用于气动汽车的多缸空气动力发动机总成的制作方法_2

文档序号:8443390阅读:来源:国知局
减压储气罐5内。减压储气罐5通过设有控制阀12的储气罐管路14连接到加热调节器17。减压储气罐5上设有检测压力的压力传感器49,以将该减压储气罐5内的压力信号41送往控制装置35。经过减压后的高压压缩空气在加热调节器17内进行加热,以提高压缩空气的压力和温度。
[0029]经过加热调节器17加热调节后的压缩空气经管路22连接到过滤干燥器23,经过滤干燥器23干燥后的压缩空气经管路24送入流量控制阀25。在备选实施例中,也可以省略过滤干燥器23,加热调节器17可以直接通过管路连接到流量控制阀25。流量控制阀25受控制装置35控制,以根据空气动力发动机31的工况和驾驶员的操作来确定流量控制阀25的开度和开启时间,从而调节进入空气动力发动机31的压缩空气量。经流量控制阀25调节的压缩空气通过管路27送入空气分配控制器28。空气动力发动机31与发电机47的转轴可转动地连接,以带动发电机47发电。发电机47发出的电经变频装置48转变为直流电存储在蓄电池单元3中,以供车辆的其他用电单元使用。
[0030]自空气动力发动机31排出的尾气依然具有一定的压力,其可通过管路回收和增压后进行重复利用,从而最大程度地利用压缩空气的压能。该尾气回收和增压回路包括消声器管路32、消声器30、尾气回收装置29、尾气回收管路19、过滤器15、尾气增压压缩机10、单向阀9、主储气罐支路和加热调节器支路。尾气经消声器管路32被送入消声器30,消声后的尾气被送入尾气回收装置29。尾气回收装置29可以是简单的聚气罐,也可以是附加抽气单元的容器。从尾气回收罐29出来的尾气经过滤器15过滤后送往尾气增压压缩机10。尾气增压压缩机10通过例如是皮带传动装置的连接件21带动,以对回收的尾气增压。经过尾气增压压缩机10压缩后的尾气其压力得到显著的增加,通常能达到5 MPa以上。在尾气增压压缩机10的下游处设有单向阀9,增压后的尾气经单向阀9经主储气罐支路和加热调节器支路分别送入主储气罐46和加热调节器17。主储气罐支路上设有开启压力设定为例如是1MPa的限压阀7,以将较高压的压缩空气送往主储气罐46。可备选的是,在主储气罐支路上设定有冷凝器8,以将低温高压的压缩空气存储在主储气罐46内。在通往加热调节器17的管路上设有顺序阀9,当尾气增压压缩机10增压后的尾气压力小于1MPa时,增压尾气通过限压压力设定为例如是1MPa的顺序阀(该顺序阀在进气压力小于1MPa时开启,在进气压力大于1MPa时自动关闭)送入加热调节器17中。在备选方案中,可根据实际需要,设定限压阀的开启压力和顺序阀的关闭压力。例如可以是7Ma至20MPa之间的任何压力。优选的是,是10MPa、12MPa、15MPa中的任何一个。如此一来,用于驱动空气动力发动机31的高压压缩空气在做功之后其相当一部分通过尾气回收和增压回路增压净化后回收到主储气罐46,或通过加热调节器支路进入再循环,从而实现了尾气的再利用。换句话说,对于给定容量的主储气罐46,尾气回收和增压回路的存在大大增加了空气动力发动机31的持续工作时间,大大增加了气动车辆的持续工作时间,从而明显地提气动车辆的性能。
[0031]在减压储气罐5和加热调节器17之间还设有辅助加热调节器17加热安全的辅助回路。该辅助回路包括辅助管路26、安全阀43、缓冲罐44、补气泵42。加热调节器17上设有检测压力的压力传感器49和检测温度的温度传感器18。温度传感器18所检测的温度信号34以及压力传感器29检测的加热罐内压力信号39送入控制装置35。控制装置35根据温度信号34控制加热调节器17内的电加热器,但加热调节器17内的温度超过例如是400°C的温度阈值时,控制装置35断开蓄电池单元3给加热调节器17的供电,从而限制加热调节器17内压缩空气的温度进一步提高。当压力传感器49检测的压力超过例如是15MPa时的压力阈值时,安全阀43打开,多余的高压空气进入缓冲罐44内暂时保存,但减压储气罐5内的压力不足时,缓冲罐44内的压缩空气通过补气泵42进入减压储气罐。
[0032]如图1所示,本发明的气动车辆还包括补充进气回路。该补充进气回路包括蓄电池单元3、可控开关4、直流电机6、补充进气压缩机52以及联接在主储气罐46和补充进气压缩机52之间的管路。当主储气罐46的压力信号2低于预定阈值或根据驾驶员的选择操作,控制装置35发出指令使可控开关4接通,直流电机6起动,带动补充进气压缩机52工作,环境空气经补充进气压缩机52压缩增压后送入主储气罐46,从而可以主动地为车辆提供高压压缩空气。
[0033]空气动力发动机的控制由控制装置35根据气动车辆的工况和驾驶员的操作进行。如图1和图2所示,控制装置具有多个输入,例如油门踏板位置信号38、发动机转速信号36、钥匙开关信号37、车辆车速信号、主储气罐压力信号2、加热罐内压力信号39、减压罐内压力信号41、由安装在加热调节器17上的温度传感器18测量的温度信号34、制动信号、以及例如是大气温度、进气压力的其他输入。多个输入信号输入控制装置35后经控制装置35处理后发出控制流量控制阀25的控制指令33,从而控制流量控制阀25的开闭。
[0034]控制装置35的具体结构如图2所示。控制装置35包括数据接收处理单元35_7、工况判定模块35-1、主控单元35-4、从控单元35-2、功率放大电路35_6以及MAP数据存储器35-8。主控单元35-4和从控单元35-2构成空气流量控制模块35-0。控制装置还包括控制加热调节器17操作的加热控制模块35-3,经可控开关4控制补充进气压缩机52的压缩机控制模块35-5。优选的是,控制装置35还包括异常处理模块35-9,以根据车辆的工况启动超速保护模块35-10或停机模块35-11的动作。下面将详细描述控制装置35的工作过程。
[0035]数据接收处理单元35-7接收油门踏板位置信号38、发动机转速信号36、钥匙开关信号37、车辆车速信号、气罐气压信号(2,39, 41)、温度信号34和其他输入信号,这些信号经数据接收处理单元35-7分析和处理后,送往工况判定模块35-1。工况判定模块35-1根据数据接收处理单元35-7的输入判定车辆的工况。在本发明的示例性实施例中,将控制装置35控制的空气动力发动机31的工况分为起动工况、怠速工况、稳态运行工况、加速运行工况、减速运行工况。控制装置35根据不同的工况采取不同的进气策略。
[0036]起动工况,当钥匙开关信号37启用,发动机转速信号36小于怠速转速阈值信号时,即认为空气动力发动机31处于起动工况。此时,真空泵13开启、一定压力的压缩空气从主储气罐46进入减压储气罐5。为了便于空气动力发动机31的起动,采用查取MAP图的意义不大,此时,采用固定的喷气正时和喷气量(上止点时开始进气,且采用最大的喷气量,以便于起动),将发动机的转速调整至怠速,然后以怠速的喷气正时和喷气量将空气动力发动机31的转速维持在怠速上,以等待下一步的操作。根据不同的空气动力发动机31可设定调校不同的怠速阈值。由于空气动力发动机通常为低转速发动机,怠速阈值可以设定为300转/分或500转/分。
[0037]怠速工况,当油门位置为0%,发动机转速高于怠速阈值时,定义为怠速工况。怠速转速的大小根据此工况下查取MAP数据的实际运行情况而定。
[0038]稳态运行工况,即发动机运行在油门踏板位置和负荷固定不变或变化较小的条件下,发动机的转速可以保持恒定。为了简化发动机的控制,可以将油门踏板位置变化不超过10%的情况定义为稳态运行工况。在外部MAP数据存储器35-8中存储有稳态运行的MAP图,根据发动机转速和油门踏板位置,直接查找调用相应的喷气量和喷气正时。
[0039]加速运行工况,油门踏板位置增幅超过10%认定为加速运行工况,为了保持运行的平稳性,采用的方法是在上一次采集到的油门踏板位置和当前油门踏板位置之间取一个中间值,和当前发动机转速一起共同构成一个加速运行工况,然后在稳定运行MAP图中查找所对应的喷气正时和喷气量。
[0040]减速运行工况,油门踏板位置减幅超过10%认定为加速运行工况,为了保持运行的平稳性,采用的方法是在上一次采集到的油门踏板位置和当前油门踏板位置之间取一个中间值,和当前发动机转速一起共同构成一个减速运行工况,然后在稳定运行MAP图中查找所对应的喷气正时和喷气量。对于油门踏板位置减幅超过40%的急剧减速情况,或者制动踏板被踩下制动信号被启用时,采取的策略是停止进气,直至脱离加速运行工况,再按照相应的工况去处理。
[0041]主控单元35-4和从控单元35-2构成空气流量控制模块。主控单元35_4根据工况判定模块35-1给出的工况判定通过串口从外部MAP数据存储器35-8读取MAP数据,从MAP数据中得出所需要的喷气正时和喷气量。主控单元35-4将从MAP数据存储器35_8得到的喷气正时和喷气量通过串行端口传送给从控单元35-2,从控单元35-2运用例
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1