易地确定足量样本已吸入卡盒20。如上文所指出,在本卡盒20的某些实施例中,在初级通道34周围或内部可以配置一种或更多种试剂67(例如,全血分析中的EDTA(乙二胺四乙酸)或肝素)。在这些实施例中,随着样本在初级通道34内行进,使试剂67在与样本混合的同时驻留在初级通道34内。直接用户继而滑动流体模块24进入壳体28。

随着流体模块24滑动进入壳体28,发生一连串事件。首先,随着流体模块24向内滑动,阀致动器78与阀致动零件138接合。结果,使阀36从打开位置动作至闭合位置,从而,阻止样本进口60与初级通道34之间的液流。随着流体模块24进一步滑动进入壳体28,压力源致动器80与气源致动零件140接合,气源致动零件140促使气压源42增大气道82内的气压。现在,更高的气压作用于布置在初级通道34内的流体样本,强制至少一部分流体样本(以及一些应用中的试剂)进入次级通道38。闭合的阀36阻止样本回流进入样本进口60。随着流体模块24完全滑进壳体28,布置在各闩部40端部的凸耳100与安装于壳体28的零件98接合,从而,将流体模块24锁定在壳体28内。在被锁定的完全插入位置中,钵盖136遮盖样本进口60。之后,流体模块24处于防干扰状态,在此状态下可以贮藏,直至进行分析。防干扰状态便于样本卡盒20的处理及运输。在没有气压源42的那些实施例中,在此状态下样本可以驻留在初级通道34内。

在直接用户将卡盒20插进分析装置22之后,分析装置22定位并且放置卡盒20。在样本收集和样本分析之间,通常有一段时间。在全血样本的情况下,血液样本内的组成物(例如,红细胞、白细胞、血小板、以及血浆)可能沉降并且成为非均匀分布。在这种情况下,有益的是,在分析之前混合样本使得组成物在样本内大致均匀分布。为了实现这一点,使布置在流体模块24中的外部通气口44可操作,以收纳设置在分析装置22内的外部气源探针。外部气源提供的气流增大了气道82、84以及初级通道34内的气压,并因此提供了原动力作用于流体样本。还可操作外部气源以抽吸真空,降低气道82、84以及初级通道34内的气压,从而提供原动力以于相反方向吸引样本。通过使样本在初级通道34和次级通道38之一或二者中来回循环,可以使流体样本混合成为均匀分布。在那些实施例中,其包括一个或更多个扰流器146,其构造在或布置于初级通道34和次级通道38之一或二者中。扰流器促进样本内组成物(和/或试剂)的混合。取决于应用,通过使样本经过扰流器146一次,即可实现适当的样本混合。在其它应用中,可使样本如上所述进行循环。

在一些实施例中,通过以预定频率振荡整个卡盒一段时间,也可以实现适当的样本混合。例如,可以利用布置在分析装置22内的卡盒保持及操作装置、或者利用外部换能器等,实现卡盒的振荡。

在充分混合之后,操作外部气源以提供正压,朝次级通道38的末端,将流体样本推到与计量端口72对准并超出的位置。透气但不透液体的膜74(其相邻于排出端口68布置)允许室38内的空气逸出,但阻止流体样本溢出。随着流体样本在次级通道38内行进并且到达样本计量端口72,毛细作用力吸取预定量流体样本进入样本计量端口72。作用于样本的压力(例如,强制样本到达通道末端的通道内的加压空气)促使布置在计量端口72内的样本从计量端口72排出。

当成像托盘26和流体模块24二者都相对壳体28处于闭合位置时(例如,参见图2),样本计量端口72与分析室118的底嵌板122的一部分对准,与室118的顶嵌板120的边缘相邻。样本从计量端口72排出并且沉积于室底嵌板122的顶面。随着样本沉积,样本与室118的边缘接触,并继而由毛细作用吸引进入室118。毛细作用力使室118内可选的量的样本散布开,以进行分析。

成像托盘闩件112继而被装在分析装置22中的致动器接合,以“解锁”成像托盘26,以及,将成像托盘26拉出壳体28,以露出当前载有样本的分析室118用于成像。一旦完成图像分析,使成像托盘26返回卡盒壳体28,于此再一次将其锁定就位。之后,卡盒20可以由操作人员从分析装置22中取下。在闭合位置(例如,参见图2),卡盒20以在应用环境下防止泄漏的方式容纳样本,并且对于直接用户来说可以安全地进行处理。

在可选实施方式中,成像托盘可以使用不同机构“锁定”以及“解锁”。在这种实施例中,一个或多个闩件112也自搁板110向外悬伸,并且包括缝隙114,用于容纳安装于壳体28内部的凸耳142(或其他机械制动装置)。在这种实施例中,闩件进一步包括磁性吸引元件。磁性源(例如,磁体)设置在分析装置22内。为了分离闩件122,操作磁性源以吸引安装于闩件112的元件。磁性源和元件之间的吸引导致悬伸的闩偏出与凸耳142的接合,从而,允许成像托盘26相对于壳体28移动。

虽然参照示范实施例对本发明进行了描述,但本领域技术人员应当理解,在不脱离本发明范围的情况下,可以对其进行多种修改以及对其组成部分进行等效置换。另外,在不偏离本发明实质范围的情况下,可以对本发明的教导进行多种修改以适应特定情形或材料。所以,本文中的特定实施例作为实现本发明的优选实施方式,并不用于将本发明局限于此。作为这种修改的示例,本卡盒20描述为具有布置在流体模块24内的外部通气口44,用于收纳外部气源。在可选实施方式中,可以在流体模块24中包括气压源;例如,布置在流体模块24内的气囊在暴露于热源时可以产生正气压和负气压。作为修改的另一实施例,本发明卡盒在上文中描述为具有特定实施例的分析室118。虽然所描述的卡盒实施例是特别实用的一种,但也可以替代使用其他的室构造。作为修改的又一示例,本卡盒上文描述为具有特定的闩锁机构40、112。但本发明并不局限于这些特定的闩锁实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1