加压气体用容器的制作方法

文档序号:11529622阅读:454来源:国知局
加压气体用容器的制造方法与工艺
本发明涉及可用于存储高压压缩气体的容器,此类容器又称为气瓶。更具体地,本发明涉及包括缠绕材料(诸如碳纤维复合材料)的容器,并且这些容器还包括围绕缠绕材料的热塑性弹性体聚合物涂层,用以提供保护,防止缠绕材料因外部机械冲击和环境腐蚀而受损,并且用以提高处置的便利性,改善容器的外观。发明背景常规压缩气体容器由钢或其他金属制成。为了增加压缩气体钢制气瓶的容量,钢壁的厚度制作得比常规气瓶厚,才能增强钢制气瓶壁的强度。与壁较薄的气瓶相比,较厚的壁能使气瓶容纳较高压力的内容物。因此,较厚的气瓶壁能够增加气瓶的存储容量。然而,另一方面,增大气瓶壁的厚度也会导致气瓶的重量增加。而气瓶的重量增加会使气瓶在人体工程学上难以处置,容易导致操作困难。作为一般的措施,气瓶的容量翻倍意味着气瓶重量会增加一倍或更多,而这是我们不希望看到的。虽然我们期望得到降低高压钢制气瓶重量的设计,但是仍然需要在改善提供高压高容量气瓶的能力时不引起气瓶重量过度增加。技术实现要素:本发明的一个方面是用作容纳加压气体的容器的主体的制品,包括中空容器主体,该中空容器主体具有外表面,并且具有开口,气体可通过该开口进入或离开中空容器主体的内部;围绕容器主体外部的纤维增强聚合物层,该纤维增强聚合物层附着到容器主体的外表面并具有外表面;和围绕并密封到纤维增强聚合物层的外表面的弹性体层。优选地,该弹性体层包括一些已经渗透到纤维增强聚合物层外表面中的弹性体材料。本发明的另一方面是用作容纳加压气体的容器的主体的制品,包括中空容器主体,该中空容器主体具有外表面,并且具有开口,气体可通过该开口进入或离开中空容器主体的内部;和围绕并密封到容器主体外表面的弹性体层。本发明的另一方面是用于容纳加压气体的容器,包括上述制品中的任一种,并且还包括连接到上述开口的阀,该阀可以有选择地阻止气体通过所述开口并且可以用可控制的方式控制气体通过所述开口的流动。本发明的容器特别适用于容纳至少1000磅/平方英寸(psia)压力的气体,更具体地讲是至少4000psia至最多8000psia压力的气体。“气体”不仅指单一化学组分的气态气体(诸如氧气、氮气或二氧化碳),也指两种或多种不同化学组分的气态混合物(诸如空气,以及一种所关注的组分与一种或多种另外气态产物混合存在的组合物,例如氧气占90%体积的组合物,以及少量或微量的一种物质与其余组分为一种或多种另外的稀释气或补充气的组合物)。在本发明中,“附着”或“密封到”另一个下方的表面或层的每层材料,优选地与其涂布到的下方表面在下方表面的整个表面上连续接触。也就是说,每个上覆层接触下方表面的整个表面,不存在空隙和不连续,也不存在下方表面不与上覆层接触的区域被下方表面与上覆表面完全接触的区域包围的区域。本发明适用于容纳和分配在例如电子、医疗和工业用途中的任何应用中有用的气体的所有气瓶或气罐。附图说明图1是根据本发明的容器主体的透视图。图2是根据本发明的包括阀的容器主体的透视图。图3是图2的容器主体的剖视图。图3a和图3b是本发明的替代实施方案的剖视图。图4a和图4b是本发明的替代实施方案的剖视图。图5是本发明的替代实施方案的剖视图。图6是本发明的优选实施方案的特写剖视图。图7a和图7b是本发明的实施方案的一部分涂层的扫描电子显微镜(sem)视图。具体实施方式首先参考图1,中空容器主体1包括侧壁2,该侧壁的横截面优选为圆形。主体1具有底部3,该底部优选为平坦的,以使主体1能够直立于平坦表面上而不会翻倒。主体1包括开口4,气体可通过该开口进入和离开主体的内部5(见图3)。图2是图1所示制品的视图,但是现在还包括适配穿过开口4的阀15。图2中可见的是控制旋钮12和出口13,其中该控制旋钮可以控制通过开口4的气流,气体通过该出口离开主体1。阀15代表控制气体是否流出主体1并且控制气体离开主体1的流速的多种单元中的一种。图3、图3a、图3b、图4a、图4b和图5是根据本发明的气瓶的一些可能的实施方案的剖视图,这些图中的气瓶的外部可以如图2所示,其中可看到阀15延伸穿过开口4,使得气体可以离开主体1的内部5的唯一方式是通过阀15。如图所示,阀15包括控制旋钮12,该控制旋钮附接到螺纹杆14,该螺纹杆穿过阀15中的孔,使得转动旋钮12可以将螺纹杆14的端部17移入或移出通道16。这样,杆14就可以被放置在通道16中的某个位置,从而可以切断气体通过阀15离开主体1的通道,并且可以通过转动旋钮12调整端部17的位置,来控制通过通道16的气流的速度。应认识到,对于本发明而言,可以用很多其他阀和调节器的实施方案来替代图3中的阀15。关于层21、23和25的以下描述适用于图3、图3a、图3b、图4a、图4b和图5所示的各个实施方案(当然,图4a和图4b的实施方案中不存在层23的除外)。在图3、图3a、图3b和图5中,为了便于参考,在绘制时层21、23和25的尺寸相对于内部空间5的尺寸进行了放大。类似地,在图4a和图4b中,为了便于参考,在绘制时层21和25的尺寸相对于内部空间5的尺寸也进行了放大。图3示出了环形缠绕复合材料气瓶,该气瓶具有位于气瓶主体21侧面上的复合材料缠绕层23,以及覆盖复合材料缠绕层23的涂层25。图3a示出了气瓶主体21侧面上有复合材料缠绕层23的环形缠绕复合材料气瓶。涂层25覆盖复合材料缠绕层23和气瓶底部3。图3b示出了气瓶主体21侧面上有复合材料缠绕层23的环形缠绕复合材料气瓶。涂层25仅覆盖复合材料缠绕层23。涂层25的底部边缘延伸超过缠绕层23的底部边缘,并且通常距气瓶底部30.5至2英寸。图4a示出了常规钢制气瓶21。涂层25覆盖气瓶21的整个主体,包括侧面和气瓶底部3。图4b示出了常规钢制气瓶21。涂层25仅覆盖气瓶21主体的侧面。涂层25的底部边缘通常距气瓶底部30.5至2英寸。图5示出了完全缠绕复合材料气瓶,该气瓶具有位于气瓶主体21的侧面和底部3上的复合材料缠绕层23,以及覆盖气瓶侧面和底部3上的复合材料缠绕层23的涂层25。层21由即使在容器容纳高压气态内容物时也能够为容器提供足够强度以及保持其给定形状的能力的材料制成。优选的材料是钢。其他合适的材料包括其他金属,诸如铝,和聚合物材料。层21的厚度应足以使本发明的容器能够容纳甚至至少1000psia压力或甚至至少4000psia压力的气体内容物。本发明的一个优点是,层21可以为大约4mm至7mm厚,这是容纳高达几百psia的较常规压力气体的钢制气瓶的典型厚度范围。也就是说,本发明的容器可以容纳高压(即至少1000psia)气体,而不需要增加钢或其他材料的厚度(即为8-14mm或更厚)来应对高压。存在于诸如图3、图3a、图3b和图5所示的实施方案中的层23,包括为容器提供额外强度的材料,即这种材料增加容器避免因响应于容器内部的高压气态内容物而爆裂的能力。层23中的材料量,比若层23由制备层21的相同材料制成时层23可提供相同额外强度所需的材料量要轻。层23为气瓶壁提供结构强度,提高容器承受较高压力的能力,从而增加容器的存储容量。通过使层23的缠绕厚度能够承受期望的存储容量所对应的压力,可将存储容量调整到期望的水平。优选地,层23为1至10mm厚。层23的优选材料是纤维增强聚合物,其中纤维包埋入聚合物基质中。合适的增强纤维的实例包括碳纤维(优选材料)、玻璃纤维,以及聚合物纤维诸如芳族聚酰胺纤维、聚酯纤维和聚酰胺纤维(例如尼龙)。用于聚合物基质的合适聚合物的实例包括环氧树脂、聚酯、乙烯基酯和聚酰亚胺。将纤维包埋入聚合物基质中,使基质具有更高强度,同时还保持其轻质特性。纤维基质复合材料可以通过例如长丝缠绕以已知的方式环形缠绕在压缩气体容器上。长丝缠绕机可以拉动纤维(例如碳纤维)通过聚合物溶液的湿浴(例如环氧树脂),并且沿一个取向或一系列不同的取向将用聚合物润湿的纤维卷绕在旋转的气瓶上。聚合物树脂基质和纤维的复合物在室温或高温下固化,使得纤维被紧紧包埋入聚合物基质中。在大多数情况下,聚合物基质需要满足某些要求才能适合用于纤维增强过程。聚合物基质需要在受控的固化条件和固化期间完全饱和并适当地与纤维键合。优选地,基质应与纤维增强材料化学键合。基质也应该能够完全束缚纤维,从而保护纤维抵御外部冲击,例如切割。在模制过程中和模制之后,基质本身也需要保持化学稳定和物理稳定。另一方面,纤维需要均匀分布在树脂基质中。当相邻的纤维从树脂浴中出来时,它们需要彼此分离,以免出现局部增强。通常需要确定纤维和基质之间的最佳键合来选择适当类型的聚合物并设置模制过程。通常,纤维类型是适合聚合物基质的优选类型的材料。例如,玻璃纤维最适合聚酯,而碳纤维最适合环氧树脂。层23为容器1提供强度。层21和23可能能够响应于容器内的高压而略微屈曲。层23具有略微屈曲的能力,能够为层21提供辅助。层25保持轻质纤维增强聚合物复合材料缠绕层23的耐久性和寿命。层25提供保护涂层,可以抵抗可能导致腐蚀和/或压力完整性降低的机械冲击和环境冲击。这层保护涂层也应该是对用户友好的并且易于粘贴标签,另外,还应该能够调整成各种颜色和带纹理的抛光表面。所有此类气瓶或气罐的外表面必须干净卫生,才能涂布保护涂层。总体而言,要有效地用作(图3a、图3b、图5和图5b的实施方案中的)碳纤维或其他纤维增强聚合物复合材料缠绕存储容器上的保护涂层,或(图4a和图4b的实施方案中的)容器21上的保护涂层,涂层必须具有以下性质:柔性以适应气瓶壁因压力和温度变化产生的膨胀和压缩可在熔融状态涂布低蠕变耐磨性和抗冲击性对碳纤维复合材料缠绕层具有强附着性可耐受恶劣环境条件可调色已经确定本发明的一个方面是,热塑性弹性体族聚合物可以用作纤维增强聚合物复合材料缠绕层的保护涂层或用作气瓶主体本身的保护涂层。根据保护涂层的要求,热塑性弹性体所具有的性质使其成为该应用的理想选择。合适的热塑性弹性体聚合物的实例是聚烯烃、聚酰胺、聚酯、聚氨酯和聚脲,以及这些聚合物的共聚物和物理混合物。热塑性弹性体聚合物通常具有的性质包括:中等伸长率应力消除后能够恢复原来的构型可在高温熔融状态下施用没有显著的蠕变具有耐化学性和机械抗性的交联基质基于组成和配方的可变特性还已确定,聚脲和聚脲-氨基甲酸酯热塑性弹性体聚合物具有额外的特性,使得它们成为本应用的特别优选材料。性质包括:在10秒或不到10秒的时间内无粘性voc(挥发性有机化合物)含量为零或非常低具有优异的抗石击性、耐磨性、抗冲击性、耐撕裂性和耐化学品性在较广的温度范围内具有良好的耐用性和柔性在经受紫外线照射和潮湿环境后能够保持原来的光泽和颜色除了保护性涂层的性质要求之外,还确定诸如本发明的此类高压储存容器在实际使用中需要能耐受特定的操作条件。条件包括:-40℃到+60℃的温度范围120in-lb以上的机械冲击性直接及连续阳光照射接触雨水、雾和/或咸水连续使用长达15年,甚至长达30年覆盖复合材料缠绕层23或直接涂布到气瓶主体21上作为层25的保护涂层,可以具有在合理厚度范围1-8mm,优选为2.5-5mm内的厚度。如果所述涂层太薄,则无法获得很强的机械性能,并且涂层抛光表面与下面的复合材料缠绕层共形;如果所述涂层太厚,则可能导致气瓶的构型改变,增加气瓶处置的难度。因此,所述层25优选地比层23薄。层25可以是完全覆盖缠绕层23或气瓶主体的套筒形式,或是包括具有复合材料缠绕层23(如果存在)的主体和使用裸钢的底部的封装形式。通常,层25是具有光滑外抛光面的涂层,这不仅便于使用者在容器上粘贴和更换信息标签,也让容器的外表面具有吸引人的外观。然而,如果采用的是涂层封装,当使用者在地板上移动气瓶时,光滑的涂层可能会导致滑移。本发明包括在涂层表面为底部3增加防滑特征的选项,方法是在涂层固化期间冲压纹理,或者在将涂层涂布到气瓶的底部时混入额外的颗粒。构成层25的涂层的化学性质优选是耐化学腐蚀和不可渗透的。所述涂层需要是柔性的,能够适应气瓶壁因压力和温度变化而引起的膨胀和收缩,并且其机械强度足以承受机械冲击。如果涂层足够硬但太脆,则其性能会随着时间的推移而降低,因为重复的气体填充会导致气瓶即使微小但却反复的膨胀和收缩。所述涂层还需要耐化学腐蚀。如果湿度和化学物质可以渗透过涂层并腐蚀气瓶主体或腐蚀与碳纤维键合并将缠绕材料保持在一起的树脂,则可能会影响气瓶的完整性。因此,当存在层23时,本发明的涂层25具有耐化学腐蚀性和不可渗透性,以保护气瓶和层23的复合纤维树脂。本发明中的层25的优选涂层材料是热塑性弹性体。热塑性弹性体是一类兼具热塑性和弹性的聚合物的共聚物或物理混合物。与橡胶材料和塑料材料相比,热塑性弹性体具有很大的优势。热塑性弹性体包括与不相容的硬质材料以共价键相连或物理混合的橡胶状聚合物链段。热塑性弹性体提供物理交联和增强。合适的热塑性弹性体需要保持所需的优异性质,例如耐化学性和机械抗性,与高压容器一起膨胀和收缩的柔性,以及易处置性和易应用性,并且不需要昂贵的成本,对环境也是友好的。适合用作本发明的层25的保护涂层的推荐热塑性弹性体是聚酯、聚氨酯、聚脲、聚酰亚胺,及它们的混合物和组合物。优选的是具有柔性二醇和/或柔性二酰胺链段的聚氨酯和聚脲。更优选的是聚脲,因为聚脲同时具有很强的耐化学腐蚀性和很强的耐机械冲击性。在二异氰酸酯与短链二酰胺和长链二酰胺之间可生成的可能组合具有无穷的变化,包括调节反应化合物的结构和/或分子量。这使得尿素化学家能够提供具有最终产品的最理想性质的聚合物结构。在某些情况下,混合聚脲和聚氨酯的化学物质来降低整体成本也是可行的。用于生成氨基甲酸酯键的短链二醇和长链二醇的各种组合,也为最终的热塑性聚脲和聚脲-氨基甲酸酯涂层提供了作为纤维增强复合材料缠绕存储容器上的保护涂层所需的性质中的柔性。作为层25的优选类型的弹性体保护涂层,聚脲是异氰酸酯组分与胺端组分的反应产物。异氰酸酯表示含有异氰酸酯基的有机化合物,其化学式为r1-(n=c=o)n,其中r1选自具有1到30个碳原子的脂族基、芳族基、芳基脂族基和脂环族基,异氰酸酯功能基的数量n为1到3个(其中具有两个异氰酸酯基的异氰酸酯化合物被称为二异氰酸酯,具有三个异氰酸酯基的异氰酸酯化合物被称为多异氰酸酯)。实际可用于制备聚脲涂层的二异氰酸酯和多异氰酸酯的实例是亚甲基二苯基二异氰酸酯、六亚甲基二异氰酸酯、甲苯二异氰酸酯和异佛尔酮二异氰酸酯。异氰酸酯是亲电体,往往会与亲核试剂(包括醇、胺、甚至水)反应。当二异氰酸酯与含有两个或更多个羟基的二醇或多元醇反应时,会形成被称为聚氨酯的聚合物链。二异氰酸酯和含有两个或多个胺基的化合物之间的类似反应产生称为聚脲的产物。含有两个或更多个胺基的化合物具有化学式r2-(nh2)a,其中r2选自具有1至30个碳原子的脂族基、芳族基、芳基脂族基和脂环族基,并且胺基的数量a为1至3。胺基(-nh2)连接异氰酸酯基(-n=c=o)以形成脲键(-(nh)2-c=o)。如果胺基和异氰酸酯基的数量多于一个,则其他胺基与其他异氰酸酯基反应形成长链和交联的聚脲聚合物。可实际用于制备用作本发明的层25的聚脲涂层的二胺和多胺的实例包括六亚甲基二胺、三亚丙基三胺、甘油基聚(氧丙烯)三胺和二亚乙基二胺。层25优选地不含溶剂。为了能够在形成层25时控制其厚度,形成层25的材料以液态形式涂布在气瓶主体的表面上或层23的表面上(视情况而定)。这些材料通过化学反应开始凝固,并经历状态变化。优选的是化学反应顺利完成,产生无溶剂的涂层,并且所有的反应物都被完全消耗掉。当涂层材料的组分在其涂布到的表面上相遇时便发生化学反应,例如聚二酰胺和聚二异氰酸酯反应形成聚脲。两种组分一旦相遇便发生反应并开始交联,优选的是在反应进行的合适的高温下发生反应并开始交联,并且优选的是在化学反应期间不产生蒸气。本发明的层25必须具有某些机械性能,诸如强耐磨性和强抗冲击性。否则,即使是在正常运输、处置和操作气瓶时,切割和碰撞也可能导致气瓶外表面受到损伤。如果未受保护的复合材料缠绕层23或气瓶主体21因遭受机械冲击而受到损伤,则加压气瓶的完整性很可能会立即受到影响。如果仅造成了轻微损坏,也许可以修复复合材料缠绕层23;而如果造成了严重损坏,则气瓶可能需要丢弃。而且,层23会因诸如连续接触紫外线、高/低温度、湿度、化学腐蚀等原因而遭受各种环境损害。这些环境因素会削弱碳纤维复合材料的强度并导致缠绕层23与层21的外侧分离,而这有可能降低气瓶的压力完整性。因此,未受保护的纤维复合材料层23直接暴露于环境中会显著缩短气瓶的使用寿命。除了为层23和气瓶主体21提供保护的优点之外,本文所述的层25还提供了其他优点。例如,气瓶或容器的颜色通常指示内部存储的气体的组成,但碳纤维缠绕材料本身不容易能够摄取并保持不同的颜色。除了颜色之外,气瓶上通常还会贴有标签,显示有关瓶内气体的组成和健康/安全要求的信息,但不能把标签贴到裸碳纤维复合材料缠绕层上。本文所述的层25可以着色,并且可以贴附标签,同时还能保有所需的颜色和标签。如本发明所述的层25的一个优点是,它可以耐受侵蚀性磨耗,所造成的重量损失和厚度损失可忽略不计。例如,如果使用c-17轮以1000g负荷和1000转对如本文所述制备的容器执行astmd4060(14)测试程序,则检测不到重量损失;如果使用h-18轮(比c-17轮更厉害的表面抛光)以1000g负荷和1000转进行测试,则重量损失为50-300mg,优选为100-200mg或更少;转数达到2000转时,重量损失为100-500mg,优选为200-300mg或更少。本文描述为25层的涂层也可以耐受astm程序所述的冲击,只会出现表面材料迁移或轻微压痕;更优选地,不会因冲击造成压痕。例如,使用astmg14(04)测试程序时,涂层具有高于90in-lb的极好抗冲击性;更优选地具有高于150in-lb的极好抗冲击性,而没有出现表面材料迁移或凹痕。本文描述为层25的涂层始终附着到其涂布到的衬底(层23或气瓶21)上。由于气体容器会遭受反复充气和排空,层21的钢材料或其他材料如同层23一样会经历轻微的膨胀和松弛。由于层23的复合材料缠绕层具有极高的拉伸强度,所以膨胀和松弛的反复循环不会导致其复合材料缠绕层出现问题,但是可能会导致层21和层23在分界面处发生分离。一旦在边缘处发生分离,这两个层的分界面将暴露在外部环境中,而水和污垢可能会进入该分界面,侵蚀层23的树脂。用作层25的涂层的弹性性质需要考虑弹性模量和永久性变形而在一定范围内选择。弹性模量描述为达到给定量的变形所需的每单位面积的力(应力)的量。弹性模量越高通常表示材料越难变形。然而,如果弹性模量太高,例如高于用作层21的金属衬里或用作层23的复合材料缠绕层,则当发生膨胀时,层25的变形会远小于层23或层21的变形,从而导致在层25下的分界面内出现应力或摩擦。在反复的膨胀和松弛后,这种情况可能会损坏在层25下方与层25接触的表面,并且进一步降低封装的完整性。层25的弹性模量可根据astmd638(14)测量,其值优选为0.1-17,更优选为0.5-5。层25不仅容易变形,还需要在应力消除后恢复原来的形状。换句话说,层25需要与层23或层21一起膨胀和松弛。永久性变形描述因循环拉伸和松弛而引起的弹性体材料的长度增加。该性质是层25内分子间键的重排的可见指示。如果永久性变形百分比太高,则用作层25的涂层在反复充气和排空之后将发生膨胀,但在某一点不会恢复其原始构型。然而,当层23和层21恢复到其原始形状时,有可能会在层25下方的分界面处产生间隙,而污物和/或水可进入间隙,对增强层造成损害。因此,层25的永久性变形可根据astmd2731(15)测量,其值优选地低于20%,更优选地低于10%。为了在循环膨胀和松弛后完好无损,用作本发明的层25的涂层需要非常好地附着在缠绕层表面23上。例如,使用astmd4541(09)测试程序测试时,涂层和复合材料缠绕层之间的附着失效发生在高于400psi时,更优选地发生在高于600psi时。弹性体涂层在复合材料气瓶上的极好附着消除了在分界面处的分离及涂层从缠绕材料表面剥离的可能性。层25的涂层优选地具有抗切割性。多用刀无法刺穿涂层,并且需要在刀片上施加高压高速才能在涂层中形成切口。一旦造出切口,涂层优选地无法被剥离,更优选地无法被撬离。例如,使用astmd6677(07)测试程序造出“x”切口并探入“x”切口,使涂层松动。层25优选地难以移除(等级8或9),或更优选地极难移除(等级10)。如果造出了微小切口,而复合材料缠绕层没有因切割而损伤,则可以在局部修复切割区域。优选地,层25的涂层的最内表面延伸到层23的外表面的(下面)。这一点可以在涂层涂布过程中实现,例如在喷涂涂层材料期间利用高压促使层25的材料渗入层23的外表面。将涂层材料适当地渗入到层23中可以改善层25在层23上的附着,防止剥离,同时保持整个封装的完整性。如果深度太小,则无法提供足够强的附着力;然而,如果深度太大,则可能损坏层23的树脂,降低层23的强度。渗入深度优选为50-300μm(微米),更优选为100-200μm。本发明的这个方面在图6中示出,其中层21、层23和层25如本文所述。然而,在本实施方案中,层23不包含任何弹性体,层25不包含任何纤维增强聚合物,而在层23和层25之间,存在由形成层23和层25的材料的混合物构成的区域24。区域24可以包括本文所述的增强纤维。区域24由层25的材料渗入层23的材料形成。区域24的厚度通常为50至300微米,优选为100至200微米。因此,本发明的这个方面可以被表征为包括纤维增强聚合物层23,包括弹性体层25,并且包括层23和层25之间包括所述弹性体和所述纤维增强聚合物的混合物的层24,其中,纤维增强聚合物层包括层23不包含所述弹性体的区域,弹性体层包括不包含所述纤维增强聚合物的区域,并且层24为50至300微米厚,优选为100至200微米厚。图7a和图7b进一步示出了本发明的这个方面。两个图中均示出了弹性体层25(在阴影中显示为较浅的灰色)和纤维增强聚合物层23(在阴影中显示为较深的灰色)。图7a中显示的层24是层25的一些弹性体材料渗入聚合物层23中后存在于聚合物层23中的区域。本发明的压缩气体容器可经历各种类型的天气,包括高于100℉的炎热高温、低于-20℉的寒冷低温、持续的阳光暴晒、剧烈的温度变化,以及倾盆大雨。如果层23未被涂层覆盖,所有恶劣的环境条件都可使层23的纤维复合材料缠绕层中的树脂降解,损害加压气瓶的完整性。但本发明的涂层25在经历过循环环境例如温度、紫外线和湿度的循环后仍然是稳定而耐用的。所述涂层在经历循环温度-20℉至100℉,优选为-40℉至120℉,更优选为-60℉至160℉之后,仍然保持高水平的机械性能,即仍然保持高水平的耐磨性、抗冲击性、抗切割性、抗剥离性以及复合材料缠绕层上的附着性。所述涂层在经历连续紫外线照射以及40%至100%的湿度循环500小时,优选为1000小时后,将仍然保持良好的机械性能。脂族聚氨酯和聚脲涂层材料在本发明中是优选的,因为它们在暴露于紫外线照射之后具有良好的抗变色性。在没有紫外线照射或紫外线照射有限的情况下,以及在正常暴露于紫外线照射的情况下如果有额外的防紫外线涂料涂层,也可以使用芳族聚氨酯和聚脲材料。根据本发明任选地包括在层25中的其他化学品是底漆和防紫外线涂料。底漆用于增强相邻的层21和层23,和/或层21和层25,和/或层23和层25之间的附着力,特别是气瓶的底部和颈部区域需要涂布涂层的时候。底漆可以是环氧基或硅基的化学物质,并且它需要与复合材料层23中的聚合物树脂在化学上相容。防紫外线涂料可以涂布在层25的上面,用于减少因照射紫外线引起的降解。防紫外线涂料优选是水基的,可喷涂的或可刷涂的,并且能够在环境温度下干燥。防紫外线涂料也可用于减少钢制气瓶21生锈的几率。层25的颜色可以根据应用需要和客户需要。更优选地,颜色可以与下方的层21和层23形成对比,以更清楚地显示层25的任何切口或其他损伤。例如,如果层23或气瓶21使用黑碳纤维复合材料,则优选使用较浅颜色的材料来涂布层25,并且浅色层25上面任选地涂上深色漆。在实施过程中,在本发明的容器上装配阀15。然后将所需的气体通过阀送入容器中。因此,优选地,阀是在本领域中已知的类型,气体通过阀送入容器中,直到容器中的气体达到期望的压力时便停止送入气体,通过阀使气体在容器中一直保持该压力。结果便是具有本文所述特征并且包括压力优选为至少1000psig,更优选为至少4000psig,通常高达8.000psig的气体的容器。容器中的气体可以是在环境条件(25℃和1个大气压)下为气态的任何产物,或者可以是两种或更多种此类产物的混合物。实例包括空气、氮气、氧气、氢气、氦气、氩气、二氧化碳、氯化氢、氨、甲烷、氮氧化物、六氟化硫及它们的混合物。当容器中的气体为气体混合物时,混合物可以在送入容器之前形成,或者可以依次逐一把所需混合物的组分送入容器中,从而在容器内形成混合物,而不是在送入容器之前形成。本发明以下列实例进行说明。在表1、表2、表3和表5中,列标题为“优选”或“特别优选”的列中显示的是能够达到特别令人满意的性能的目标值。实例气瓶涂布工艺这里具体评估涂层a和涂层b。它们都通过两种称为聚二胺和聚二异氰酸酯的组分以1:1或1:2比例的反应而形成。这两种组分分开存储在两个容器中,按照预先设计的比例泵入喷雾室,然后加热并在喷涂的同时混合。这两种组分在复合材料气瓶的表面相遇,在高温下发生反应。在完全反应后,在室温下非常短的时间内完成固化,产生涂层。测试是在复合材料气瓶或全涂层复合材料气瓶的带涂层的试样块上进行的。实例1-耐磨性测试方法1-耐磨性按照astmd4060(14)程序,使用泰伯耐磨测试来测定涂层的耐磨性。测量并记录涂有材料a或b的钢样品试样的原始重量。选择使用泰伯磨耗试验机、h-18轮来加载1000克。将试样置于泰伯磨耗试验机上,然后分别旋转500转、1000转、1500转和2000转。每次运行后测定并记录试样的重量。通过重量测定法评估耐磨性。涂层a和涂层b的耐磨性值,以及根据本发明的优选涂层的值如表1所示。表1泰伯磨耗值涂层a/mg涂层b/mg优选涂层/mg特别优选涂层/mg经过500转73105<200<100经过1000转145216<400<250经过1500转209334<600<400经过2000转284454<800<550实例2-抗冲击性测试方法2-抗冲击性按照astmg14(04)程序,使用具有特定重量和直径的落锤提供冲击。撞锤被限制在竖直方向,然后从各种高度落下,对试样产生冲击能量。利用探伤来检测涂层上产生的破裂。带涂层的复合材料气瓶试样块安装在冲击装置上。撞锤由锤身和锤头组成,重量为3.2lb,5/8”半球形开口。冲击装置从10”(英寸)到最大58”(英寸)的距离范围落下撞锤。冲击值由撞锤的重量乘以撞锤行进的距离来确定。抗冲击性被视为开始失效时的冲击值。涂层a和涂层b的抗冲击性值,以及根据本发明的优选涂层的值如表2所示。表2抗冲击性值涂层a/in-lb涂层b/in-lb优选涂层/in-lb特别优选涂层/in-lb失效>90>180>120>180描述轻微凹痕没有实例3-拉伸附着强度测试方法3-拉伸附着强度按照astmd4541(09)程序进行拉伸附着强度测试,以测定涂层的剥离强度。首先使用直径接近拉棒的孔锯在涂层上切划。然后用环氧树脂粘结剂将拉棒附接到涂层表面上,使其在室温下固化24小时。使用elcometer气动测试仪拉拔拉棒,在10-3000psi的范围内使拉棒与衬底分离。如果在涂层和碳纤维复合材料的分界面处发生失效,则把拉拔压力值记为拉伸附着强度,而如果在涂层内或胶水处发生失效,则存在内聚失效和胶合失效,不代表拉伸附着强度。涂层a和涂层b的拉伸附着强度值,以及根据本发明的优选涂层的值如表3所示。表3拉伸附着强度值涂层a/psi涂层b/psi优选涂层/psi特别优选涂层/psi附着失效>800>600>300>500实例4-防止剥离的附着强度测试方法4-防止剥离的附着强度按照astmd6677(07)程序进行防止剥离的附着强度测试,以测定涂层的剥离难度。首先在涂层上切割一个“x”切口,该切口深入至涂层和复合材料缠绕层的分界面,然后用多用刀或甚至撬杆探入“x”切口,使涂层松动。如果涂层太厚,则可以使用附接到钻机上的循环刀片来切割“x”切口。从“x”切口剥离涂层,附着强度按0至10的等级进行评级,0为“容易去除”,10为“极难去除”。去除涂层a和涂层b的评级结果如表5所示。表4防止剥离的附着强度等级涂层a涂层b/psi优选涂层/psi特别优选涂层/psi评级100810实例5测试方法5-抗紫外线性和耐湿性为了模拟室外侵蚀,使用quv室来测试涂层的抗紫外线性和耐湿性。quv测试仪使涂层交替暴露在模拟阳光直射和阴雨天气的紫外线和湿气循环中。在执行测试方法1、2和3之后,使涂层暴露在quv中一段时间,在本方法中为暴露500小时和1000小时,然后测试机械性能。基于测试结果评估抗紫外线性和耐湿性。在测试中还记录在暴露在紫外线和湿气中后颜色和光泽的变化,以确定对所施加环境的抗性。涂层a和涂层b的耐磨性、抗冲击性和拉伸附着强度值如表5所示。此外,涂层a和涂层b在暴露在quv中1000小时后仍然都保有光泽的外观,然而,涂层a的颜色在500小时后从白色变成微黄色,而涂层b的颜色仍保持不变。表5quv后的测试结果实例6测试方法6-热循环为了模拟室外温度变化,使用烤箱和冷冻机让涂层暴露在-50℃到+60℃范围的温度下。在执行测试方法1、2和3之后,让涂层经历一段时间的热循环,在本测试中时间为30天,然后测试机械性能。基于测试结果评估耐热性。在测试中还记录热循环后颜色和光泽的变化,以确定涂层对所施加环境的抗性。涂层a和涂层b的耐磨性、抗冲击性和拉伸附着强度值如表6所示。此外,涂层a和涂层b在热循环测试30天后仍然都保有原来的颜色和光泽。表6热循环后的测试结果实例7涂层向复合材料缠绕层的渗入涂层材料向复合材料缠绕层中渗入合理的深度范围可以促进附着。图7a和图7b所示的扫描电子显微镜(sem)图像是涂层a和涂层b在纤维增强聚合物表面的相同表面上的比较。涂层a具有约100至150微米的更好渗入深度,涂层b的渗入区域小于50微米,涂层a所提供的防止剥离的附着强度明显高于涂层b的防止剥离的附着强度。如实例4所示,涂层a的防止剥离的附着强度评级为10-“极难去除”,而涂层b的评级为0-“容易去除”。同时,如实例3所示,涂层a和涂层b的拉伸附着强度相对相同。根据本发明的被涂布到表面的每种涂层材料,在涂布(例如喷涂或其他涂布技术)期间需要处于液体状态。因此,被涂布的材料在环境条件下可以是液体,或者它可以溶解或悬浮在涂布之后会蒸发的合适溶剂中。在涂布之后,让液体涂层材料经历一段时间之后凝固或完全固化。此外,通过在喷涂期间使用足够高的压力让涂层材料渗入到聚合物层中,实现弹性体涂层材料渗透穿过弹性体材料涂布到的聚合物材料表面至期望的渗透度。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1