一种碳包覆过渡金属磷化物复合材料的制备方法及其在析氧反应中的应用与流程

文档序号:16483479发布日期:2019-01-04 22:52阅读:590来源:国知局
一种碳包覆过渡金属磷化物复合材料的制备方法及其在析氧反应中的应用与流程

本发明属于催化剂制备技术领域,特别涉及一种特殊形貌类水滑石插层前驱体控制制备碳包覆过渡金属磷化物,形成一种豆荚状的复合材料,应用于析氧反应催化剂电极。



背景技术:

随着地球人口数量的增加,社会经济的快速发展,能源的需求变得更加紧张。“能源危机”对生态环境的而可持续发展提出了挑战。其中,传统化石能源(如天然气、煤炭、石油等)属于不可再生的一次能源,其在使用过程中资源利用效率低并会产生大量有害气体(如温室气体CO2,NOx,SOx等)。新能源如氢能、太阳能、风能等具有清洁、无污染、来源广泛、可再生、环境友好的特点,引起了全世界的广泛关注。因此,新能源的研究与开发、能源的高效可持续利用以及环境友好成为研究工作者的主要任务。众所周知,氢能作为未来人类社会与经济发展的最佳清洁能源,被认为是21世纪最有前途的能源之一。氢气具有燃烧热值高、来源丰富、运输与储存方便、反应产物无污染等特点,具有广阔的发展前景。此外,燃料电池正以其高效和清洁的特点适应了可持续发展的要求,受到国内外越来越广泛的重视。随着燃料电池技术的快速发展,氢能时代即将来临,氢气的工业化生产也越来越受到关注。尽管电解水制氢工艺成熟,应用广泛,但因电解水的过程中,在阳极和阴极分别同时生成O2和H2,并在两电极表面发生极化反应,由此产析氧、析氢超电势,提高了电解水槽压,能耗增大。然而,电解水发展的瓶颈并不是阴极析氢,而是阳极析氧。

目前,工业电解水制氢中,过高的阳极析氧过电位需要消耗较高的电能,使得能量转换效率低。因此高效电解水制氢的研究成为大家关注的焦点,尤其是提高阳极析氧反应的过电位。在制备阳极催化剂材料过程中,贵金属由于其活性好且稳定性佳,是比较出名的电解水制氢催化剂,如铂、铱、钌等,但这些材料储量稀少、价格昂贵使得它们无法得到大规模的应用。因此研究一种环境友好、价格低廉、储量丰富的析氧反应电催化剂非常重要。近年来,传统的碱性电解水阳极催化剂过渡金属钴、镍化合物表现优良的催化活性且价格便宜,储量丰富,得到了广泛的研究。但是,一般过渡金属磷化物的制备方法较为复杂,实验条件要求较为严格,较难实现,并且所制备的产物团聚严重,易造成金属颗粒团聚,催化剂活性组分分散度较差,导致催化剂的反应活性和使用寿命较差。例如固态复分解法、有机金属分解法、电解熔盐法等,这些方法多是在上世纪五、六十年代发展起来的,大部分需要在高温高压下进行,有的还需要非常昂贵的原料,不少反应中以磷化氢等剧毒物质作为磷源,不易操作,且生成的副产物较多。近来,随着人们对磷化物的关注,一些新的合成方法相继被发明出来,比如:Zhang等人使用三辛基膦(TOPO)作为一种磷源和溶剂,与油酸钴在350℃分解,反应获得超支化Co2P纳米结构(Nano Lett.2011,11,188-197);Jin等人则通过快速微波法制备得到了形貌可控的Co2P纳米线(Gree.Chem.2016,18,1459-1464)。但是这些合成Co2P纳米结构的方法需要使用一些有毒的原料或比较昂贵的有机化合物,这会对环境造成一定的污染,而且经济成本高。

类水滑石由于其具有主体层板金属阳离子组成可调变性、层间阴离子可调变性以及主客体相互作用可调变性等结构特点逐渐进入人们的视野。类水滑石是由层间阴离子与带正电荷层板之间有序组装而形成的化合物,其化学组成通式为:[M2+1-xM3+x(OH)2]x+[An-]x/n·yH2O,其中M2+和M3+位于主体层板上,分别代表二价与三价的金属阳离子;An-为层间阴离子;x为M3+/(M2++M3+)的摩尔比值;y为层间水分子的个数。由于类水滑石材料独特的结构特点,使得类水滑石材料为我们研究新型催化剂、催化剂前体以及可调变结构及性质的催化剂提供了很有意义的平台。Chen等以NiAl-LDH为前驱体,通过氢气还原前驱体,得到Co单质,再将红磷与其物混,在惰性氛围下高温焙烧得到镍磷化物(ACS Catal.2015,5,5756-5765)。但是使用该方法合成磷化物的过程中会形成高含量的非活性物质Al2O3,从而影响电催化活性;而且会使用红磷作为磷源,在焙烧的过程中产生白磷气体,易燃有毒。

与上述方法明显不同的是,本发明采用一步法,以类水滑石材料—氢氧化物的插层材料作为前驱体,在一定条件(温度、时间)下经过焙烧处理可以得到碳包覆过渡金属磷化物类催化材料。这类碳包覆过渡金属磷化物材料的优点在于:其结构良好,碳包覆的豆荚状特殊形貌能够对过渡金属磷化物纳米颗粒形成一层很好的保护膜,使其循环稳定性大大增强,同时与碳的复合很好的增加了该催化剂复合材料的导电性,并且使得纳米颗粒分散均匀,尺寸较小。

本发明以氢氧化物的插层材料作为前驱体,在一定条件下焙烧处理制备合成了豆荚状碳包覆的过渡金属磷化物纳米颗粒,其独特的豆荚状形貌使得该复合材料具有较高的分散度和较小的纳米颗粒;并且碳层均匀包裹在过渡金属磷化物纳米颗粒外层,有效地阻止了纳米颗粒的进一步团聚,从而提高了其电催化活性。将其作为析氧反性电极催化剂后,发现其具有较为优异的催化活性,其在1M KOH碱性条件下,达到10mA cm-2的电流密度所需要的过电势为320mV,塔菲尔斜率为70mV/dec,并且在1.65V的恒电压下,循环时间长达24小时以上。



技术实现要素:

本发明的目的是提供一种简便制备豆荚状碳包覆过渡金属磷化物复合材料的方法以及该复合材料在析氧反应电极材料中的应用。

本发明所提供的碳包覆的过渡金属磷化物复合材料的制备方法,其特征在于包括以下步骤:

(1)将过渡金属无机盐与有机碱混合溶解均匀,并且在惰性气氛保护下将含碳含磷的插层物质立即加入上述溶液当中,置于高温高压环境下晶化反应,水和乙醇离心洗涤,干燥得到同时含碳源与磷源阴离子插层的过渡金属氢氧化物前驱体;

(2)将步骤(1)中的过渡金属氢氧化物前躯体置于惰性气氛炉中高温焙烧,最终得到所述碳包覆的过渡金属磷化物纳米颗粒。

其中,步骤(1)中,所述过渡金属无机盐可选自六水合硝酸钴、六水合硫酸钴、六水合氯化钴、六水合硝酸镍、六水合硫酸镍、六水合氯化镍、九水合硝酸铁、三水合硝酸铜中的一种或者几种;所述有机碱可选自尿素、六亚甲基四胺、氨水中的一种或者两种;所述插层物质可选自单正十二烷基磷酸盐(SDP)、植酸钠、植酸中的一种或者几种;所述高温高压环境下晶化在100–200℃进行,优选150–180℃;晶化时间为1–10h,优选的5–8h;所述过渡金属无机盐、有机碱和插层物质之间的比例为1~5:1~15:1~10。

步骤(2)中,所述惰性气氛选自氮气、氩气、氢氩气中的一种;所述高温焙烧过程是指以1–10℃/min,优选的2–5℃/min;升温到500–1000℃,优选的600–800℃;恒温保持1–10h,优选的2–8h。

本发明的再一个目的在于将制备得到的具有特殊豆荚状形貌的碳包覆过渡金属磷化物纳米颗粒作为析氧反应电极材料催化剂的应用,其中碳层的均匀包覆所形成的豆荚状特殊形貌可以有效阻止颗粒间的进一步团聚,同时纳米级的颗粒尺寸使得其催化活性位点暴露较多,有利于提高其电催化活性。

本发明首先合成出层板含过渡金属M2+(M=Ni、Co等),层间同时含碳源与磷源的阴离子插层的氢氧化物类水滑石材料前驱体,然后通过惰性气氛下焙烧制备得到。该催化剂材料结构特点为过渡金属磷化物颗粒尺寸处于纳米级水平,并且均匀被包裹在碳层里,形成一种特殊的豆荚结构。该复合材料应用于电解水中的正极反应—析氧反应中,可以有效提高催化剂的性能,即降低起始电位,提高催化活性,并且使用寿命长,稳定性好。同时其原料价格低廉,储量丰富,制备过程简单易操作,环境友好。其在0.1–1M KOH碱性条件下,达到10mA cm-2的电流密度所需要的过电势为280–340mV,塔菲尔斜率为60–80mV/dec,并且在1.65V的恒电压下,循环时间长达1–24小时以上。

本发明所述的一种豆荚状碳包覆过渡金属磷化物纳米颗粒催化剂,其特征在于组成结构为:过渡金属磷化物纳米颗粒限域在碳层当中,形成一种碳包覆的纳米金属粒子催化剂,纳米金属粒子分散均匀;单个颗粒粒径在10–20nm,材料总体为黑色粉末状物质;过渡金属为Ni、Co、Fe、Cu等过渡金属。

与现有技术相比较,本发明所提供的采用类水滑石插层材料后期惰性气氛焙烧的方法制备得到了豆荚状碳包覆过渡金属磷化物,所得到的豆荚状结构使得金属磷化物纳米颗粒分散更为均匀,碳包覆结构使得该复合材料的导电性能得到提升。该催化剂不仅可以有效降低析氧反应的析氧过电位,并且具有突出的反应稳定性,进而提高电极材料的使用寿命。并且催化剂制备过程无需使用有机溶剂或者其他毒性添加剂,方法简便容易,环境友好,绿色环保。

附图说明

下面结合附图对本发明的具体实施方式作进一步详细的说明。

图1是实施例1中针状SDP插层Co(OH)2粉末的X射线衍射图样(XRD);

图2是实施例1中针状SDP插层Co(OH)2粉末的扫描电子显微镜图片(SEM);

图3是实施例1中豆荚状碳包覆Co2P纳米颗粒的X射线衍射图样(XRD);

图4是实施例1中豆荚状碳包覆Co2P纳米颗粒的扫描电子显微镜图片(SEM);

图5是实施例1中豆荚状碳包覆Co2P纳米颗粒的高分辨透射电子显微镜图片(HRTEM);

表1是实施例1得到的活性复合材料与及商业IrO2基催化剂样品作为析氧反应电极材料的性能结果对比。

具体实施方式

作为析氧反应电极催化剂材料,其优异的催化性能表现为具有较低的起始电位以及较小的塔菲尔斜率,一般情况下,我们使用10mA cm-2电流密度所对应的过电势为衡量标准。

实施例1

A.将7.2mmol Co(NO3)2·6H2O、24mmol尿素,加入200mL烧杯a中,加入150mL去二氧化碳水,超声溶解。将3.6mmol单正十二烷基磷酸盐(SDP)加入到150mL烧杯b中,加入90mL去二氧化碳水,超声溶解。将混合分散均匀的b瓶中的溶液加入到a瓶当中,惰性气氛保护,搅拌一段时间,然后将a中溶液转移到高压釜中,150℃晶化6小时,晶化结束后反复用去二氧化碳水和乙醇洗涤并离心至pH值为7,之后在70℃下干燥24小时,得到高度分散的针状SDP插层的Co(OH)2前驱体(XRD,SEM图见图1与图2);

B.将步骤A中制备的高度分散的针状SDP插层的Co(OH)2前驱体放置于高温气氛炉中,通入H2/Ar气,流速为60mL/min。升高炉内至800℃,升温速率为2℃/min,保持6小时,然后自然冷却至室温,得到豆荚状碳包覆的Co2P纳米颗粒(XRD,SEM,HRTEM图见图3、图4与图5)。

对得到的针状SDP插层的Co(OH)2前驱体进行XRD、SEM表征,结果见图1与图2,由图可以看出SDP成功的插入到了Co(OH)2层间,并且具有针状特殊形貌,分散均匀。

对得到的碳包覆的Co2P纳米颗粒进行XRD、SEM、HRTEM表征,结果见图3、图4与图5,由图可以看出本发明成功得到了碳包覆的Co2P纳米颗粒,并且具有一种特殊的豆荚状结构,纳米颗粒均匀分散在碳层之中,被碳层包覆。

本发明所提供的制备方法,制备出的碳包覆过渡金属磷化物Co2P/C,特别适合用于作为析氧反应电极材料催化剂。其性能与商业化应用的IrO2相比较,结果如表1所示:

1)从表1中可以看出,豆荚状碳包覆的Co2P纳米颗粒作为析氧反应电极材料催化剂时,在1M KOH碱性条件下,达到10mA cm-2的电流密度所需要的过电势为320mV,塔菲尔斜率为70mV/dec。

2)从表1中可以看出,与商业化应用的IrO2相比较,其性能较为接近。

实施例2

其他条件与实施例1相同,不同之处仅在于无机金属盐为六水合硝酸镍。电催化性能测试结果汇总在表1中。

实施例3

其他条件与实施例1相同,不同之处仅在于无机金属盐为六水合硫酸钴。电催化性能测试结果汇总在表1中。

实施例4

其他条件与实施例1相同,不同之处仅在于有机碱为六亚甲基四胺(HMT)。电催化性能测试结果汇总在表1中。

实施例5

其他条件与实施例1相同,不同之处仅在于插层材料为植酸钠。电催化性能测试结果汇总在表1中。

实施例6

其他条件与实施例1相同,不同之处仅在于晶化温度为180℃。电催化性能测试结果汇总在表1中。

实施例7

其他条件与实施例1相同,不同之处仅在于焙烧惰性气氛为氮气。电催化性能测试结果汇总在表1中。

对比实施例1

其他条件均与实施例1相同,不同之处仅在于合成前驱体过程中不加入插层物质,然后与插层物质物理混合,惰性气氛下焙烧。电催化性能测试结果汇总在表1中。

表1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1