一种金刚石微粉表面制备氧化石墨烯及其化学修饰的方法与流程

文档序号:12435364阅读:880来源:国知局
一种金刚石微粉表面制备氧化石墨烯及其化学修饰的方法与流程

本发明涉及一种氧化石墨烯的制备方法



背景技术:

当今社会水污染问题引起人们广泛的关注,污水处理主要存在的两个问题一个是吸附剂的吸附效率,另外则是吸附剂的分离以及回收利用。密度较大的吸附剂,空隙较小,适合吸附颗粒较小的物质;密度小的吸附剂,空隙较大,适合吸附颗粒较大的物质。目前常用的吸附剂如聚合物吸附剂仍存在选择性差、收率不太高等不足,特别是无机吸附剂,性能不稳定,不能连续操作,劳动强度大,而且炭粉等吸附剂还影响环境卫生。



技术实现要素:

本发明的目的在于提供一种可以作为吸附剂用于污水处理、吸附效果明显、并能够分离回收利用的金刚石微粉表面制备氧化石墨烯及其化学修饰的方法。

本发明的方法包括以下步骤:

(1)金刚石/石墨的制备:

取粒径为1-2微米的金刚石微粉,在水浴超声中用氨水清洗三次,并用酒精清洗抽滤,放入烘箱中干燥,将干燥的金刚石微粉,在1500℃条件下,经真空放电等离子体烧结(SPS)15min,得到烧结块,研磨得到金刚石/石墨粉体;

(2)金刚石/氧化石墨烯的制备:

按每10mL浓硫酸加入0.3g硝酸钾、0.2g石墨化金刚石粉和1.6g高锰酸钾的比例,将质量浓度为98%的浓硫酸放入容器中,在冰水浴的条件下加入硝酸钾固体至完全溶解后加入步骤(1)制得的金刚石/石墨,之后在0.5h内缓慢加入高锰酸钾固体,继续搅拌10min;之后把容器放到35℃的水浴锅中恒温搅拌5h;向容器中缓慢加入与浓硫酸体积比为1:4的超纯水,将容器在80℃油浴中保温30min;然后将容器取出冷却至室温,加入与浓硫酸体积比为1:6:0.4的超纯水和双氧水,静置倒出上层清液,再加入与浓硫酸体积比为1:0.4:4的质量浓度为37.5%的盐酸和超纯水,搅拌均匀,分层后倒出上清液,重复操作2次;向容器中加入超纯水,进行换水6-8次。将得到的固液混合物倒入透析袋中在超纯水环境中透析4天,最后将得到的金刚石/氧化石墨烯的分散液放入冷冻干燥机中进行冻干,得到金刚石/氧化石墨烯固体。

(3)金刚石/氧化石墨烯的化学修饰即金刚石/羧基化氧化石墨烯的制备:

按每100mL超纯水加入100mg金刚石/氧化石墨烯的比例,将步骤(2)制得的金刚石/氧化石墨烯加入超纯水搅拌1h分散均匀,之后按金刚石/氧化石墨烯中-OH与氯乙酸中-COOH的摩尔比为1:100-1:300、氯乙酸与氢氧化钠的摩尔比为1:20-1:30的比例,缓慢加入氯乙酸固体和摩尔浓度为6mol/L的氢氧化钠水溶液,在70-80℃的条件下磁力搅拌2-3h;将得到的溶液用超纯水洗涤至中性,再将所得的溶液在超纯水的环境下进行透析3天,最后将金刚石/羧基化氧化石墨烯分散液放入冷冻干燥机中进行冻干,得到金刚石/羧基化氧化石墨烯;

(4)金刚石/羧基化氧化石墨烯的多层组装处理:

利用金刚石/羧基化氧化石墨烯的表面带有负电荷与带相反电荷的分子可以发生相互作用,可以进行分子间的层层组装,即用表面带有负电荷的金刚石/羧基化氧化石墨烯与表面带有正电荷的聚乙烯亚胺相互作用,之后再利用表面带正电荷的聚乙烯亚胺与表面带负电荷的聚丙烯酸反应,依次循环反应制备具有壳核结构的多层分子组装结构,其制备过程如下:

按每1mL的聚乙烯亚胺溶液加入10-20mg金刚石/羧基化氧化石墨烯粉末的比例,将金刚石/羧基化氧化石墨烯放入试管,加入100mg/mL的聚乙烯亚胺溶液反应磁力搅拌0.5-1h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺固体;再按聚乙烯亚胺溶液与聚丙烯酸的体积比为1:1的比例,向金刚石/羧基化氧化石墨烯/聚乙烯亚胺固体中加入75mg/mL的聚丙烯酸磁力搅拌反应1-2h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸固体;如此循环反应,实现金刚石/羧基化氧化石墨烯的多层组装。

本发明与现有技术相比具有如下优点:

操作简单,制备出一种新型的结构,即金刚石为核包裹石墨和氧化石墨烯的壳核结构,再在此基础上进行层层组装,形成一个多层的壳核结构;该结构由于金刚石的存在其密度和硬度相对较大,进行多层组装之后具有很大的比表面积;该结构可以用于污水的处理,由于其具有较大的表面积增大了吸附质与该结构的接触面积从而增大了吸附传质速率,与此同时该结构的密度和硬度较大,可以更好的进行分离回收利用。

附图说明

图1为本发明实施例1制得的金刚石、金刚石/石墨、金刚石/氧化石墨烯、金刚石/羧基化氧化石墨烯的XRD图。

图2为本发明实施例1制得的金刚石、金刚石/石墨、金刚石/氧化石墨烯、金刚石/羧基化氧化石墨烯的拉曼谱图。

图3为本发明实施例1制得的金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸材料的Zeta电位图。

图4为本发明实施例1制得的金刚石/羧基化氧化石墨烯、金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸材料的扫描图。

具体实施方式

实施例1

取2g粒径为1-2微米的金刚石微粉,在水浴超声中用氨水清洗,15min/次,重复三次,用酒精清洗抽滤3次;将金刚石微粉放入烘箱中干燥后,在1500℃条件下,经真空放电等离子体烧结(SPS)15min,得到烧结块,研磨得到金刚石/石墨粉体。

在500mL的烧杯中加入50mL的浓硫酸(质量分数98%),在冰水浴的条件下加入1.5g硝酸钾固体至完全溶解后加入1g金刚石/石墨粉体,之后在0.5h内缓慢加入8g高锰酸钾固体,继续搅拌10min,之后把烧杯放到35℃的水浴锅中恒温搅拌5h,向烧杯中缓慢加入200mL超纯水,将烧杯在80℃油浴中保温30min,将烧杯取出冷却至室温,加入300mL纯水和20mL双氧水,静置倒出上层清液,再加入20mL盐酸和200mL超纯水,搅拌均匀,分层后倒出上清液,重复操作2次,向容器中加入超纯水,进行换水6次,将得到的固液混合物倒入透析袋中在超纯水环境中透析4天。最后将金刚石/氧化石墨烯的分散液放入冷冻干燥机中进行冻干,得到金刚石/氧化石墨烯固体。

取200mg金刚石/氧化石墨烯加入200mL超纯水在冰水浴条件下搅拌1h,分散均匀后缓慢加入氯乙酸固体3g(金刚石/氧化石墨烯中-OH与氯乙酸中-COOH的理论摩尔比值为1:100),6mol/L的NaOH溶液16mL(氯乙酸与氢氧化钠的摩尔比值是1:20),在70℃的条件下机械搅拌2h。将烧杯取出冷却至室温静置分层倒掉上清液,用超纯水洗涤8次至溶液中性,之后将所得溶液在超纯水环境下进行透析3天,最后将金刚石/羧基化的氧化石墨烯分散液放入冷冻干燥机中进行冻干,得到金刚石/羧基化/氧化石墨烯。

取10mg金刚石/羧基化氧化石墨烯的粉末于试管,之后加入1mL 100mg/mL的聚乙烯亚胺溶液反应磁力搅拌1h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺固体;再向其中加入1mL 75mg/mL的聚丙烯酸磁力搅拌反应2h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸固体;如此循环反应,实现金刚石/羧基化氧化石墨烯的多层组装。

如图1所示,2θ=43.98°,75.28°对应的晶面为(111)(220)是金刚石的特征衍射峰;经过真空放电等离子体烧结得到金刚石/石墨,2θ=26.12°对应的晶面为(002)是石墨的特征衍射峰;2θ=11.75°对应的晶面为(001)是金刚石/氧化石墨烯的特征衍射峰。

如图2所示,1336cm-1对应金刚石的D峰;1351cm-1,1580cm-1、2700cm-1对应于金刚石/石墨的D、G、2D峰。1343cm-1、1591cm-1、2691cm-1对应于金刚石/氧化石墨烯的D、G、2D峰;1346cm-1、1592cm-1、2687cm-1对应于金刚石/羧基化氧化石墨烯的D、G、2D峰。

如图3所示,制备得到的金刚石/羧基化氧化石墨烯与带正电荷的PEI发生相互作用后表面带有负电荷其原因是可是表面有带有-COO-官能团没有完全作用,所以测得的表面为负电荷,将得到的金刚石/羧基化氧化石墨烯/PEI再与带有负电荷的PAA作用,其表面变为更负的电荷。当其进行第二个循环时其与PEI反应后表面带正电荷,之后与PAA反应表面变为负电荷。

如图4所示,可以看出,制备得到的金刚石/羧基化氧化石墨烯表面有片状结构。进行10层组装后的样品表面变得更加光滑,表明表面组装上多层高分子结构。

实施例2

取2g粒径为1-2微米的金刚石微粉,在水浴超声中用氨水清洗,15min/次,重复三次,用酒精清洗抽滤3次,将金刚石微粉放入烘箱中干燥后,在1500℃条件下,经真空放电等离子体烧结(SPS)15min,得到烧结块,研磨得到金刚石/石墨粉体。

在500mL的烧杯中加入50mL的浓硫酸(质量分数98%),在冰水浴的条件下加入1.5g硝酸钾固体至完全溶解后加入1g金刚石/石墨粉体,之后在0.5h内缓慢加入8g高锰酸钾固体,继续搅拌10min,之后把烧杯放到35℃的水浴锅中恒温搅拌5h,向烧杯中缓慢加入200mL超纯水,将烧杯在80℃油浴中保温30min,将烧杯取出冷却至室温,加入300mL纯水和20mL双氧水,静置倒出上层清液,再加入20mL盐酸和200mL超纯水,搅拌均匀,分层后倒出上清液,重复操作2次;经过换水7次,超纯水中透析4天,最后将金刚石/氧化石墨烯分散液放入冷冻干燥机中进行冻干,得到金刚石/氧化石墨烯。

取400mg金刚石/氧化石墨烯加入400mL超纯水在冰水浴条件下搅拌1h,分散均匀后缓慢加入氯乙酸固体4g(金刚石/氧化石墨烯中-OH与氯乙酸中-COOH的摩尔比值约是1:200),6mol/L的NaOH溶液20.5mL(氯乙酸与氢氧化钠的摩尔比值是1:25),在75℃的条件下机械搅拌2.5h。将烧杯取出冷却至室温静置分层倒掉上清液,用超纯水洗涤7次至溶液呈中性,之后将所得溶液在超纯水环境下进行透析3天,最后将金刚石/羧基化氧化石墨烯分散液放入冷冻干燥机中进行冻干,得到金刚石/羧基化氧化石墨烯。

取20mg金刚石/羧基化氧化石墨烯的粉末于试管,之后加入1mL 100mg/mL的聚乙烯亚胺溶液反应磁力搅拌1h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺固体,再向其中加入1mL 75mg/mL的聚丙烯酸磁力搅拌反应2h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸固体;如此循环反应,实现金刚石/羧基化氧化石墨烯的多层组装。

实施例3

取2g粒径为1-2微米的金刚石微粉,在水浴超声中用氨水清洗,15min/次,重复三次,用酒精清洗抽滤3次,将金刚石微粉放入烘箱中干燥后,在1500℃条件下,经真空放电等离子体烧结(SPS)15min,得到烧结块,研磨得到金刚石/石墨粉体。

在500mL的烧杯中加入50mL的浓硫酸(质量分数98%),在冰水浴的条件下加入1.5g硝酸钾固体至完全溶解后加入1g金刚石/石墨粉体,之后在0.5h内缓慢加入8g高锰酸钾固体,继续搅拌10min,之后把烧杯放到35℃的水浴锅中恒温搅拌5h,向烧杯中缓慢加入200mL超纯水,将烧杯在80℃油浴中保温30min,将烧杯取出冷却至室温,加入300mL纯水和20mL双氧水,静置倒出上层清液,再加入20mL盐酸和200mL超纯水,搅拌均匀,分层后倒出上清液,重复操作2次;经过换水8次,超纯水中透析4天,最后将金刚石/氧化石墨烯放入冷冻干燥机中进行冻干,得到金刚石/氧化石墨烯。

取200mg金刚石/氧化石墨烯加入200mL超纯水在冰水浴条件下搅拌1h,分散均匀后缓慢加入氯乙酸固体5g(金刚石/氧化石墨烯中-OH与氯乙酸中-COOH的摩尔比值约是是1:300),6mol/L的NaOH溶液25mL(氯乙酸与氢氧化钠的摩尔比值是1:30),在80℃的条件下机械搅拌3h,将烧杯取出冷却至室温静置分层倒掉上清液,用超纯水洗涤8次至溶液呈中性,之后将所得溶液在超纯水环境下进行透析3天,最后将金刚石/羧基化氧化石墨烯分散液放入冷冻干燥机中进行冻干,得到金刚石/羧基化氧化石墨烯。

取10mg金刚石/羧基化氧化石墨烯的粉末于试管,之后加入1mL 100mg/mL的聚乙烯亚胺溶液反应磁力搅拌0.5h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺固体,再向其中加入1mL 75mg/mL的聚丙烯酸磁力搅拌反应1h,之后离心洗涤7次,得到金刚石/羧基化氧化石墨烯/聚乙烯亚胺/聚丙烯酸固体;如此循环反应,实现金刚石/羧基化氧化石墨烯的多层组装。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1