排气系统的制作方法

文档序号:16366286发布日期:2018-12-22 08:27阅读:185来源:国知局
排气系统的制作方法
内燃发动机是污染物的潜在来源。希望减少来自内燃发动机的污染物排放。在经济体如欧盟、美国和全世界,已经实施了越来越严格的环境法规,并计划了进一步的法规,以减少污染物从各种来源,特别是内燃发动机排放到大气中。关注的污染物包括nox、一氧化碳、颗粒物质、烃、硫化氢和氨气。已经提出多种方法用于减少来自ic发动机的排放。wo-a-2010/004320公开了用于贫燃内燃发动机的排气系统,其包含第一基底整料,第一基底整料包含用于氧化一氧化氮(no)的催化剂,下游是具有入口通道和出口通道的壁流式过滤器,其中该入口通道包含nox吸收剂催化剂,该出口通道包含用于用含氮还原剂对氮氧化物进行选择性催化还原的催化剂。wo-a-2012/175948公开了一种用于内燃发动机、用于处理一系列污染物的排气系统,其具有贫nox阱和催化型基底。该催化型基底具有第一区和第二区,其中第一区包含负载在载体上的铂族金属,第二区包含负载在沸石上的铜或铁。第一区或第二区另外包含负载在无机氧化物上的贱金属氧化物或贱金属。wo-a-2005/014146公开了使用单个整料的催化剂布置,和净化操作在贫条件下的内燃发动机的废气的方法。将薄壁、多孔的载体涂覆在具有氮氧化物储存催化剂的一侧上和在具有scr催化剂的另一侧上。例如当空气中的氮气与氧气在ic发动机内反应时,会产生氮氧化物(nox)。这样的氮氧化物可以包含一氧化氮和/或二氧化氮。一种减少nox排放的催化方法是具有氧化催化剂的贫nox阱,其将内燃发动机中产生的nox有效地转化为氮气,不过废气中的一些nox会在该阱变得饱和时泄漏。一些副产物还可以由贫nox阱产生,例如非选择性还原路径可以导致产生氨气。当在贫条件中(低燃料/氧气比)产生废气时,nox吸附在贫nox吸附剂阱(lnt)上。lnt可以通过将它与富(高燃料/氧气比)废气(在发动机管理系统的控制下产生)间歇接触来再生。这样的富化促进吸附的nox的解吸和nox在lnt中存在的还原催化剂上的还原。富废气还由nox产生氨气(nh3)。nox阱可以在标准操作期间储存高浓度的硫。该硫需要被定期除去以保持nox阱的性能。使用高温贫/富循环来使催化剂脱硫。但是,该方法使h2s释放到环境中。虽然h2s目前不是受管制的污染物,但是提供减少硫化氢排放的手段是有利的。wo-a-2014/080220公开了一种在整料基底上的分区催化剂,其用于控制脱硫期间在贫nox阱中形成的硫化氢气体。但是,难以在减少h2s释放的同时保持催化剂对其他污染物的良好性能和保持对颗粒物质的良好过滤。us-a-2011/0014099公开了一种催化活性颗粒物质过滤器,其具有硫化氢阻塞功能。us-a-2008/214390公开了一种用于净化废气的催化剂,其能够抑制硫化氢排放。us-a-2009/082199公开了一种适于净化来自ic发动机的废气的催化剂,特别是其能够抑制硫化氢排放。在该文献中,铂族金属催化剂和氧化物被描述为是分开的,以避免pgm催化剂的劣化/中毒。在用在过滤器基底上的催化剂载体涂层(washcoat)中,h2s还原性材料和pgm分开会导致该过滤器基底的孔隙率显著降低,因为多层或厚的催化剂容易堵塞过滤器基底中的通道和孔。孔隙率降低容易使过滤器基底作为颗粒过滤器的有效性降低。并且,催化组分分开会需要使用另外的整料,这在空间珍贵的一些排气系统中可能是困难的。所以,存在持续的需求,要减少h2s排放,同时还不降低催化除去其他污染物如颗粒物质、烃和co的有效性,特别是因为新法规降低了ic发动机排放的可接受水平。本发明的目的是解决这些问题。因此,在第一方面中,本发明提供一种用于内燃发动机的排气系统,其中该排气系统包含贫nox阱(lnt)和其上具有nox储存和还原区的壁流式整料基底,该壁流式整料基底具有40%或更高的预涂覆孔隙率(优选40%-75%),该nox储存和还原区包含负载在第一载体上的铂族金属,其中第一载体包含一种或多种碱土金属化合物、镁/铝混合氧化物、二氧化铈和至少一种贱金属氧化物,该至少一种贱金属氧化物选自氧化铜、氧化锰、氧化铁和氧化锌。可以有两种或更多种贱金属氧化物的混合物。这是非常有利的,因为这样的排气系统实现nox和颗粒物质还有co和烃的排放的减少。并且,该排气系统有利地减少h2s排放。通过本发明的排气系统,在单个整料中实现减少nox、h2s和颗粒物质排放,是非常有利的。壁流式整料基底相对高的孔隙率实现有效的催化活性和颗粒物质过滤,甚至是对于更具挑战性的新近的用于车辆ic发动机的驾驶测试周期。并且,根据本发明,使用贱金属氧化物显著降低对lnt脱硫期间形成的h2s的排放,同时保持对nox的有效吸附,甚至当该贱金属氧化物合并在pgm载体涂层(washcoat)中时。令人惊讶地,使用贱金属氧化物不毒化pgm,也不显著影响nox储存和还原区。这使得贱金属、nox储存和还原材料(例如碱土金属化合物,优选钡化合物)和pgm存在于单个载体涂层中,这可以减小多孔整料上催化剂涂层的厚度,由此保持良好的颗粒物质性能并降低不可接受的背压的可能性。优选地,贱金属氧化物包括氧化锌。优选地,可以将氧化锌引入载体涂层中。可选地,第一载体中的氧化锌可以源自引入载体涂层中的通常适合的锌化合物(例如硝酸锌、碳酸锌、氢氧化锌或者其两种或更多种的混合物),其在后续烧制过程中分解来形成氧化锌。优选地,第一载体包含1重量%或更少的氧化锆。优选氧化铈不含锆或氧化锆。第一载体通常包含粒状材料,优选粒度(例如d90粒度)为1μm-25μm,更优选2μm-20μm,甚至更优选2μm-15μm,或者2μm-12μm,最优选4μm-10μm。优选地,该或各碱土金属化合物包括镁、钙、锶或钡的氧化物、羧酸盐(例如醋酸盐)、碳酸盐和/或氢氧化物或者这些化合物的任意两种或更多种的混合物。更优选地,碱土金属化合物包括钡化合物。虽然在制备催化剂期间,在空气或贫发动机废气的存在下,碱土金属物类可以以氧化物、羧酸盐(例如醋酸盐)、碳酸盐和/或氢氧化物的形式存在,但是碱土金属物类的一些或大部分,例如钡,可以为氧化物、碳酸盐和/或氢氧化物的形式。镁/铝混合氧化物可以包括镁掺杂的氧化铝。镁/铝混合氧化物可以包括铝酸镁尖晶石。优选地,镁/铝混合氧化物包含0.1重量%-12重量%的量的镁,基于该镁/铝混合氧化物的重量计。优选第一载体以90-200g/ft3的负载量包含碱土金属化合物(优选一种或多种钡化合物),基于该碱土金属的重量计。第一载体通常以100-300g/ft3的负载量包含贱金属氧化物,基于该贱金属(如视情况而定的zn、cu、fe和/或mn)的重量计。优选地,铂族金属可以选自铂、钯和铑或其混合物。优选的铂族金属可以包含pt:pd重量比2:1-8:1的铂和钯的混合物。pt:pd重量比优选>3:1,更优选>4:1,更优选3:1-7:1,最优选4:1-6:1。优选nox储存和还原区中的总铂族金属负载量为5-100g/ft3,优选10-90g/ft3,更优选20-80g/ft3,更优选30-70g/ft3,最优选40-60g/ft3,基于pgm的重量计。通常,壁流式整料基底的预涂覆孔隙率为40%或更高,41%或更高,42%或更高,优选43%或更高。也可以使用更高的孔隙率47%或更高,49%或更高,51%或更高,55%或更高,59%或更高,60%或更高,61%或更高,或者62%或更高。通常,壁流式整料基底的预涂覆孔隙率为75%或更低,可以为70%或更低。壁流式整料基底的预涂覆孔隙率可以为40%-75%,41%-75%,42%-70%,或者42%-67%。这是有利的,因为这样相对高的孔隙率使得废气良好地流过整料基底中的通道壁,有效地强化氧化催化区与废气之间的相互作用和由此强化转化,但是由于贱金属氧化物的有利属性,并不会不可接受地增加背压。有利地,nox储存和还原区可以施用到单层中,由此减少壁流式过滤器中催化层的厚度,并由此降低高孔隙率壁流式过滤器中的背压。nox储存和还原区的载体涂层负载量可以为0.5-3.0g/in3,基于载体涂层的干重计。有利的是,本发明的排气系统在整料基底上还包含另外的催化区。另外的催化剂的有利的例子是整料基底上的选择性催化还原区,该选择性催化还原区包含负载在第二载体上的铜或铁,第二载体包含分子筛。分子筛可以选自β沸石(bea)、八面沸石(fau)(例如x-沸石或y-沸石,包括nay和usy)、l-沸石、菱沸石、zsm沸石(例如zsm-5(mfi)、zsm-48(mre))、具有8个四面体原子的最大开孔的所谓小孔分子筛优选cha、eri或aei、ssz-沸石(例如ssz-13(cha)、ssz-41、ssz-33、ssz-39)、镁碱沸石(fer)、丝光沸石(mor)、钾沸石(off)、斜发沸石(heu)、硅质岩、铝磷酸盐分子筛(包括金属铝磷酸盐如sapo-34(cha))、中孔沸石(例如mcm-41、mcm-49、sba-15),或者其混合物;更优选地,该沸石是β沸石(bea)、镁碱沸石(fer)或者选自cha、eri和aei的小孔分子筛;最优选铝硅酸盐cha或aei。如果存在,选择性催化还原区的载体涂层负载量可以为0.5-3.0g/in3。在选择性催化还原区中,优选cu。nox储存和还原区和选择性催化还原区(如果存在)可以各自在同一壁流式整料基底的部分上。在例如车辆的排气系统中空间有限的情况中,这是特别有利的,允许提供紧凑和不那么复杂的系统。使用壁流式整料的巨大优势是,该整料充当非常有效地减少颗粒物质排放的过滤器基底。壁流式整料基底通常包含入口端、出口端和由该壁流式基底的内壁限定的多个通道,该基底具有在该入口端和该出口端之间延伸的轴长。该壁流式过滤器的通道从入口端或出口端交替封闭,因此该通道包含具有开放的入口端和封闭的出口端的入口通道,和具有封闭的入口端和开放的出口端的出口通道。这确保了废气流从入口端进入通道,流过多孔通道壁,并从导向出口端的不同通道离开过滤器。废气流中的颗粒物质被有效地捕集在过滤器中。nox储存和还原区可以位于壁流式整料基底从其一端开始的通道中,选择性催化还原区可以位于壁流式整料基底从其另一端开始的通道中。在nox储存和还原区和选择性催化还原区在同一壁流式整料基底的部分上的情况中,该nox储存和还原区可以在该整料基底的轴长的10%-90%上延伸,该选择性催化还原区在90%-10%上延伸。所以,nox储存和还原区的轴长与选择性催化还原区的轴长可以重叠整料基底的总轴长的20%或更少。nox储存和还原区可以位于选择性催化区的上游或下游,但是优选上游。nox储存和还原区通常存在于壁流式整料基底的入口端的入口通道上,选择性催化还原区存在于壁流式整料基底的出口端的出口通道上。优选这种取向,尤其是在较高温度的排气系统中,因为scr区位于比nox储存和还原区更冷的位置有利于减少氨气泄漏。优选壁流式整料基底的孔具有9μm-25μm的直径(平均孔径,mps)。这个范围的孔径适于载体涂层,借此催化剂和载体可以施用到通道的壁,允许用于催化活性的相对高的表面积,而不会不可接受地增加背压。mps可以用水银孔率法来测定。优选地,壁流式整料基底包含具有入口通道的入口端和具有出口通道的出口端,并且nox储存和还原区位于该整料基底的入口端的入口通道的壁上和/或壁内,和该整料基底的出口端的出口通道的壁上和/或壁内。在第二方面中,本发明提供一种催化壁流式整料基底,该壁流式整料基底在其上具有nox储存和还原区,该壁流式整料基底具有40%或更高的预涂覆孔隙率,该nox储存和还原区包含负载在第一载体上的铂族金属,第一载体包含碱土金属化合物、镁/铝混合氧化物、二氧化铈和贱金属氧化物,该贱金属氧化物选自氧化铜、氧化锰、氧化铁或氧化锌。本发明第二方面的任选和优选的特征对应于第一方面的那些任选和优选的特征。通常,nox储存和还原区可以使用载体涂覆(washcoat)程序置于基底上。使用载体涂覆程序来制备整料基底的通用方法如下所述。载体涂覆优选如下来进行:将构成载体(包含一种或多种碱土金属化合物、镁/铝混合氧化物、二氧化铈和至少一种贱金属氧化物)的固体颗粒制浆(例如在水中),以使它们具有平均直径(例如d90)小于20μm,优选10μm或更小的粒度。浆料优选含有4-40重量%的固体,更优选6-30重量%的固体。还可以在浆料中引入另外的组分如稳定剂或促进剂,形成水溶性或水分散性化合物或络合物的混合物。然后可以用浆料涂覆基底一次或多次,由此在该基底上沉积所需负载量的催化材料。可以通过任何已知手段将铂族金属添加到涂覆有载体的基底整料,手段包括铂化合物(例如硝酸铂)的浸渍、吸附或离子交换,但是常规上将该铂族金属作为一种或多种可溶性铂族金属盐添加到载体涂料浆料中。在第三方面中,本发明因此提供一种制造催化型整料基底的方法,该方法包括提供壁流式整料基底,该壁流式整料基底具有40%或更高的预涂覆孔隙率,制备nox储存和还原区载体涂料,该载体涂料包含铂族金属源、碱土金属化合物和镁/铝混合氧化物的源、二氧化铈和至少一种贱金属氧化物,该至少一种贱金属氧化物选自氧化铜、氧化锰、氧化铁和氧化锌,和将该nox储存和还原区载体涂料施用到该整料基底的至少第一部分。第一方面的排气系统非常有利于减少来自ic发动机的nox、h2s、颗粒物质、hc和co的排放。所以,在第四方面中,本发明提供一种处理来自内燃发动机的废气的方法,该方法包括使该废气流过根据第一方面的排气系统,其中该废气包含间歇变富化的贫废气。术语“贫”和“富”相对于发动机中燃料燃烧的化学计量点,即燃料完美地燃烧使烃加氧气转化为二氧化碳和水的空气与燃料的重量比。空气超过该化学计量点时形成贫废气,燃料过量时形成富废气。在第五方面中,本发明提供装有根据第一方面的排气系统的压燃式发动机。在第六方面中,本发明提供一种车辆,其包含根据第五方面的压燃式发动机。本发明的上述和其他特性、特征和优点将由以下详细描述,并结合附图和实施例而变得清楚,它们示例地说明了本发明的原理。本说明书全篇提及“方面”是指结合该方面描述的特定特征、结构或特性被包括在本发明的至少一个方面中。所以,本说明书全篇多个位置出现的表述“在某方面中”不必然全都指同一方面,而是可以指不同方面。并且,本发明任何方面的特定特征、结构或特性可以在一个或多个方面中以任何适当方式组合,如本领域技术人员由本技术实现要素:而显见的。在这里提供的说明书中,记载了诸多具体的细节。但是,可以理解,本发明可以不需这些具体的细节来实施。在其他实例中,详细地显示了公知的方法、结构和技术,以避免对本说明书的模糊理解。为了更好地理解本发明,参考附图,其中:图1示意性地图示了根据本发明的排气系统。图2显示了h2s泄漏的量(单位mg)与实施例1、2、3和4的600℃和650℃的入口温度的图表。图3显示了吸附的平均nox作为实施例1、2、3和4的300℃至450℃的入口温度的函数的图表。图1示意性地显示了本发明的第一排气系统2。排气系统2包含第一整料基底4,其形成贫nox阱(lnt)催化剂。来自发动机(未示出)的废气在第一整料基底/贫nox阱4的上游通过入口10进入第一整料基底4,通过管道8离开第一整料基底4。废气然后进入第二整料基底6,然后通过出口12离开。出口12的下游可以有其他催化区(例如被动或主动选择性催化还原区),或者废气可以释放到大气。第二整料基底6是具有蜂窝体结构的63%孔隙率的过滤器壁流式sic整料基底,有许多小的平行的薄壁通道轴向穿过该基底,并且该壁流式基底的通道交替堵塞,这允许废气流从入口进入通道,然后流过多孔通道壁,再从导向出口的不同通道离开过滤器。第二整料基底6涂覆(使用载体涂覆方法)有nox储存和还原催化剂,其包含重量比5:1的pt:pd(48gft-3的总pgm负载量)和铝酸ce/镁、二氧化铈、醋酸钡和氧化锌(作为贱金属氧化物,250gft-3的锌负载量)的载体。贱金属氧化物替代地或另外地包含氧化铜、氧化锰和/或氧化铁。图1的第二整料基底6可以如以下实施例中所述来形成。以仅示例的方式提供以下实施例。实施例1将铝酸ce/镁尖晶石在水中制浆,并研磨到小于10μm的d90。添加pt和pd的水溶性盐,然后添加二氧化铈和醋酸钡。搅拌混合物以均化,和形成涂料浆料。将涂料浆料施用到3.0升体积的sic壁流式过滤器基底,其具有300个孔腔/平方英寸,12.5密耳(千分之英寸)的壁厚,和63%的孔隙率。使用强迫空气流干燥涂层,并在500℃煅烧。过滤器上的成品催化剂涂层具有5:1的pt:pd重量比和48gft-3的总pgm负载量。实施例2-锌将铝酸ce/镁尖晶石在水中制浆,并研磨到小于10μm的d90。添加pt和pd的可溶性盐,然后添加二氧化铈和醋酸钡。将氧化zn添加到浆料,并搅拌混合物以均化。将涂料浆料施用到3.0升体积的sic壁流式过滤器基底,其具有300个孔腔/平方英寸,12.5密耳(千分之英寸)的壁厚,和63%的孔隙率。使用强迫空气流干燥涂层,并在500℃煅烧。过滤器上的成品催化剂涂层具有250gft-3的锌负载量,5:1的pt:pd重量比和48gft-3的总pgm负载量。实施例3-锰将铝酸ce/镁尖晶石在水中制浆,并研磨到小于10μm的d90。添加pt和pd的可溶性盐,然后添加二氧化铈和醋酸钡。将氧化mn添加到浆料,并搅拌混合物以均化。将涂料浆料施用到3.0升体积的sic壁流式过滤器基底,其具有300个孔腔/平方英寸,12.5密耳(千分之英寸)的壁厚,和63%的孔隙率。使用强迫空气流干燥涂层,并在500℃煅烧。过滤器上的成品催化剂涂层具有250gft-3的锰负载量,5:1的pt:pd重量比和48gft-3的总pgm负载量。实施例4-铁将铝酸ce/镁尖晶石在水中制浆,并研磨到小于10μm的d90。添加pt和pd的可溶性盐,然后添加二氧化铈和醋酸钡。将氢氧化亚铁添加到浆料,并搅拌混合物以均化。将涂料浆料施用到3.0升体积的sic壁流式过滤器基底,其具有300个孔腔/平方英寸,12.5密耳(千分之英寸)的壁厚,和63%的孔隙率。使用强迫空气流干燥涂层,并在500℃煅烧。过滤器上的成品催化剂涂层具有250gft-3的铁负载量,5:1的pt:pd重量比和48gft-3的总pgm负载量。实施例5.控制h2s性能使用实验室合成气工作台测试来测定涂覆的过滤器的h2s控制性能。从各实施例的催化剂取核样品。将这些核在800℃水热老化16小时。使用贫和富模拟废气混合物来代表贫nox阱脱硫过程中产生的那些。将反应器加热到第一评价温度,并使贫气体混合物穿过样品20秒。然后将气体混合物切换到富气体混合物20秒。在测试期间重复这种交替贫和富气体混合物的循环。然后将温度增加到下一个评价点,并重复贫/富序列。气体混合物浓度提供在表1中,两种情况中余量均是氮气。表1贫气体混合物富气体混合物co214%14%hc120ppm(c1)2000ppm(c1)o21.7%0h2o5%5%h200.07%co00.24%h2s0500ppm连续测量过滤器样品下游的h2s浓度,并在600和650℃的温度测定h2s的峰浓度。将各温度的峰值称为该温度的h2s泄漏。图2显示,实施例1在600-650℃的温度表现出比实施例2、3和4更多的h2s泄漏。实施例6.控制nox储存性能使用实验室合成气工作台测试来测定涂覆的过滤器的nox储存性能。从催化剂实施例1、2、3和4取核样品。将这些核在800℃水热老化16小时。将反应器加热到第一评价温度,并使贫气体混合物穿过样品300秒。然后将气体混合物切换到富气体混合物16秒。在测试期间再重复9次这种交替贫和富气体混合物的循环。然后将温度增加到下一个评价点,并重复贫/富序列。气体混合物浓度提供在表2中,两种情况中余量均是氮气。表2贫气体混合物富气体混合物co26%10.3%c3h645ppm1700ppmo210.5%1.45%h2o6.6%12%h20%0.4%co0.03%2%no100ppm200ppm空速62,000h-152,000h-1按照在每个温度评价点,10个贫/富循环中,每升催化剂体积储存的平均nox(按克no2计)(g/l)来计算储存nox的量。结果示于图3中。图3显示,包含zn的实施例2具有比分别包含mn和fe的实施例3和4更大的nox储存。在更高的温度(约300℃以上),实施例2的更大nox储存更高。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1