一种甲烷干重整反应耦合复合催化剂再生的方法与流程

文档序号:15255076发布日期:2018-08-24 20:29阅读:393来源:国知局

本发明涉及复合催化剂的再生领域,具体涉及一种甲烷干重整反应耦合复合催化剂再生的方法。



背景技术:

钙循环过程(calciumlooping)是指氧化钙与二氧化碳的碳酸化反应生成碳酸钙,以及碳酸钙分解产生氧化钙和二氧化碳的过程。钙循环过程主要的研究内容是氧化钙作为高温二氧化碳吸附剂的研究。大量的研究在于吸附剂的碳酸化反应的性能,而在碳酸钙分解这一重要步骤研究并不深入。因为人们习惯于认为碳酸钙的分解是一个用外加热的常规热分解过程。

碳酸钙的分解是一个强吸热的气-固反应,受反应温度、压力的反应平衡以及传热和传质的影响,特别与颗粒粒径有重要的关系。florin等(n.h.florin,a.t.harris.reactivityofcaoderivedfromnano-sizedcaco3particlesthroughmultipleco2capture-and-releasecycles[j].chem.eng.sci.,2009,64(2):187-191.)研究了粒径为40nm的纳米caco3的分解性能,得出纳米caco3煅烧分解反应转化率比微米级caco3煅烧分解反应转化率提高一半以上的结论。luo等(c.luo,etal.morphologicalchangesofpuremicro-andnano-sizedcaco3duringacalciumloopingcycleforco2capture[j].chem.eng.&technol.,2012,35(3):547-554.)研究比较了微米级氧化钙和纳米级氧化钙在钙循环过程微观结构的变化。wu等(s.f.wu,q.h.li,j.n.kim.propertiesofananocao/al2o3co2sorbent[j].ind.eng.chem.res.,2008,47(1):180-184.)实验比较了70nm和80μm的caco3颗粒分解得到的氧化钙反应吸附二氧化碳速率,在温度范围500-650℃内,纳米级氧化钙反应速率和最终转化率比微米级氧化钙都有明显提高。同时测得的纳米碳酸钙分解温度比一般微米级的工业碳酸钙的分解温度低200度左右的结果。上述的研究中尽管采用了纳米级氧化钙,使碳酸化反应以及纳米碳酸钙分解性能与微米级氧化钙相比有很大地提高,但是,由于纳米碳酸钙的分解受分解反应平衡的限制,一方面需要高温分解,高能耗的问题仍然存在。另一方面,受供热效率影响分解速率低。此外,分解产生的二氧化碳的利用也是一个未解决的重要问题。

对于镍基催化剂应用于甲烷二氧化碳干重整反应,现有技术中也有很多的研究。abdullah等(b.abdullah,n.a.a.ghani,dai-vietn.vo.recentadvancesindryreformingofmethaneoverni-basedcatalysts[j].j.cleanerprod.,2017,162:170-185.)研究发现由于高温条件下镍基催化剂的烧结和表面积炭会导致镍催化剂失活,使该技术问题一直困扰着镍基催化剂在甲烷二氧化碳干重整反应中有效地应用。



技术实现要素:

本发明的目的在于针对现有技术的不足,提供一种甲烷干重整反应耦合复合催化剂再生的方法,由于复合催化剂中含有caco3,将钙循环技术中碳酸钙的分解反应和甲烷干重整反应耦合,解决了caco3分解受高温平衡限制的技术问题,达到强化碳酸钙分解以及将碳酸钙分解产生的二氧化碳经干重整反应生成合成气加以利用的目的。

本发明所提供的技术方案为:

一种甲烷干重整反应耦合复合催化剂再生的方法,将复合催化剂填充到反应器中,通入甲烷或甲烷混合气,在600-850℃下,复合催化剂中caco3进行分解反应;分解反应产生的二氧化碳与甲烷进行甲烷干重整反应,生成一氧化碳和氢气的合成气;所述复合催化剂包括caco3、活性镍成份以及氧化铝载体。

如图1所示,本发明中的复合催化剂颗粒内的碳酸钙受热首先发生热分解反应,见反应式(1)。反应产生的二氧化碳与通入的甲烷吸附在活性镍成份的表面,发生原位甲烷干重整反应(dryreformingmethane,简称drm)生成一氧化碳和氢气,即合成气,见反应式(2)。

由于原位发生了甲烷干重整反应,从而降低复合催化剂中碳酸钙周围的二氧化碳浓度,根据勒夏特勒定律,又促使碳酸钙反应平衡向生成氧化钙方向移动,达到了强化碳酸钙分解反应的目的,降低分解反应可能发生的温度,也缩短了分解时间,提高了分解效率。

甲烷和二氧化碳是两种温室气体,其中经过干重整反应生成一氧化碳和氢气的比例为1:1的合成气,可直接用于费托合成甲醇、烃类等其他有用化工产品和燃料。而且干重整制合成气几乎不消耗水,而大量利用二氧化碳,降低能耗的同时并缓解温室气体减排压力。

本发明中的复合催化剂组分分别以cao、nio和al2o3计,各组分质量比为cao:nio:al2o3=2-7:1:1.0-3.5。

甲烷干重整反应积炭的形成主要由ch4裂解和co歧化这两个反应导致。对于ch4裂解和co歧化反应活性镍成份都有催化作用。复合催化剂中caco3发生热分解反应生成cao,cao的存在增加了复合催化剂的碱性,抑制了甲烷的裂解和co的歧化反应。此外,本技术方案中由于碳酸钙分解反应和甲烷干重整反应的耦合,降低了碳酸钙的分解温度,从而大大降低了甲烷裂解产生积炭的速率,达到抑制积炭的效果。cao与活性镍成份在同一个复合催化剂颗粒内,碳酸钙分解产生的co2,减少了co2的扩散,直接被复合催化剂中活性镍吸附,进行原位的甲烷二氧化碳干重整反应而达到提高催化作用的效果。

本发明所述甲烷混合气可以为天然气,或者为主要含甲烷的工业气体,例如焦炉煤气,沼气等。作为优选,所述甲烷混合气为甲烷与水蒸气、二氧化碳、氮气中的一种或几种的混合气。

本发明所述甲烷混合气中甲烷的体积比不小于10%。

本发明所述分解反应的分解压力为0.1-3.0mpa,空速100-1000h-1。该反应条件下可以实现复合催化剂中caco3的分解反应,以及二氧化碳与甲烷进行甲烷干重整反应。

本发明所述复合催化剂中的caco3为纳米级或微米级。

本发明所述反应器包括固定床、流化床、移动床或鼓泡床。

本发明所述复合催化剂包括cao-caco3、活性镍成份以及含氧化铝-铝酸钙载体。由于复合催化剂一直处于钙循环过程中,复合催化剂中会同时含有cao和caco3,处于混合态时,同样可以采用甲烷干重整反应耦合复合催化剂再生的方法。另外,高温下氧化钙会和氧化铝生成铝酸钙,因此,载体在反应过程中即为含氧化铝-铝酸钙载体。

本发明所述复合催化剂已经公开在中国发明专利zl200610052788.6。

本发明所述复合催化剂也可以采用以下的制备方法,具体包括:

(1)将ni(no3)2和co(nh2)2水溶液混合,加入聚乙二醇,在60-90℃的水浴中反应,分离洗涤,得到ni(oh)2;作为优选,ni(no3)2和co(nh2)2水溶液的摩尔浓度比为1:2-1:4;水浴温度为60-90℃;

(2)将ni(oh)2、纳米碳酸钙分散在乙醇水溶液中,加入铝溶胶搅拌混合,干燥后450-550℃煅烧3h,750-850℃分解,制备得到复合催化剂nio-cao/al2o3。

本发明所述的复合催化剂来源于甲烷水蒸气重整反应吸附co2后的催化剂。催化剂中的氧化钙经过甲烷水蒸气重整反应吸附co2生成碳酸钙。

本发明所述复合催化剂来源于吸附烟气中的含镍和氧化钙的吸附剂。吸附剂中的氧化钙吸附烟气中co2生成碳酸钙。

本发明所述复合催化剂经过甲烷干重整反应耦合复合催化剂再生后,再用于甲烷水蒸气重整反应或者烟气脱碳过程。该技术方案使得复合催化剂能够得到循环使用。

同现有技术相比,本发明的有益效果体现在:

(1)本发明采用复合催化剂,将甲烷干重整反应与碳酸钙分解反应耦合,不仅降低碳酸钙的分解温度,提高碳酸钙的分解速率,缩短分解反应时间;而且将碳酸钙分解产生的二氧化碳利用甲烷干重整反应,原位转化为一氧化碳和氢气。

(2)本发明采用的复合催化剂在甲烷干重整反应中产生大量的氧化钙,作为活性镍成份的助剂,由于氧化钙存在,使镍催化剂的碱性大大增强,从而降低了副反应的积炭性能,避免了复合催化剂的失活。

附图说明

图1为钙循环过程复合催化剂甲烷干重整反应耦合再生的反应原理图;

图2为reser制氢过程复合催化剂甲烷干重整反应耦合再生的反应原理图。

具体实施方式

下面结合具体的实施例对本发明作进一步说明,但本发明不限于下述的实施例。

实施例1:复合催化剂制备

(1)配置350ml摩尔浓度分别为0.236mol/l的ni(no3)2和0.945mol/lco(nh2)2的混合水溶液,加入6.76g聚乙二醇,在90℃的水浴中反应一定时间后冷却至室温,用去离子水和无水乙醇而分别洗涤多次至中性,得到ni(oh)2备用。

(2)将步骤(1)制备的3.14gni(oh)2、11.30g纳米碳酸钙分散在乙醇水溶液中,超声分散10min,加入37.95g铝溶胶,搅拌充分混合,120℃下干燥过夜,500℃煅烧3h,800℃分解15min,制备得到复合催化剂nio-cao/al2o3,其中nio、cao和al2o3三者的质量比为2:5:3。

实施例2:reser制氢的复合催化剂

反应原理如图2所示,左侧反应即为reser制氢,将实施例1制备的复合催化剂5gnio-cao/al2o3填充到固定床反应器中,将复合催化剂用氢气、氮气混合气体还原nio为ni,甲烷和水蒸气通入反应器进行制氢,甲烷流量20ml/min,水碳摩尔比5,温度600℃,压力0.2mpa。复合催化剂nio-cao/al2o3反应吸附co2饱和后得到复合催化剂nio-caco3/al2o3。

实施例3:reser制氢的复合催化剂

将实施例1制备的复合催化剂5gnio-cao/al2o3填充到固定床反应器中,将复合催化剂用氢气、氮气混合气体还原nio为ni,将甲烷气和水蒸气通入反应器进行制氢,甲烷流量20ml/min,水碳摩尔比4,温度650℃,压力0.2mpa。复合催化剂nio-cao/al2o3反应吸附co2饱和后得到复合催化剂nio-caco3/al2o3。

实施例4:reser制氢的复合催化剂

将实施例1制备的复合催化剂5gnio-cao/al2o3填充到固定床反应器中,将复合催化剂用氢气、氮气混合气体还原nio为ni,将甲烷和水蒸气通入反应器进行制氢,甲烷流量30ml/min,水碳比3,温度600℃,压力0.2mpa。复合催化剂nio-cao/al2o3反应吸附co2饱和后得到复合催化剂nio-caco3/al2o3。

实施例5:吸附烟气co2的复合催化剂

反应原理如图1所示,将实施例1制备的复合催化剂5gnio-cao/al2o3填充到固定床反应器中,常压,600℃条件下,通入100ml含50%co2的氮气模拟混合烟气,复合催化剂nio-cao/al2o3反应吸附co2饱和后得到复合催化剂nio-caco3/al2o3。

实施例6:吸附烟气co2的复合催化剂

将实施例1制备的复合催化剂5gnio-cao/al2o3填充到固定床反应器中,常压,650℃条件下,通入100ml含10%co2的氮气模拟混合烟气,复合催化剂nio-cao/al2o3反应吸附co2饱和后得到复合催化剂nio-caco3/al2o3。

实施例7:甲烷干重整反应耦合复合催化剂再生

反应原理如图2右侧所示,将实施例3中反应吸附饱和后的复合催化剂5gnio-caco3/al2o3填充到固定床反应器中,通入甲烷和氮气进行反应,在气体空速800h-1,分解温度800℃,甲烷通入量5ml/min,氮气通入量495ml/min,分解压力0.1mpa,碳酸钙完全分解时间为35分钟,甲烷转化率88%,二氧化碳转化率81%。

将实施例7中再生后复合催化剂在热重分析仪tga上进行积炭测试。测试方法:称取2mg左右的样品装入专用白金坩埚内,150℃脱水30min后在n2气氛下,以15℃/min的升温速率至800℃,使复合催化剂中的碳酸钙完全分解。切换空气气氛,进行催化剂煅烧,保持30min。根据反应前后复合催化剂的质量差值计算积炭率,积炭率计算公式:

计算实施例7中的积碳率为15.08%。

实施例8-14:甲烷干重整反应耦合复合催化剂再生

将实施例3中吸附饱和后的复合催化剂nio-caco3/al2o3填充到固定床反应器中,反应条件如表1所示。

表1为实施例8-14的反应条件及结果

由表1可知,将复合催化剂中碳酸钙的分解反应和甲烷干重整反应耦合,解决了caco3分解受高温平衡限制的技术问题,提高了甲烷转化率以及二氧化碳转化率,减少了碳酸钙的分解时间,降低了碳酸钙的温度。此外,还进一步降低了积碳率。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1