以liga工艺制造聚合物微针阵列的方法

文档序号:5265216阅读:356来源:国知局
专利名称:以liga工艺制造聚合物微针阵列的方法
技术领域
本发明涉及以LIGA工艺制造微针阵列,更特别地,本发明涉及由对人体无害的聚合物制成的微针阵列的制造方法,其中通过采用倾斜曝光于X射线而改进了制造效率。
背景技术
已有使用具有数毫米半径的针或尖刀,用以从患者皮肤抽取血液或者将药物输注入患者。然而,该技术给待检查的受试者留下了额外的疤痕并使受试者遭受疼痛。特别地,例如在诸如糖尿病的疾病中,需要频繁检查血液中含有的葡萄糖量。当采用诸如检查葡萄糖量的装置时,患者必须遭受皮肤的创伤以频繁地测量其血液,由此患者会由于血液采集过程的疼痛而对测量产生厌恶。另外,在预定的时间间隔将药物输注入人体时,常规的针由于曝光于外部环境从而可引起患者身处危险,例如碰撞。
为了弥补这些缺点,如下研究论文中通过以阵列方式制造具有数百微米高度的微针,从而公开了能缓解痛点刺激的微针制造方法1.Boris Stoeber和Dorian Liepmann,“Fluid Injection ThroughOut-Of-Plane Microneedles”,lstAnnual International IEEE-EMBS SpecialTopic Conference,法国里昂,2000年10月12-14日,224-228页;2.J.G.E.Gardeniers、J.W.Bernschot、M.J.deBoer、Y.Yeshurun、M.Hefetz、R.van′t Oever和A.Van den Berg,“Silicon MicromachinedHollow Microneedles for Transdermal Liquid Transfer”,MEMS,2002年第2卷,141-144页;及3.Patrick Griss和Goron Stemme,“Novel,side opened out-of-plane microneedles for microfluidic transdermal interfacing”,Transducer,2002年第2卷,图3a-3f,第467-470页。
在这些论文中,微针的制造过程是通过采用硅或玻璃的半导体工艺而完成的。
然而,微针中含有用于半导体工艺的毒性化学物,从而可伤害人体。另外,如果尖针由于碰撞等原因而断裂,则可能存在的一个严重问题是,断裂的尖针片段会进入血流中并阻碍血液流动。此外,如果采用硅或玻璃,则存在的问题是制造工艺复杂且生产成本极高。
本发明公开内容因而,本发明考虑解决现有技术中的上述问题。本发明的目的是提供以LIGA工艺制造的聚合物微针阵列,所述LIGA工艺即,制备聚甲基丙烯酸甲酯(PMMA)铸型和聚二甲基硅氧烷(PDMS)模具,并采用PDMS模具制造针阵列,从而改进制造效率并消除对人体的危害。
根据本发明,为了实现该目的,提供制造微针阵列的方法,所述方法包含如下步骤通过在基片上生成具有微针阵列构造的吸收器,制备X射线掩膜;采用X射线掩膜,通过将PMMA曝露于垂直和倾斜的X射线,制备用于微针阵列的PMMA铸型;通过将PDMS浇注至PMMA铸型上,制备构造与PMMA铸型相反的柔性PDMS模具;以凝胶类型的聚合物填充PDMS模具上表面,得到期望厚度的聚合物;通过以紫外线辐照聚合物,将具有期望构造的孔穴图案化;分离PDMS模具,完成聚合物微针阵列。
在本发明优选实施方案中,具有微针阵列构造的X射线掩膜的制备步骤包含如下步骤通过在基片上生成氧化物层(SiO2),形成绝缘层;通过将Cr/Au金属层沉积于绝缘层上,形成用于电铸的基础基片;采用光敏聚合物,显影剂和蚀刻剂,将微针阵列的构造图案化;通过采用图案化的光敏聚合物电铸Au层,并除去图案化的光敏聚合物,生成X射线吸收器。
附图简述

图1所示为本发明的微针阵列的剖视图。
图2a至2g为图解本发明的X射线掩膜制备过程的视图。
图3a至3d为图解本发明的PMMA铸型制备过程的视图。
图4a至4d为图解本发明的聚合物微针阵列制造过程的视图。
本发明最优实施方式此处将参考附图详细描述本发明的实施方案。
术语“LIGA”是德语单词“Lithographie,Galvanoformung andAbformung”的缩写,对应于英文单词“平版印刷,电铸和模塑”。即,LIGA工艺是指通过使用X射线的平版印刷、电铸及模塑过程制造微结构的微加工技术。
LIGA工艺具有如下特征。可通过单步过程制造的结构的高度所处范围为数十微米至数厘米。可实现所制造结构的垂直构造,垂直壁表面的粗糙度为约数百埃。结构的允许误差可实现在1/10,000cm或更小。通过电铸和(聚合物或陶瓷)模塑过程,可以选择的材料非常多。由于可进行模塑,因而还可大批量生产非常精密的结构。因而,生产的单位成本减少了。
特别地,在进行该LIGA工艺时,X射线曝光步骤和显影步骤是重要的。为了使X射线曝光和显影步骤过程中尺寸误差最小化,用于控制X射线光源的选择性透射率的X射线掩膜就显得重要。即,X射线掩膜是在X射线平版印刷过程中置于光致抗蚀剂和X射线光源之间的装置,用以选择性传输X射线。
在LIGA工艺中,X射线掩膜应在需要X射线辐照的部分能容易地传输X射线而无损失,而在无需X射线辐照的部分则应能将X射线屏蔽至预定能量水平之下。
在当前用于LIGA工艺的X射线掩膜中,基片上生成有氮化硅制成的薄膜,薄膜上则生成有金(Au)制成的X射线吸收器。氮化硅膜基本上无损失地传输X射线,而在生成有X射线吸收器的部分则不能传输X射线。因而,在不存在X射线吸收器的部分,膜能容易地传输X射线,从而使PMMA6或光致抗蚀剂能曝光于X射线。
同时,在带有曝光的PMMA或光致抗蚀剂的工件中,曝光部分通过显影过程完全除去,从而可以露出基础层或金属表面。然后进行电铸。
采用诸如Ni或NiP的金属在带有图案的显影部分上完成电铸之后,除去PMMA或光致抗蚀剂。因而,通过单步过程,可将结构的表面粗糙度控制到约数百埃。
图1是本发明的微针阵列的(侧面)剖视图。如图1中所示,本发明的微针阵列15包含能够刺穿皮肤的尖端13,及能够采集血液的通道14。优选地,所形成的尖端13足够尖锐,以使对皮肤结构的伤害及疼痛最小。
图2a至4d图解的是通过本发明的LIGA工艺制造微针阵列的过程视图。
图2a至2g图解的是通过在硅基片上生成具有微针阵列结构的吸收器制造X射线掩膜的过程视图。首先参阅图2a,采用稀硫酸(H2SO4)溶液和过氧化氢(H2O2)以1∶2比例于120℃对硅基片1(100μm厚度,<100>取向,N型)或氮化硼基片清洗40分钟,以除去作为污染物的金属或有机残留物。
参照图2b,将硅基片1置于氧化炉中,然后以去离子(DI)水在100℃氧化6小时,形成厚度约1.2μm的氧化物层(二氧化硅;SiO2)。为了改进绝缘性能并生成薄膜,可在氧化物层生成之后,通过低压化学气相沉积(LPCVD)工艺另外生成厚度为4,000埃的低应力氮化物层。关于用于形成薄膜的低应力氮化物层,该薄膜通过体蚀刻硅基片1而生成。
参照图2c,为了在绝缘层2上生成用于电铸的基片电极,采用热蒸发器在绝缘层2上沉积Cr/Au金属层3。采用55-60A的电流,以1/秒的沉积速率持续约2分钟,将Cr沉积约200埃的总厚度,以改进Au对基片1的粘合性。然后,采用50-55A的电流,以1-1.5/秒的沉积速率持续约10-15分钟,将Au沉积约2,000埃的总厚度。
参照图2d,通过旋转分配器施用厚度约23μm的AZ9260光敏聚合物(光致抗蚀剂)(于200rpm持续40秒,1,000rpm持续5秒),然后于110℃软烘焙120秒。为了将具有微针阵列构造的掩模图案化,采用紫外掩膜,将聚合物曝光于强度为8mW/cm2的紫外线4分钟。然后,采用AZ400K显影剂对聚合物进行15分钟的显影过程,以DI水清洗并采用N2气干燥。
参照图2e,采用图案化的聚合物4,以1.5mA的电流强度对Au层5电铸约6小时。参照图2f,采用丙酮和甲醇除去图案化的光敏聚合物4。此处,由于氧化物层2和硅基片1对应于X射线穿透区域,而电铸的Au层5成为吸收X射线的吸收器,因而提供了能够使X射线选择性穿透的X射线掩膜。
同时,对于覆盖有低应力氮化物层的硅基片,如图2中所示,以KOH溶液蚀刻硅基片1,形成氮化物薄膜。
以此方式,通过图2a至2g中图解的过程,制备了LIGA工艺中使用的X射线掩膜。
图3a至3d图解的是采用以低应力氮化物层覆盖的X射线掩膜,通过使PMMA曝光于垂直和倾斜X射线,从而制备微针阵列的PMMA铸型的制造过程视图。参照图3a至3d,将X射线掩膜20排列在PMMA6上,所述PMMA6曝光于垂直X射线7和倾斜X射线8。然后,将曝光于X射线的PMMA6部分显影并除去。显影后PMMA剩余的其他部分成为PMMA铸型9。由此制得的PMMA铸型9是将要通过随后过程制备的聚二甲基硅氧烷(PDMS)模具10的铸型,因而具有与PDMS模具相反的构造。
图4a至4d图解的是采用PMMA铸型制造聚合物微针阵列的过程。参照图4a,为了得到微针阵列15,对PMMA铸型9和基片1的表面进行硅烷化,从而使PDMS模具10固化后可容易地分离出。关于用于硅烷化的化学品,整个硅烷化过程所用化学品均通过将约10μl的三氯(3,3,3-三氟丙基)硅烷置于真空容器中8小时而得到。将单体与固化剂以10∶1的比例混合并去除泡沫制得PDMS,然后将所得PDMS浇注于前面制备的PMMS铸型9上,制造PDMS模具10。将浇注过程中产生的泡沫从PDMS除去,所述PDMS于100℃热处理约1小时,然后固化。当将固化的PDMS模具10从PMMS铸型分离出时,即得到完成的用于制造聚合物微针阵列的柔性模具10。此时,由于PDMS模具10已被干净地分离出,因而无需另外的过程可通过重复如下过程而容易地得到许多柔性模具浇注含有固化剂的PDMS,进行热处理。
参照图4b,将固化的PDMS模具10从PMMA铸型9分离出。
参照图4c,通过旋转分配器或通过直接注射将聚合物11,SU-8(70重量%EPON,30重量%GBL)施用至PDMS模具10(200rpm持续5分钟,1,000rpm持续35分钟),生成厚度约500μm的容器,然后在95℃预烘焙。由于SU-8是阴性光致抗蚀剂,采用紫外掩膜将其曝光于强度为3,000-4000mJ/cm2的365nm附近的光。然后,将聚合物于95℃进行后烘焙,随后显影并以丙二醇单甲醚乙酸酯(PGMEA)清洗15分钟。清洗之后,将其于200℃硬烘焙。如果采用诸如紫外压印或注射模塑的方法,则采用适合于模塑方法的聚合物。
参照图4d,将聚合物12施用至PDMS模具10然后烘焙。根据孔穴16的期望构造,将紫外线辐照于待曝光的聚合物上。然后,以显影剂和蚀刻剂对微针阵列的孔穴16进行图案化。然后,使聚合物(SU-8)12完全固化,以改进其机械性能。将由此制得的以固化聚合物12制成的微针阵列从柔性的PDMS模具10分离出。
从而,图1中所示聚合物微针阵列15可通过如上所述的制造过程而制得。
工业实用性如上所述,本发明的聚合物微针阵列是通过采用模具而制得,所述模具采用LIGA工艺而制备得到。该微针阵列可与从皮肤抽取血液或通过皮肤递送药物的装置一道使用。
另外,本发明的微针阵列由对人体无危害的聚合物制成,当其刺入皮肤时可容易地用于注射药物或抽取血液,而无疼痛之感。采用模具制造微针阵列的方法使得减少了生产成本,并有助于微针阵列的批量生产。
权利要求
1.微针阵列的制造方法,包含如下步骤通过在基片上生成具有微针阵列构造的吸收器,制备X射线掩膜;采用X射线掩膜,通过将PMMA曝光于垂直和倾斜的X射线,制备用于微针阵列的PMMA铸型;通过将PDMS浇注于PMMA铸型上,制备具有与PMMA相反构造的柔性PDMS模具;以凝胶型聚合物填充PDMS模具的上表面,得到期望厚度的聚合物;通过在聚合物上辐照紫外线,将具有期望构造的孔穴图案化;和分离PDMS模具,完成聚合物微针阵列。
2.根据权利要求1的方法,其中具有微针阵列构造的X射线掩膜的制备步骤包含如下步骤通过在基片上生成氧化物层(SiO2),形成绝缘层;通过将Cr/Au金属层沉积于绝缘层上,形成用于电铸的基础基片;采用光敏聚合物、显影剂和蚀刻剂,将微针阵列构造图案化;通过采用图案化的光敏聚合物电铸Au层,并除去图案化的光敏聚合物,生成X射线吸收器。
3.根据权利要求2的方法,其中基片包括硅基片、氮化硼(BN)基片或具有低应力氮化物层的基片。
全文摘要
本发明涉及以X射线工艺制造微针阵列的方法。本发明提供了微针阵列的制造方法,包含的步骤为通过在基片上生成具有微针阵列构造的吸收器,制备X射线掩膜;采用X射线掩膜,通过将PMMA曝光于垂直和倾斜的X射线,制备用于微针阵列的PMMA铸型;通过将PDMS浇注于PMMA铸型上,制备具有与PMMA相反构造的柔性PDMS模具;以凝胶型聚合物填充PDMS模具的上表面,得到期望厚度的聚合物;通过在聚合物上辐照紫外线,将具有期望构造的孔穴图案代;以及分离PDMS模具,完成聚合物微针阵列。本发明的微针阵列由聚合物材料制成,可用于从皮肤抽取血液或将药物注射入皮肤。
文档编号B81C1/00GK1738710SQ200480002378
公开日2006年2月22日 申请日期2004年1月16日 优先权日2003年1月16日
发明者李承燮, 文祥俊 申请人:李承燮
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1