铸件内部缺陷自动分析识别装置及其分析识别方法

文档序号:6110626阅读:312来源:国知局
专利名称:铸件内部缺陷自动分析识别装置及其分析识别方法
技术领域
本发明是铸件内部缺陷自动分析识别装置及其分析识别方法,属数字图象分析识别技术及设备。
背景技术
金属铸造是把金属加工成预期的几何形状的工业加工工序,其主要过程是通过把烧至熔融状态的金属浇灌到铸模内,待其冷却后得到设计所要求的形状。在这一生产工艺过程中,由于工艺设计、材料配方、生产设备、环境条件等诸多因素的影响,使铸件不可避免地形成各种各样的铸造缺陷。随着对铸件产品质量的要求越来越高,对铸件产品质量的检测、分析、识别手段也提出了更高要求。又由于铸件产品的多样性,铸件内部缺陷的检测,一般是用X光机或层面扫描(CT)仪来获取铸件内部的缺陷图象,然后由检测员按照国际标准检测委员会ASTM制定的无损伤铸件检测国际标准的参考图象与实物检测图象进行对照比较。检查工序往往要求对同一类产品中出现的多达7类8个等级的缺陷图象进行反复对比、识别和判断,在这种长时间枯燥的检测识别工作环境下,极易造成眼睛疲劳,因此不可避免地直接影响到检测的准确性和效率。也就是说现有技术存在检测识别人员很吃力、很费神、易疲劳、检测识别效率低、准确性差、随机性大等的缺点和问题。
本发明的目的就是为了克服和解决现在尚无铸件内部缺陷自动检测分析识别专用装置或现有检测分析识别技术又存在检测识别人员很吃力、很费神、易疲劳、效率低、随机性大、准确性差等的缺点和问题,研究、设计、发明一种能对在线实时获取的铸件内部缺陷图象进行自动分析识别的装置及其分析识别方法并且精度高、准确性好、可靠性高、效率高、劳动强度低、成本低。

发明内容
本发明是通过下述技术方案来实现的铸件内部缺陷自动分析识别装置的外形结构示意图如图1所示;其电路方框图如图2所示;其实施方式之一的电路原理图如图3所示。它由液晶显示屏1、机壳及面板2、连接电缆3、电源开关4、功能键5、6、7、电路板共同安装连接构成,其相互位置及连接关系为电路板固定安装于机壳2内,液晶显示屏1装于机壳的面板2上并通过显示信号线与电路板上液晶显示输出电路相应点相电气连接;电源开关4及功能键5、6、7分别安装于机壳的面板2下部并分别通过电源线、各功能信号线分别与电路板上电源端、各相应功能电路相应点相电气连接;连接电缆3的一端穿过机壳2侧面预留的孔与电路板上相应电路相应点连接,其另一端与X光机或CT层面扫描仪相应通信信号输出端相连接;其电路由A/D转换电路、数字信号处理器(DSP)、同步随机存取存储器(SRAM)、可编程只读存储器(EPROM)、地址译码及片选控制器、串行接口电路、液晶显示输出电路共同电气连接构成,其相互连接关系为A/D转换电路分别通过模拟信号线、数字信号线分别与X光机或CT层面扫描仪、数字信号处理器(DSP)相电气连接;数字信号处理器分别通过同步存取信号线、可编程存储信号线、译码及控制信号线、串行接口信号线分别与同步随机存取存储器(SRAM)、可编程只读存储器(EPROM)、地址译码及片选控制器、串行接口电路相电气连接;地址译码及片选控制器分别通过译码及控制信号线分别与同步随机存取存储器(SRAM)、可编程只读存储器相电气连接;串行接口电路通过显示信号线与液晶显示输出电路相电气连接。如图3所示,其中A/D转换电路由集成电路IC1构成;数字信号处理器由芯片IC2构成;串行接口可采选用数字信号处理器芯片IC2内的串行接口,液晶显示输出电路由J1构成;同步随机存取存储器由IC9、IC10、IC11共同连接构成;可编程只读存储器由IC7构成;地址译码及片选控制器由IC3构成。
用本发明的铸件内部缺陷自动分析识别装置进行自动检测分析识别的方法是将铸造检测国际标准的参考图象进行分类及特征提取;现场采集的铸件内部缺陷图象经铸件内部缺陷自动分析、识别装置进行特征提取、模式匹配和缺陷分析识别后,在监测屏幕上显示所测缺陷的类别和等级;其方法步骤如下(1)首先将铸造检测国际标准的参考图象进行分析,经过采用如附图5所示的缺陷分析算法对铸件缺陷标准的参考图象进行处理和特征提取,形成一套用于铸件缺陷分析识别的模型存入本发明的分析识别装置中的存储器内;缺陷分析算法包括发明人针对铸件内的长形针孔、圆形针孔及海绵状缩松这几种用传统的现有方法难以分析识别的缺陷类型,运用小波理论,创造性地将这几种缺陷类型图象分别在空域中进行方向滤波,再选择合适的移动窗口,针对不同窗口内缺陷缩孔所占的面积来对不同缺陷加以分类区分的小波分类分析算法;(2)然后将现场采集的铸件内部缺陷的X光机或CT层面扫描仪输出的模拟信号输入到本发明装置的A/D转换器进行模/数转换,经铸件内部缺陷自动分析识别装置采用如附图5所示缺陷分析算法进行在线实时获取的图象的特征提取;(3)然后将所得到的特征与存储在装置内上述存储器内的标准参考图象的特征进行模式匹配,接着进行缺陷类型识别和缺陷的等级识别,最后在监测屏幕上显示所测缺陷的类别和等级;更具体过程如下本发明装置加电后,数字信号处理器DSP芯片复位,由内部固化的自引导程序将存于可编程只读存储器EPROM中的程序和数据移至高速同步随机存取存储器SRAM,然后数字信号处理器DSP开始图象分析和识别算法,每一帧运行一次缺陷分析算法,大约需时22毫秒,再由串行通信口将分析和识别结果输出到液晶显示屏;由于数字信号处理器DSP的运算速度足以在一帧内完成铸件图象缺陷分析和识别算法(包括预处理),本发明装置可以按全双工方式工作。
本发明与现有技术相比具有如下的优点和有益效果(1)本发明为铸造生产提供实时的在线铸件内部缺陷图象分析识别装置及分析识别方法;(2)本发明完全能克服和解决现有铸件质量检测技术存在检察员眼睛易疲劳、准确性差、随机性大、效率低、不可靠等的缺点和问题;(3)本发明能提高铸件质量检测、分析、识别的准确性和可靠性,提高铸件检测的工作效率,降低该检测分析识别工序的劳动强度,进而为计算机集成制造提供先进技术手段,能使在线获得的生产质量数据可以自动处理、存储和查询;(4)本发明装置和方法可用于分析识别其它任何通过电子方法获取的铸件内部缺陷图象及图形;(5)本发明装置成本低廉,图象处理速度快,保密性强、精度高。


图1是铸件内部缺陷自动分析、识别装置的外形结构示意图;图2是其电路方框图;图3是其实施方式之一的电路原理图;图4是铸件内部缺陷在线分析识别的程序流程方框图;图5是铸件内部缺陷自动分析识别装置的缺陷分析算法流程框图。图中1是液晶显示屏、2是机壳及面板、3是连接电缆、4是电源开关、5、6、7均是功能键,可分别实现暂停、跟踪及图象选择功能;图3中相同标号点应相电气连接。
(五)实施方式本发明铸件内部缺陷自动分析识别装置及其方法可用软件、硬件或软硬件结合的方法实现,例如在通用计算机上用Fortran、C语言编写成装置处理软件来实现本发明的方法,或利用通用的可编程器件如单片机来实现,即用硬件代替一部分软件功能,还可采用通用或专用数字信号处理器DSP以及在通用计算机上增加专用的加速处理机实现。在现在所述的最佳实施例中,所述铸件内部缺陷自动分析识别的方法及装置是用软硬件结合实现的,其软件流程方框图如图4、图5所示;(1)按图1所示,设计、加工、制造机壳及面板2,可选用铝合金材料采用通用机加工方法进行加工制造,加工好后如图1所示布置、安装市场购买的液晶显示屏1、电源开关4和各功能键5、6、7;(2)按图2、图3所示,用计算机绘制电路板,并筛选元器件进行安装电路板,例如A/D转换电路可选用TI公司的TLC5510芯片;数字信号处理器DSP可选用美国德州仪器公司生产的TMS320C31浮点DSP芯片;同步随机存取存储器SRAM可选用SL8X350存储芯片;可编程只读存储器EPROM可选用TMS27C512芯片;串行接口电路可采用数字信号处理器芯片内串行接口;地址译码及片选控制器可选用SN74HC138集成件;(3)安装好电路板经简单加电调试后,按图4、图5所示,编写软件程序并存入SRAM及EPROM;(4)把装置于机壳面板上的液晶显示屏1、电源开关4及各功能键5、6、7分别通过显示信号线、电源线及各功能信号线分别与机壳2内电路板上各自相应电路相应点相电气连接;通过信号电缆线3把电路板上相应模拟信号输入电路与X光机或CT机相应点相电气连接,这样便能较好地实施本发明。
实施过程中,更具体的实施情况及本发明装置的性能如下①本发明装置的最佳实施例是采用以DSP芯片为核心,并配以图象采集、存储和液晶显示等外部电路的图象处理器,主要的特点有成本低廉,图象处理速度快,可完全满足铸造生产线的实时在线检测分析、识别要求;另外通过软件的硬件化,使软件具有较强的保密性和运行的可靠性;本装置的核心部分采用美国德州仪器公司生产的浮点DSP芯片TMS320C31,其指令周期为33ns,工作频率为40MHz,可以用来实现多种DSP算法;另外芯片还提供了丰富的硬件资源数据总线和地址总线分别是32位和24位,分开的程序总线、地址总线和直接存储器存取(DMA)使得取址、读写数据和DMA操作可以并行进行,还可访问多达16M的32位字节的存储器空间;64字节的高速缓存和2K字节的快速RAM,大大减少了片外访问的次数,提高了程序运行速度;引导程序装入方式是将程序和数据从低速EPROM或串行口装入到快速RAM;片内串行口可使TMS320C31直接与串行外部设备交换数据,支持8、16、24和32位数据交换;两个定时器可用来实现各种功能;②A/D转换电路采用TI公司的TLC5510作为A/D转换芯片,其转换精度为8位,CMOS电平,采样频率为8MHz,并行输出方式。它利用半闪快速结构,用单5伏电源工作,且只消耗100mW的功率。它还包含由内部采样和保持电路,具有高阻抗方式的并行口以及内部基准电阻;③X光机或CT机模拟信号从A/D转换器TLC5510(IC1)的模拟输入口ANALOG IN输入,图3中示为AIN,电容C1和R2起去偶接地作用;输入信号经过电平转换器74HC25(IC3)转换成CMOS电平,进入缓存器74603(IC4),由于IC1的输出为TTL电平,所以实施例中采用IC3来进行电平转换;IC1的输出D0-D7与IC3的A0-A7连接,IC3的输出Y0-Y7为CMOS电平,接到缓存器IC4的A0-A7,IC4的输出B0-B7与DSP芯片TMS320C31(IC2)的数据线D0-D7相连接,一个相当于数据采集开关的二选一选择器74157(IC5)通过引脚1Y控制缓存器IC4的输出使能端OE,当OE为低电平时,允许数据输出;当OE为高电平时,IC1的D0-D7为高阻状态。当进行数据采集时,DSP内部程序使输入引脚XF0置“0”,令与IC2的XF0相连接的IC1的OE端在下降沿触发并由此开始进行模术转换,同时使输出引脚XF1置“1”,通过与之相连接的选择引脚SLE,使选择器74157选择与DSP的串行通信端STRB相连的1A端,缓冲器开始工作,数字数据由缓冲器读入DSP的数据线;当采集完一帧的数据,使XF1置“0”,选择器输出Y为B(因B为高电平),缓冲器关闭,停止发送数据;通过与IC2的写/读端口W/R连接,这里A/D转换器的时钟信号CLK由DSP分频得到。电阻R1与R4再加可调阻R3进行分压,向IC1的参考电压端REF提供参考电压;④IC2实时运行程序和数据都存放在同步随机存取存储器SRAM中,SRAM为四片256K×8位的存储芯片SL8×350(IC8、IC9、IC10和IC11),构成256K×32位的存储空间,它们中的地址线A0-A14接IC2的地址线,而数据线D0-D7则分别与IC2的D0-D7、D8-D15、D16-D23、D24-D31数据总线连接;另外IC2还连接了一片用于存储程序及初始化数据、型号为TMS27C512(IC7)的可编程只读存储器EPROM,构成32K×8的存储空间;EPROM的16根地址线A0-A15直接与IC2的A0-A15相接,8根数据线与IC2的D0-D7相接,片选端CE和其自身的输出使能端OE相接后与译码器SN74HC138(IC6)的输出端Y1、Y2相连接;IC6的引脚A、B和C分别连接到IC2的地址线A18、A22和A23;另外,IC2还输出到一个64×12的液晶点阵显示器(J1)作为状态显示,可选用日本seiko Epson公司型号为sed1330的产品;IC2的A13作为液晶点阵的输出使能连接到其CE端。其D0-D19分时作为液晶点阵的行信号,D20-D31作为液晶点阵的行扫描信号;⑤图4是体现本发明铸件内部缺陷自动分析识别的方法和装置处理方法的流程图。由于铸件质量的检测分析、识别主要依据ASTM委员会提供的无损伤检测的国际标准,铸件内部缺陷自动分析识别仍然依照本标准,但却不能象依赖人的眼睛分析那样直接采用该委员会提供的标准图象,而必须对其进行处理以使自动分析装置可以通过相对简单的数字运算完成模式匹配与识别;在将标准图象进行特征分析和提取之后,装置采用与处理标准图象基本类似的方法对在线采集的铸件缺陷图象也进行特征分析和特征提取,然后将所得到的特征与缺陷的标准图象相对应的特征进行模式匹配,并按下面介绍的算法分析铸件缺陷的类型以及所属的等级,最后在本发明铸件内部缺陷自动分析识别装置的显示屏上显示分析结果;⑥图5是说明本发明铸件内部缺陷自动分析识别装置的缺陷分析算法流程图,本发明的分析算法采用固化在DSP芯片中运行的方式以提高可靠性和实时处理的速度,铸件缺陷图象的分析识别算法中包括许多图象处理技术领域中常用的一些方法,如图象预处理中涉及到的图象分割、边缘检测、图象增强及图象的二值处理,以及分析识别算法中涉及的图象几何特征计算,如惯量计算、面积计算等,还用到上述发明人针对铸件缺陷图象的分析识别研究的如对灰度纹理图象的小波分类分析算法等。发明人提出的算法考虑到7种铸件缺陷类型,如图3所示的A、B、C、D、E、F分别代表气孔、长形针孔、圆形针孔、海绵状缩松、低密度异物和缩孔等7类缺陷。图3中所示的算法在自动分析识别的过程中将F和G作为一类缺陷识别出来,然后再将其通过同样是非损伤检测法但却是物理方法的气密式检测法对F和G缺陷即低密度异物和缩孔缺陷进行识别。
权利要求
1.一种铸件内部缺陷自动分析识别装置,其特征在于它由液晶显示屏(1)、机壳及面板(2)、连接电缆(3)、电源开关(4)、功能键(5)、(6)、(7)、电路板共同安装连接构成,其相互位置及连接关系为电路板固定安装于机壳(2)内,液晶显示屏(1)装于机壳的面板(2)上并通过显示信号线与电路板上液晶显示输出电路相应点相电气连接;电源开关(4)及功能键(5)、(6)、(7)分别安装于机壳的面板(2)下部并分别通过电源线、各功能信号线分别与电路板上电源端、各相应功能电路相应点相电气连接;连接电缆(3)的一端穿过机壳(2)侧面预留的孔与电路板上相应电路相应点连接,其另一端与X光机或CT层面扫描仪相应通信信号输出端相连接;其电路由A/D转换电路、数字信号处理器、同步随机存取存储器、可编程只读存储器、地址译码及片选控制器、串行接口电路、液晶显示输出电路共同电气连接构成,其相互连接关系为A/D转换电路分别通过模拟信号线、数字信号线分别与X光机或CT层面扫描仪、数字信号处理器相电气连接;数字信号处理器分别通过同步存取信号线、可编程存储信号线、译码及控制信号线、串行接口信号线分别与同步随机存取存储器、可编程只读存储器、地址译码及片选控制器、串行接口电路相电气连接;地址译码及片选控制器分别通过译码及控制信号线分别与同步随机存取存储器、可编程只读存储器相电气连接;串行接口电路通过显示信号线与液晶显示输出电路相电气连接。
2.一种用权利要求1所述的铸件内部缺陷自动分析识别装置进行铸件内部缺陷分析识别的方法,它是是将铸造检测国际标准的参考图象进行分类及特征提取;现场采集的铸件内部缺陷图象经铸件内部缺陷自动分析识别装置进行特征提取、模式匹配和缺陷分析识别后,在监测屏幕上显示所测缺陷的类别和等级;其方法步骤如下(1)首先将铸造检测国际标准的参考图象进行分析,经过采用缺陷分析算法对铸件缺陷标准的参考图象进行处理和特征提取,形成一套用于分析识别的模型存入本发明的分析识别装置中的存储器内;缺陷分析算法包括发明人针对铸件内的长形针孔、圆形针孔及海绵状缩松这几种缺陷类型图象分别在空域中进行方向滤波,再选择合适的移动窗口,针对不同窗口内缺陷缩孔所占的面积来对不同缺陷加以分类区分的小波分类分析算法;(2)然后将现场采集的铸件内部缺陷的X光机或CT层面扫描仪输出的模拟信号输入到本发明装置的A/D转换器进行模/数转换,经铸件内部缺陷自动分析识别装置采用缺陷分析算法进行在线实时获取的图象的特征提取;(3)然后将所得到的特征与存储在装置内上述存储器内的标准参考图象的特征进行模式匹配,接着进行缺陷类型识别和缺陷的等级识别,最后在监测屏幕上显示所测缺陷的类别和等级;更具体过程如下本发明装置加电后,数字信号处理器DSP芯片复位,由内部固化的自引导程序将存于可编程只读存储器EPROM中的程序和数据移至高速同步随机存取存储器SRAM,然后数字信号处理器DSP开始图象分析和识别算法,再由串行通信口将分析和识别结果输出到液晶显示屏;数字信号处理器DSP的运算速度足以在一帧内完成铸件图象缺陷分析和识别算法,装置按全双工方式工作。
全文摘要
本发明是铸件内部缺陷自动分析识别装置及其分析识别方法。装置由显示屏、机壳及面板、连接电缆、电源开关、多种功能键、电路板连接构成,连接关系:电路板装于机壳内,电源开关及功能键装于面板并分别与电路板相应点连接;其电路由A/D转换电路、数字信号处理器、同步随机存取存储器、可编程只读存储器、地址译码及片选控制器、串行接口电路、液晶显示输出电路通过电源线、各自信号线连接构成。本发明能实时分析、识别铸件内部缺陷、准确、可靠、效率高,克服和解决了现有技术存在的缺点和问题。
文档编号G01N23/04GK1341908SQ0112780
公开日2002年3月27日 申请日期2001年9月3日 优先权日2001年9月3日
发明者黄茜 申请人:华南理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1