复合材料用作低温条件下的隔离件的应用的制作方法

文档序号:5818745阅读:397来源:国知局

专利名称::复合材料用作低温条件下的隔离件的应用的制作方法
技术领域
:本发明涉及一种复合材料用作低温条件下的隔离件的应用,特别涉及一种复合材料用作低温条件下的流体隔离件的应用,该复合材料具有某些性能。本发明还涉及使用复合材料的夹层,以及使用复合材料的容纳系统,比如容器、管路、罐、器皿、管道和洞穴。
背景技术
:用于低温条件下的流体隔离件,比如存储罐和管路,用于防止低温流体流向隔离件后的材料。通常,常规的流体隔离件基于具有类似性能的特殊材料,比如镍-钢或特殊的纤维增强复合材料。这种特殊的纤维增强复合材料的实例包括由通过结构纤维(比如石墨、玻璃(比如S2玻璃和E玻璃)和超高分子量聚乙烯)增强的热固性塑性基质材料(比如环氧树脂和聚亚安酯)构成的复合材料。作为一个实例,WO2006/003192Al描述了流体隔离件在用于存储液化气体(比如LNG(液化天然气))、液化氮、液化氧或液化二氧化碳和液化氢等的绝热容器中的应用。在WO2006/003192Al中公开的流体隔离件包括塑性材料,比如聚亚安酯或环氧树脂或二者的组合。如果需要,流体隔离件可通过加入玻璃纤维来得到增强。尽管根据WO2006/003192Al的流体隔离件的功能已经令人满意,但是已发现使用基于这种复合材料的流体隔离件可能导致引入高应力,该高应力不得不通过整体结构来承受。在一些情况下,这可能导致流体隔离件和/或整体结构的机械故障。
发明内容本发明的一个目的是使上述问题最小化。本发明的另一个目的是提供一种用作低温条件下(比如低于-30。C、低于-100。C或甚至低于-150。C)的流体隔离件的替代材料。本发明还有一个目的是提供一种改进的容纳系统,比如用于低温流体的容器、管道、罐、器皿、管道和洞穴。根据本发明,通过提供用作低温条件下的流体隔离件的复合材料,可以实现上述的一个或多个目的或实现其他目的,该复合材料具有(a)在环境条件下小于50GPa的拉伸杨氏模量;和(b)在环境条件下为至少5%的断裂拉伸应变。EP0465252Al描述了一种用于压缩^f氐温气体和/或^f氐温气体的容器或管道,包括形成气体隔离件的不透气体的合成聚合物。结构纤维可嵌入不透气体的合成聚合物中以形成复合材料。通常,复合材料具有低应变和高模量。当使用该专利说明书中所提到的合适结构纤维进行制备时,通常复合材料的杨氏模量大于50GPa。US6,962,672描述了特别用于空间发动机的高压容器。压力容器的内表面可使用杨氏模量介于1到2Gpa之间的聚酰胺。该文献没有提到断裂拉伸应变,此外,内表面不是复合物。增强线绕内表面盘绕,该增强线由比如碳纤维或以"Kevlar"名称销售的芳纶(aramide)纤维制成。增强线中的这些材料具有非常高的杨氏模量。优选地,拉伸杨氏模量小于40GPa,并且优选在l.OGPa以上,更优选在2.0GPa以上。优选地,环境条件下的拉伸杨氏模量根据DINENISO527测定,该环境条件下是根据ISO554的标准大气条件,特别是推荐的大气条件,即在23。C的温度、50%的相对湿度和在86至106KPa之间的压力下。优选地,环境条件下的断裂拉伸应变在8%以上,更优选在10%以上,更优选在15%以上。通常,环境条件下的断裂拉伸应变不大于75%。环境条件下的断裂拉伸应变根据DINENISO527测定。材料的应力与其拉伸杨氏模量和其热膨胀系数相关,对于低温材料,迄今一直认为低应力材料由于在使用中经受显著的温度变化而不可能用于低温流体。然而,本发明惊奇地发现具有较低拉伸杨氏模量的复合材料可用于低温流体。这种复合材料的使用降低了在流体隔离件材料及任何支承结构上的热诱发应力,从而使用于这种支承结构的材料选择范围更宽。根据本发明,"复合材料"是一种工程材料,该工程材料由两种或更多种具有不同物理或化学性能的组成材料制成,组成材料在最终结构中在肉眼可见的水平上保持分离和可区分。复合材料的拉伸杨氏模量值可根据所用材料的相对含量确定。本领域技术人员很容易理解如何改变复合材料的不同组分的体积分率来实现预期性能。在本发明的一个实施例中,复合材料是单一材料复合物,即复合材料由包括相同材料的两层形成,例如两层定向热塑性材料,它们在升高的温度和压力下被融合到一起,从而形成在定向热塑性材料层之间和定向热塑性材料层中散布的热塑性基质材料。如本领域技术人员所已知的,升高的压力,特别是流体静压,对于控制定向热塑性材料的熔化温度来说是非常重要的。此外,一种或多种具有不同化学性能的添加剂也可结合到单一材料复合材料中。在本发明的另一个实施例中,复合材料是通过增强材料强化的塑性基质材料,优选增强材料至少一部分被结合在塑性基质材料中。塑性基质材料可作为连续固体相,增强材料嵌于该连续固体相中。对于塑性基质材料与增强材料的比例没有特别限制。增强材料的形式可以是切段的或连续的纤维、切片或颗粒,但优选被转化成具有织物状结构的材料,比如毡、机织织物、粗纱、纤维织物、编织或缝合结构。此外,优选的是增强材料选自包括天然材料、热塑性材料和它们的组合的组。天然材料可包括纤维,包括植物纤维和动物纤维,所述植物纤维比如椰壳纤维、棉、亚麻布、黄麻、胡麻、苎麻、剑麻和大麻;所述动物纤维比如绵羊毛、马鬃和蚕丝。优选地,增强材料包括热塑性材料。优选地,用于增强材料的热塑性材料包括聚烯烃,聚烯烃选自包括聚乙烯、聚丙烯、聚丁烯、聚曱基戊烯、聚异丁烯、或上述物质的共聚物或三元共聚物的组,优选聚丙烯。增强材料还可从包括碳纤维、玻璃纤维和聚合纤维的很宽材料范围内选择,只要所得到的复合材料的拉伸杨氏模量小于50Gpa并且断裂拉伸应变为至少5%即可。优选地,根据DINENIS0527测定,增强材料具有的环境条件下的断裂拉伸应变为至少5%,更优选地,环境条件下的断裂拉伸应变在8%以上,更优选在10%以上,最优选在15%以上。通常,环境条件下的断裂拉伸应变不大于75%。根据本发明,要使用的塑性基质材料可以从比如聚合材料的很宽材料范围中选择,所述聚合材料包括聚酯、聚碳酸酯、乙烯基酯、环氧树脂、酚醛树脂、聚酰亚胺、聚酰胺及其他,只要所得到的复合材料的拉伸杨氏模量小于50GPa即可。然而,优选的是根据DINENIS0527测定,塑性基质材料具有的环境条件下的拉伸杨氏模量在0.1國5.0GPa之间。塑性基质材料优选包括热塑性材料或热固性材料。根据本发明的一个特别优选实施例,塑性基质材料是热塑性材料。热塑性材料的一个优点是其可易于成形。优选地,热塑性材料包括聚烯烃,聚烯烃可选自包括聚乙烯、聚丙烯、聚丁烯、聚曱基戊烯、聚异丁烯、或上述物质的共聚物或三元共聚物(比如三元乙丙橡胶(EPDM))的组,优选聚丙烯。单一材料复合物优选是热塑性材料,其中不仅定向热塑性材料(比如增强纤维相)而且定向热塑性材料之间的基质都包括相同的热塑性聚合物,优选它们主要由相同的热塑性聚合物组成,更优选它们由相同的热塑性聚合物组成。由于定向热塑性材料的受控表面溶化而实现结合。单一材料复合物的物理性能,比如拉伸杨氏模量和热膨胀系数(CTE),可通过工艺中产生的熔化程度控制,其确定了定向/非定向热塑性材料的体积比率,也称作纤维/基质比。制造这些单一材料复合物的方法在本领域是已知的,例如在美国专利申请公开No.2005/0064163中;在B.Alcocketal.(2007)"JounalofAppliedPolymerScience",Vol.104,118-129;在B.Alcocketal.(2007)Composites:PartA(appliedscienceandmanufacturing(应用科学与制造)),Vol.38,147-161中都有描述,在此将这些文献结合到本文以作参考。制造工艺通常利用处于多种形式的定向热塑性聚合纤维单向层合、机织织物或切段的纤维/非纺织毡等。如本领域所已知的,通过流体静压控制纤维的熔化温度是非常重要的。在升高的压力下,纤维被加热到一定温度,所述一定温度低于升高的压力下的熔点但高于低压下的熔化温度。在一段受控时间内降低压力导致纤维从纤维表面开始熔化。在受控压力下表面熔化后,结晶产生加固的结构。一种替代的已知工艺包括使用在定向热塑性材料线(比如纤维)周围对基质材料进行的特定共挤出法。该共挤出工艺和带焊接由于焊接区间(sealingwindow)(130-138。C)大但没有损失材料性能而优于常规焊接工艺。优选地,单一材料复合材料包括聚烯烃,更优选主要由聚烯烃组成,更加优选由聚烯烃组成,所述聚烯烃可选自包括聚乙烯、聚丙烯、聚丁烯、聚甲基戊烯、聚异丁烯,或上述物质的共聚物或三元共聚物(比如三元乙丙胶)的组,优选聚丙烯。复合材料用作低温条件下的流体隔离件,所述低温条件是指温度低于-30。C,更优选低于-100。C,甚至低于-150。C。这样的温度(低于-100°C,优选低于-150'C,通常为-160'C)适合用于液化天然气(LNG)。为此,在本说明书中,低温液体是通过将温度降低到低温条件而被液化的液化气体。低温流体包括低温液体、保持在低温条件下的气体、保持在低温条件下的超临界流体。流体隔离件是适用于低温流体的隔离件。为此,本说明书中的低温条件是指温度低于-30。C,优选低于-100。C,更优选低于-150。C。复合材料优选用于低于-100。C的温度下,更优选用于低于-150。C的温度下,因为这样能更充分地利用具有这些性能的复合材料的优点。优选地,根据DINENIS0527测定,复合材料在-196。C下(在液氮中)的断裂拉伸应变为至少3%,更优选为至少5%,甚至更优选为至少6%,甚至更优选8%以上,甚至更优选10%以上。复合材料在40。C下的热膨胀系数优选小于250xl(T6m/m/。C。更优选地,复合材料是定向的,并且复合材料在40。C下、在其定向方向上的热膨胀系数小于250xl(T6m/m/°C。此外,优选地,复合材料在-60。C下的热膨胀系数小于100xl(r6m/m/°C。更优选地,复合材料是定向的,并且复合材料在-60。C下、在其定向方向上的热膨胀系数小于100xl(r6m/m/°C。通过热机分析(TMA),在-60。C到+70。C温度范围内可根据ISO11359-2适当测量热膨胀系数。在另一方面,本发明提供了流体隔离件在容纳、储存、处理、运输或传送低温流体(比如液化气体)中的应用,这些低温流体包括但不限于LNG、液氮、液氧、液态二氧化碳和液态氢。这种应用可以是临时的或永久性的,可以在岸上或离岸,可以在地面上、水上、水下或地下、或上述情况的组合。这些应用也可以在设备或i殳施的任何部分的其他装备、装置、单元或系统的上游和/或下游,用于盛装、储存、处理、运输和/或传送低温流体。其包括一个或多个液化设备、输出、装载、运输、卸载、输入或最终用途设施,或上述各种设施的一部分。这些应用包括但不限于如下应用用于在低于-30。C的温度下、优选低于-100'C的温度下、更优选低于-150。C的温度下储存和运输低温流体(纯流体或混合流体),包括在输出或输入终端处的罐(即大容积储罐)、运输船和传送部件(比如管路和软管);在各种几何形状的岸上和离岸罐中容纳低温流体,这些罐包括(立式)圆柱形罐、棱柱形罐、椭圆形罐和球形罐;在容器、便携式容器、车间制造的容器、便携式罐和油轮罐中进行低温流体的岸上和离岸储存或运输;地下存储,包括洞穴,比如岩洞或地下容器(在论文EricAmantini、EmmanuelChanfreauandHo-YeongKimentitled"TheLNGstorageinlinedrockcavern"inGastech(2005)(标题为"液化天然气在衬砌岩洞中的储存")中论述的实例,将其内容结合到本文以作参考);临时或永久地存储低温流体的加压器皿或非加压器皿;用于(在陆地、海上和空中以任何方式)运输低温流体的各种形状的加压器皿或非加压器皿,包括但不限于(立式)圆柱形、棱柱形、椭圆形和球形;在包括岸上和离岸、水上、水中或水下的柔性管或刚性管中的流动运输或传送,包括管路、管段、管线、管路系统、软管、立管和相关设备及零件。本发明还提供了用于低温流体的容纳系统,其包括至少一个由上述复合材料构成的层,所述容纳系统优选包括下述组中一个或多个设备,所述组包括容器、罐、管、器皿、管道和洞穴。这些容纳系统的实例及其应用在此前已描述过。管包括呈连续长度或离散长度的管线或管段。容纳系统的一个特定实例是一种用于储存低温流体的容器,所述容器至少包括-承载结构外壳-在承载结构外壳内部上的一个或多个包括上述复合材料的流体隔离件。容纳系统的另一个特定实例是一种运输低温流体的管,其至少包括承载结构外壳,优选是由塑性材料制成的承载结构外壳;在外壳内侧的流体隔离件,流体隔离件包括上述复合材料,特别是根据DINENIS0527测定的在环境条件下拉伸杨氏模量小于50Gpa的复合材料。特别地,这样的管路可包括围绕中央流体通道的一个或多个同心内流体隔离件;外同心层;和任选的在至少一个内流体隔离件和外同心层之间的至少一个环形空间,所述环形空间(40)填充有一种或多种绝热材料。这种管道可包括二个、三个或四个流体隔离件,环形空间位于每个相邻组的两个内流体隔离件之间和位于最外层内流体隔离件与外同心层之间,优选环形空间种的至少两个填充有两种或多种不同的绝热材料。适合的绝热材料是本领域已知的,包括各种泡沫和凝胶,如微凝胶或低温植物(一种由陶资粉末与纤维构成的多微孔混合物)。在这种管路的一个实施例中,至少一个内流体隔离件是可拉长的,优选所有内流体隔离件都是可拉长的,以适应在存在低温流体时由于温度变化而引起的管路的纵向变化。本发明还提供了一种用作低温条件下的隔离件的夹层,特别是用作低温条件下的流体隔离件的夹层,所述夹层包括结构支承层和在此所限定的复合材料。这种夹层可以包括任意多层,通常是两层或三层,本发明的容纳系统可包括一个或多个具有相同或不同构造(比如材料和宽度)的此类夹层。本发明夹层的适合宽度可在l-50mm的范围内。本发明还提供了一种用作低温条件下的隔离件的夹层,特别是用作低温条件下的流体隔离件的夹层,所述夹层包括一层绝热材料和包括此前限定的复合材料的隔离件。绝热材料优选是一种或多种在此所提到的绝热材料。通过参照下述非限制性附图来描述和说明本发明的实施例,其中图1是用于运输低温流体(比如LNG)的根据本发明的管路的示意性剖视图2至图4是用于运输低温流体(比如LNG)的根据本发明的其它实施例的另外三种管路的示意性剖视图;图5是用于储存低温流体的容器的示意性剖视图;以及图6是根据本发明的夹层的示意性剖视图。相同的附图标记表示相同的结构部件。具体实施例方式现在参考图1。图1示意性显示了用于运输低温流体(比如LNG、LPG和液氮)的管路2的剖视图。管路2包括承载外壳30、和在承载外壳30内部同心地环绕着中央流体通道100的流体隔离件10。承载外壳30可由金属性材料制成,比如镍钢或混凝土,但优选由刚性塑性材料制成,比如碳增强的环氧树脂或玻璃增强的环氧树脂。流体隔离件由拉伸杨氏模量小于50GPa的复合材料制成。一个用于流体隔离件10的适合材料的实例是由聚丙烯纤维强化的聚丙烯基质材料组成的复合材料,即单一聚合物复合材料。这种复合材料可从比如CurvTMC100A(可从德国Gronau的PropexFabrics公司获得)获得并且根据DINENISO527测定的其在环境条件下的拉伸杨氏模量为3.2GPa。适合的复合材料的另一个实例是一种由聚丙烯纤维与聚乙烯-聚丙烯混合物共挤压构成的复合材料。此共挤压材料被熔化以形成复合材料的基质,其以商标"PURE,,销售(可从荷兰Sneek的LankhorstPureCompositeB.V.公司获得)。该复合材料在环境条件下的拉伸杨氏模量为约6.4Gpa并且断裂拉伸应变是10%。其他适合的复合材料在A.Pegoretti等人发表在CompositeScienceandTechnology(复合材料科学与技术)66(2006),pp.1953-1962的"Flexuralandinterlaminarmechanicalpropertiesofunidirectionalliquidcrystallinesingle-polymercomposites"(单向性液晶单一聚合物复合材料的柔性和层间机械性能)中进行了描述,在此结合其内容以作参考。下表I列出了上述复合材料CurvTMC100A的一些性能。表I<table>tableseeoriginaldocumentpage13</column></row><table>通过热机分析(TMA),根据ISOU359-2测定了在-60。C至+70。C之间的温度范围中的热膨胀系数。既在纤维方向上又在垂直纤维方向上进行测量。根据本文上述的方法进行其他测量。本领域技术人员都应理解,除了外壳30和流体隔离件IO之外,管路组件2还可包括其它部件,比如位于外壳30和流体隔离件10之间的其它层,在外壳30上的外涂层等等。图2给出了一个这样的实例,如图2所示,管路具有与中央流体通道IOO同心的第一流体隔离件10、第一环形空间40和外同心层30,所述外同心层30通常是管2a的内部部件的结构支承件。环形空间40可填充有一种或多种绝热材料,通常是泡沫或凝胶,比如气凝胶、微孔泡沫等。图3给出了管路2b的另一个实例,管路2b具有与中央流体通道100同心的第一流体隔离件10、第一环形空间40、第二流体隔离件11、第二环形空间41和外同心层30。第一流体隔离件IO和第二流体隔离件11可具有相同或不同的组成,并且第一环形空间40和第二环形空间41可包括相同或不同的绝缘材料。图4给出了管路2c的又一个实例,从中央流体通道100开始,管路2c同心地包括第一、第二和第三流体隔离件10、11、12和外同心层30,以及位于其间的第一、第二和第三环形空间40、41、42。通常,如图2所示例的管2a至少同心地包括中央流体通道100,其直径范围是50-1500mm,优选250-1000mm,更优选500-900mm;第一内部流体隔离件IO,其具有l-10mm的厚度范围;第一环形空间40,其具有25-250mm的厚度范围;以及外同心层30,其具有25-250mm的厚度范围。图5示意性显示了用于存储低温流体的绝热容器200的剖视图。容器200包括承载结构外壳215,所述承载结构外壳215包括底板220和侧壁230。在图5的实施例中,底板220和侧壁230由混凝土制成。为了完整起见,可注意到容器200包括顶部(未示出),所述顶部是绝热的而且可形成结构外壳215的一部分容器200还包括至少两个绝热容纳层,即"内容纳层240"和"外容纳层250",它们固定至结构外壳215的内表面。容纳层240和250的每一个包括由绝热材料(例如,泡沫塑性材料,比如PVC或PUR)制成的板。容器200还包括两个密封蒸汽和密封液体的流体隔离件210,一个与容纳在容器200中的液态气体205接触,一个位于内容纳层240和外容纳层250之间。流体隔离件210由在此所限定的复合材料制成,在上表I中给出了一个适合的实例。流体隔离件210、容纳层240、250和外壳210可通过任何适合的方法彼此固定,所述方法为如本领域已知的比如喷涂、粘合、机械固定、熔焊等。图6示意性显示了本发明的夹层300的剖视图,所述夹层300可用于上述图1到图5所示的管路组件2、2a、2b、2c或存储罐200。夹层300包括由绝热材料(比如PVC、PUR等)制成的层320和由在此所述的复合材料制成的流体隔离件310。流体隔离件310可通过粘接、焊接或熔焊、或其他本领域已知的任何适合的方法连接到板310上。本领域技术人员容易理解的是,可做进行很多修改而并不偏离本发明的范围。权利要求1、复合材料作为在低温条件下的流体隔离件的应用,所述复合材料具有(a)在环境条件下小于50GPa的拉伸杨氏模量;和(b)在环境条件下为至少5%的断裂拉伸应变。2、如权利要求l所述的应用,其中所述复合材料在40。C下的热膨胀系数小于250xl(T6m/m/°C。3、如权利要求1或2所述的应用,其中所述复合材料在-196。C下的断裂拉伸应变为至少3%。4、如前述权利要求中的任一项或多项所述的应用,其中所述复合材料在-60。C下的热膨胀系数小于100xlO-6m/m/°C。5、如前述权利要求中的任一项或多项所述的应用,其中所述复合材料包括单一材料复合物或由增强材料增强的塑性基质材料。6、如权利要求5所述的应用,其中所述单一材料复合物是热塑性材料,其中比如增强纤维相的定向热塑性材料和位于定向热塑性材料之间的基质都包括相同的热塑性聚合物。7、如权利要求5所述的应用,其中所述复合材料包括由增强材料增强的塑性基质材料,并且所述增强材料的断裂拉伸应变为至少5%。8、如前述权利要求中的任一项或多项所述的应用,用于低温流体的容纳、存储、处理、运输或传送。9、一种用作低温条件下的隔离件的夹层,特别是用作低温条件下的流体隔离件的夹层,所述夹层包括结构支承层和如权利要求1至7中的任一项或多项所述的复合材料。10、一种用作低温条件下的隔离件的夹层(300),特别是用作低温条件下的流体隔离件的夹层,所述夹层包括绝热材料层(320)和包括如权利要求1至7中的任一项或多项所述的复合材料的隔离件(310)。11、一种用于低温流体的容纳系统,包括至少一个如权利要求1至7中的任一项或多项所述的复合材料构成的层。12、如权利要求11所述的容纳系统,所述容纳系统是用于存储低温流体(205)的容器(200),所述容器(200)至少包括-承载结构外壳(215);-在外壳(215)内侧上的一个或多个包括如权利要求1至7中的任一项或多项所述的复合材料的流体隔离件(210)。13、如权利要求11所述的容纳系统,所述容纳系统是用于输送低温流体的管(2),所述管至少包括一个或多个围绕中央流体通道(100)的同心内流体隔离件(10),所述内流体隔离件或每一个内流体隔离件(10)包括如权利要求l至7中的任一项或多项所述的复合材料;外同心层(30),和可选地,位于至少一个内流体隔离件(10)和外同心层(30)之间的至少一个环形空间(40),所述至少一个环形空间(40)填充有一种或多种绝热材料。14、如权利要求13所述的容纳系统,其包括两个、三个或四个内流体隔离件(10、11、12、13),环形空间(40、41、42、43)位于至少一个相邻组的两个内流体隔离件之间和/或位于最外层内流体隔离件(11、12、13)与外同心层(30)之间。15、如权利要求14所述的容纳系统,其包括两个、三个或四个内流体隔离件(10、11、12、13),环形空间(40、41、42、43)位于每一个相邻组的两个内流体隔离件之间并且位于最外层内流体隔离件(11、12、13)与外部同心层(30)之间。全文摘要本发明涉及一种复合材料用作低温条件下的流体隔离件的应用,复合材料在环境条件下具有(a)小于50Gpa的拉伸杨氏模量和(b)为至少5%的断裂拉伸应变。本发明还涉及一种包括复合材料的用于低温流体的夹层和容纳系统。文档编号F17C1/16GK101548129SQ200780045071公开日2009年9月30日申请日期2007年12月6日优先权日2006年12月6日发明者F·A·H·扬森,L·M·德米尔申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1