一种鉴定小麦低分子量谷蛋白亚基等位变异的质谱方法

文档序号:6151320阅读:287来源:国知局

专利名称::一种鉴定小麦低分子量谷蛋白亚基等位变异的质谱方法
技术领域
:本发明涉及生命科学蛋白质组
技术领域
,特别是涉及一种鉴定小麦低分子量谷蛋白亚基等位变异的质谱方法以及基于此方法对麦谷蛋白亚基的进一步表征。技术背景小麦(7V^'cwmae幼'vwwL.)是一种主要的粮食和饲料作物,应性强,分布广,用途多,是世界上栽培面积最大、产量最高、地理分布最广的重要农作物之一,在中国,小麦的地位仅次于水稻,小麦是世界上最早栽培的植物之一。小麦是人类重要的植物蛋白质来源,被广泛应用于食品加工与家畜饲养上,适于制作面包、面条、馒头、饼干、糕点等多种食品,也是酿酒、饲料、医药、调味品等工业的主要原料。种子蛋白的组成和含量决定着小麦的营养品质和加工品质。Osbome等根据小麦蛋白质的溶解特性将籽粒蛋白分为4种类型,清蛋白(albumins)、球蛋白(globulins)、醇溶蛋白(Gliadins)和谷蛋白(Glutenins)。通常所说的小麦贮藏蛋白是指醇溶蛋白和麦谷蛋白,其中麦谷蛋白约占贮藏蛋白的40%左右。还原条件下根据SDS-PAGE上的迁移率,麦谷蛋白明显的分为两种类型四个区域,即高分子量麦谷蛋白亚基和低分子量麦谷蛋白亚基,A、B、C和D四个区其中B、C和D三区为低分子量麦谷蛋白亚基区;B区是低分子量麦谷蛋白亚基的集中区,C区的蛋白与y-和a-醇溶蛋白重叠在一起,D区是迁移率介于a和b区之间的酸性蛋白,与co-醇溶蛋白位置相近。当然,这三个区域尤其是C区和D区还分别含有y、a和ro醇溶蛋白。在普通小麦中,低分子量谷蛋白亚基约占面筋含量的40%,其中有高达60%~70%的低分子量谷蛋白亚基与高分子量谷蛋白亚基一起构成小麦面筋的基本骨架对品质具有重要作用,面粉的延展性与LMW-GS总的数量相关,LMW-GS位点的等位变异与小麦的品质差异具有高度相关性。Luo等(2001)的研究发现,Glu-3位点的等位变异对小麦品质相关的技术参数具有显著的影响,如面粉蛋白含量、SDS沉淀值、子粒硬度等。Brett等用免疫技术验证了LMW-GS对面包加工品质的重要贡献。也有硏究表明,LMW-GS位点对面团黏弹性的作用以加性效应为主,同时存在位点间互作效应,LMW-GS位点的互作效应也影响小麦加工品质。有研究表明,G/m-S3位点的亚基比G/m"3和G/w-D3位点的亚基更能增加面团的强度(PognaNE,RedaelliR,VaccinoP,BiancardiAM,PeruffoADB,CurioniA,MetakovskyEV,PagliaricciS.Produc-tionandgeneticcharacterizationofnear-isogeniclinesinthebread-wheatcultivarAlpe.TTzeorWca/"wdJ/jWedC7e"e^y,1995,90:650-658.),LMW-GS间具有较高的同源性,但各亚基间的品质效应是有差异的。LMW-GS和面团的抗延伸阻力和延展性相关,有些LMW-GS等位基因对品质的影响比HMW-GS还大。但是,在面包小麦中,LMW-GS特殊的等位基因类型和品质参数间关系的报告经常出现相互矛盾的现象,可能是基因互作和环境影响造成的(BenedettelliS,MargiottaB,PorcedduE,CiaffiM,LaflandraD.EffectsofthelackofproteinscontrolledbygenesattheGli-Dl/Glu-D3locionthebreadmakingqualityofwheat.Jowrwia/o/Cerea/Sc/e"ce,1992,16:69-79.Nieto-TaladrizMT,PerretantMR,BouguennecA.EffectofgliadinsandHMWandLMWsubunitsofgluteninondoughpropertiesintheF6recombinantinbredlinesfromabreadwheatcross.7Tzeor"/ca/朋dJ一WG匿"cs,1994,88:81-88.)。小麦LMW-GS基因存在大量的等位变异,LMW-GS在数目及电泳迁移率上存在广泛变异。Gupta和Shepherd用SDS-PAGE方法,分析了32个国家222个普通小麦品种,共发现40个不同的LMW-GS,根据亚基出现的互斥性规律,将这40个亚基分成20种、3组不同的电泳图谱组合。Gupta和Shepherd用SDS-PAGE方法,共鉴定6个G/w-J3位点编码(G/wJ3a,G/w-yOZ,G/w-^3c,G/w-^3AG/w画J3e,G/w-^3/),9个G/w-53位点编码(G/w-S3a,G/w-536,G/w-53c,G/w-53山G/w画S3。G/w-53/,G/w-53g,G/w-B3/z,G/w-5丄'),5个G/w-Z)3位点编码(G/M-D3a,G/w-D36,G/w-D3c,G/w-D3d,(/w-Z)3e)。由此可见,低分子量谷蛋白亚基表现出丰富的遗传变异。Branland等用SDS-PAGE鉴定了200份法国六倍体小麦,共鉴定5个G/M-^3位点编码亚基(s,Z,Ae,/"),11个G/w-53位点编码的亚基(a,Z,Z',c,c',Af,g,力,i,力,4个G/w-Z)3位点编码的亚基U,6,c,d)(GuptaRB,ShepherdKW.Two-stepone-dimensionalSDS-PAGEanalysisofLMWsubunitsofglutenin.I.Variationandgeneticcontrolofthesubunitsinhexaploidwheats.7Tzeore"'ca/Ge"e"cs,1990a,80:65-74.GuptaRB,ShephardKW:Two-stepone-dimensionalSDS誦PAGEanalysisofLMWsubunitsofglutelin.II.Geneticcontrolofthesubunitsinspeciesrelatedtowheat.77eorWc<3/朋";//zWGewe"oy,1990b,80:183-187.BranlardG,DardevetM,AmiourN,IgrejasG.AllelicdiversityofHMWandLMWgluteninsubunitsandomegagliadinsinFrenchbreadwheat(7WWc應ae劝'v扁L.)Ge""/c/erown^朋dOop£vo/z^/ow,2003,50:669—679.)。研究发现,小麦LMW-GS存在大量的等位变异,比HMW-GS更为丰富。六倍体面包小麦中LMW-GS编码基因的拷贝数在10-15到35-40个之间不等。丰富的LMW-GSG/M-3位点等位变异亚基类型将为普通小麦育种和改良小麦品质提供较多的优质候选亚基。由于LMW-GS的等位亚基类型存在广泛的复杂变异和组合,还由于LMW-GS在SDS-PAGE图谱上和醇溶蛋白互相重叠,导致目前只有小部分面包小麦分析了其LMW-GS组成(JacksonEA,MorelMH,Sontag-StrohmT,BranlardG,MetakovskyEV,RedaelliR.ProposalforcombiningtheclassificationsystemsofallelesofGli-1andGlu-3lociinbreadwheat(7W"c謂ae幼'v謂L.).Jowr"a/o/<fe5ree&"g,1996,50:321-336.Fl&teN,E.S.2000.Allelicvariationatthestorageproteinloci(GYw-l,G7w-3,andinNorwegianwheats(7>"/cwmaesWvwmL.).Jowma/o/Ge"Wc&^^^g,54:283-291.)。因此,很有必要发展新型的分离鉴定方法来加快低分子量谷蛋白亚基的研究。SDS-PAGE是分析LMW-GS组分的常规方法,但由于LMW-GS拷贝数较多,G/M-3的等位变异亚基较为复杂,且分子量较小,在SDS-PAGE图谱中经常与醇溶蛋白重叠在一起难于分辨等原因,使得LMW-GS的相关研究远低于HMW-GS。
发明内容本发明的目的是提供一种鉴定低分子量谷蛋白亚基(HMW-GS)等位变异的方法。本发明所提供的鉴定HMW-GS等位变异的方法,是用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)对HMW-GS进行鉴定,根据蛋白特征峰,确定低分子量谷蛋白亚基的等位变异。上述方法中,所述HMW-GS的提取方法包括以下步骤1)用体积百分含量为30-70%乙醇溶液除去小麦中的醇溶蛋白,取沉淀;2)在上述步骤l)获得的沉淀中加入异丙醇溶液,60-70°C温浴40-60min,取沉淀;3)在上述步骤2)获得的沉淀中加入溶液A,30-50°C温、浴50-60min;6所述溶液A由异丙醇、DTT、Tris-HCl和水组成;所述溶液A中,异丙醇的体积百分含量为50%,DTT的体积百分含量为1%,Tris-HCl的pH为8.0,Tris-HCl终浓度为80mM;4)在上述步骤3)的溶液中加入溶液B,50-60°C温浴30-40min,取上清;所述溶液B由异丙醇、4-VP(4-乙烯基吡啶)、Tris-HCl和水组成;所述溶液B中,异丙醇的体积百分含量为50%,4-VP的体积百分含量为1.4%,Tris-HCl的pH为8.0,Tris-HCl的终浓度为80mM;5)在上述步骤4)获得的上清中加入丙酮溶液,取沉淀,得到小麦低分子量谷蛋白亚基。上述方法中,所述步骤l)中,所述乙醇溶液为体积百分含量为70%的乙醇水溶液;上述的步骤2)中,所述异丙醇溶液为体积百分含量为55%的异丙醇水溶液;上述的步骤5)中,所述丙酮溶液为体积百分含量为80%的丙酮水溶液;上述的步骤2)中,所述温浴的最佳条件为65。C温浴50min;上述步骤3)中,所述温浴的最佳条件为40。C温浴55min;所述步骤4)中,所述温浴的条件为55°C温浴35min。上述方法还包括将所述低分子量谷蛋白亚基在上样前进行预处理的步骤;所述预处理是将低分子量谷蛋白亚基溶于溶液C中;所述溶液C由乙腈、TFA和水组成;所述溶液C中,乙腈的体积百分含量为50%,TFA的体积百分含量为0.05%。上述方法中,所述低分子量谷蛋白亚基的上样包括以下步骤将芥子酸溶液滴加到靶板的样品孔内,待芥子酸溶液干燥后,在样品孔内再滴加预处理过的低分子量谷蛋白亚基溶液,待低分子量谷蛋白亚基溶液干燥后,再在样品孔内滴加芥子酸溶液。上述方法中,所述芥子酸溶液是将芥子酸溶解于所述溶液C中得到的,所述芥子酸溶液中,芥子酸的浓度为10mg/ml。具体应用时,所述基质辅助激光解吸电离飞行时间质谱仪的参数设置如下(1)加速电压25kV;(2)导丝电压0.15%;(3)电网电压94%;7(4)延迟时间950ns;(5)激光功率1900-2400(step100);(6)分子量范围10-50kDa;(7)Lowmassgate:10kDa;(8)DigitizerBinsize:4nsec;(9)输入带宽250MHz;(10)50lasershots/Massspectra,自动积累随机模式。上述方法中,所述低分子量谷蛋白亚基等位变异的位点为低分子量谷蛋白亚基的G/m-J位点。目前,生物质谱主要用于解决两个问题精确测定生物大分子,如蛋白质、核苷酸、糖类等的分子量,并提供其分子结构信息;对存在于生命复杂体系中的微量或痕量小分子生物活性物质进行定性或定量分析。对蛋白质类生物大分子分子量的测定有着十分重要的意义,如对均一蛋白质一级结构的测定,既要测定蛋白质的分子量,又要测定亚基和寡聚体的分子量,以及水解、酶解片段的分子量。常规的分子量测定主要有渗透压法、光散射法、超速离心法、凝胶层析及聚丙烯酰胺凝胶电泳等。这些方法存在样品消耗量大,精确度低、易受蛋白质的形状影响等缺点。本发明利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)方法,可以快速测定小麦低分子量谷蛋白亚基的精确分子量,同时还可以鉴定小麦LMW-GS的Glu-3位点等位变异亚基的组成,本发明方法具有以下优点(1)所需样品量少,具有高灵敏度和高质量检测范围,每次检测所需样品量约为l微升,浓度在pmol(10-12)甚至fmol(10-15)的水平上,使准确地分析分子量高达几万到几十万的生物大分子成为可能;(2)分辨率高,可以准确获得蛋白组分的准确分子量,甚至相差几十个道尔顿也能很容易把两个蛋白峰分开,这就不会造成蛋白组分之间的误读;可以检测低丰度蛋白。(3)测定速度快,适宜高通量的分析,每个样品的分析时间大约为5分钟,适合大规模的品种快速鉴定,极大地方便了品种鉴定与遗传育种等研究;(4)质量范围宽,MALDI-TOF-MS有的质谱可测定生物大分子的分子量高达600KDa;(5)易于操作,自动化程度高;(6)结果保存分析容易。直接以图片方式存贮,只需做简单处理即可用于分析比较。对于小麦低分子量麦谷蛋白亚基而言,不同等位基因编码的蛋白在SDS-PAGE电泳图谱中具有1520条带之多,LMW-GS的许多亚基具有相似的迁移率且各条带之间相距很短,因此在SDS-PAGE图谱中相互重合,而且SDS-PAGE鉴定的分子量不够准确,对Glu-3位点亚基组成的分析相当困难。本发明的鉴定LMW-GS亚基等位变异的方法,可以快速提取、分离、鉴定大量样品中的LMW-GS等位变异亚基,且操作简单,分辨率较高,为今后进一步研究LMW-GS的氨基酸序列、各亚基的功能、LMW-GS的遗传及其与品质关系的研究、基因定位及对小麦加工品质的贡献提供可靠的分析鉴定手段,因此具有广阔的应用前景。本发明的鉴定低分子量谷蛋白亚基等位变异的方法,可以对LMW-GS进行精确的分子量测定以及利用建立的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)蛋白特征峰的标准图谱鉴定LMW-GS的等位变异。通过这一方法可以快速、准确的测定出小麦LMW-GS的分子量和不同小麦品种LMW-GS等位变异亚基的组成,为进一步研究LMW-GS的遗传与生化特性以及LMW-GS对小麦加工品质的贡献提供了强有力的技术手段,进而为小麦种子蛋白质组的深入研究奠定了基础。本发明方法克服了传统技术的不足,建立了LMW-GS的MALDI-TOF-MS鉴定方法,同时利用各种近等基因系、缺体四体等小麦遗传材料,构建了17个G/"J3、G/w-53和G/w-Z^各位点等位变异亚基的MALDI-TOF-MS蛋白特征峰的标准图谱,对LMW-GS的G/w-A3、G/w-B3和G/w-D3的各个位点组成进行了鉴定,从而使MALDI-TOF-MS分析LMW-GS特别是G/w-3各个位点组成成为可能。真正实现了高通量、快速、准确鉴定小麦LMW-GS,为小麦的品质鉴定、遗传育种等研究提供了强有力的技术支持。MALDI-TOF-MS是研究小麦蛋白质组的核心技术之一,具有分析速度快、灵敏度高、使用样品少和高通量等优点。这一方法的建立,将为小麦的品种鉴定和遗传育种提供强有力的技术支持。图1为仪器参数优化前和优化后,普通六倍体小麦D1-13(98Y033)LMW-GS的MALDI-TOF-MS对比图谱图2为小麦LMW-GSG/w-^J/fl的MALDI-TOF-MS特征峰图谱图3为小麦LMW-GSG/w-」3/6的MALDI-TOF-MS特征峰图谱图4为小麦LMW-GSG/m"3/c的MALDI-TOF-MS特征峰图谱图5为小麦LMW-GSG/M-W/d的MALDI-TOF-MS特征峰图谱图6为小麦LMW-GSG/w-^3/e的MALDI-TOF-MS特征峰图谱图7为小麦LMW-GSG/wJ3《的MALDI-TOF-MS特征峰图谱图8为小麦LMW-GSG/w-W/a的MALDI-TOF-MS特征峰图谱图9为小麦LMW-GS的MALDI-TOF-MS特征峰图谱图10为小麦LMW-GS的MALDI-TOF-MS特征峰图谱图11为小麦LMW-GS的MALDI-TOF-MS特征峰图谱图12为小麦LMW-GSG/w-53《的MALDI-TOF-MS特征峰图谱图13为小麦LMW-GSG/w-W/g的MALDI-TOF-MS特征峰图谱图14为小麦LMW-GSG/w-5Mz的MALDI-TOF-MS特征峰图谱图15为小麦LMW-GSG7w-D3/a的MALDI-TOF-MS特征峰图谱图16为小麦LMW-GS的MALDI-TOF-MS特征峰图谱图17为小麦LMW-GSG/w-Z)3/c的MALDI-TOF-MS特征峰图谱图18为小麦LMW-GSG7w-Z^/d的MALDI-TOF-MS特征峰图谱图19为小麦LMW-GSG/m-D^/"的MALDI-TOF-MS特征峰图谱具体实施例方式下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和生物材料,如无特殊说明,均可从商业途径获得。下述实施例中,图1-图19中所有横坐标表示质荷比(m/z),所有纵坐标表示强度(%)。实施例1、LMW-GS的MALDI-TOF-MS鉴定方法与技术体系优化一、植物材料普通小麦(TW"cwmfle幼.vwmL.,AABBDD,2n=6x=42)Dl-13(98Y033)(来自澳大利亚阿德莱德籽粒品质研究实验室,下面的实施例以该小麦为例,鉴定LMW-GS的等位变异,也可以用现有的其他小麦品种)。二、LMW-GS的提取及其上样方法1)将15mg普通小麦(7W"cw附aeWTOmL.,AABBDD,2n=6x=42)Dl-13(98Y033)面粉放入lml离心管中,加入lml体积百分含量为70。/。的乙醇,室温涡旋30分钟,然后10000rpm离心5min,除去上清;2)在上述步骤(1)获得的沉淀中加入lml体积百分含量为55%的异丙醇溶液,混匀,65。C温浴50min,然后10000rpm/min离心5min,除去上清;此步骤重复3次;3)在上述步骤(2)获得的沉淀中加入150pl溶液A(溶液A中含有异丙醇、DTT、pH8.0的Tris-HCl和水;其中,异丙醇的体积百分含量为50%,DTT的体积百分含量为1%,Tris-HCl的终浓度为80mM),混匀,40。C温浴55min;4)在上述步骤(3)的溶液中加入150^1溶液B(溶液B中含有异丙醇、4-VP(4-乙烯基吡啶)、pH8.0的Tris-HCl和水;其中,异丙醇的体积百分含量为50%,4-VP的体积百分含量为1.4%,Tris-HCl的终浓度为80mM),混匀,55。C温浴35min,然后10000rpm/min离心10min,除去沉淀;5)取60pl上述步骤(4)获得的上清液,在其中加入240pl-20。C预冷的体积百分含量为80%的丙酮溶液,-20。C沉淀1-2小时或者过夜,再10000rpm/min离心10min,弃上清,得到小麦低分子量谷蛋白亚基,将获得的小麦低分子量谷蛋白亚基于室温条件下干燥备用。在上述获得的小麦低分子量谷蛋白亚基中加入60^1溶液C(溶液C中含有乙腈、TFA和水,其中,乙腈的体积百分含量为50%,TFA的体积百分含量为0.05%),室温下溶液60分钟,或者-20。C过夜,充分涡旋溶解后即可用于质谱分析。三、上样方法先将0.7^10mg/ml的芥子酸(SA)滴加到靶板的样品孔内,待SA干燥后,在样品孔内再滴加0.7^1上述步骤二制备的样品,待样品干燥后,再在样品孔内滴加0.7(il10mg/ml的SA。即三明治方式上样0.7^1SA+0.7)xl样品+0.7^1SA。待样品干燥后放入质谱仪中进行分析。四、质谱仪的参数设置(1)加速电压25kV;(2)导丝电压0.15%;(3)电网电压94%;(4)延迟时间950ns;(5)激光功率1900-2400(st印100);(6)分子量范围10-50kDa;(7)Lowmassgate:10kDa;(8)DigitizerBinsize:4nsec;(9)输入带宽250MHz;(10)50lasershots/Massspectra,自动积累随机模式。五、利用DataExplorerTM软件进行图像分析处理,根据处理结果,可获得不同品种小麦LMW-GS组成图谱和各亚基的精确分子量。普通六倍体小麦Dl-13(98Y033)LMW-GS的Glu-3位点等位基因编码的蛋白特征峰的分子量如表l所示。普通六倍体小麦Dl-13(98Y033)LMW-GS的MALDI-TOF-MS对比图谱如图1所示。其中,A为仪器参数优化前的结果,B为仪器参数优化后的结果。表l、G/"-3位点等位基因编码蛋白特征峰的分子量编码位点等位基因MALDI-TOF-MS特征峰36886Da十37674Da+41852Da36285Dac37674Da+41852Da43568Da35406Da/37443DaG/認40258Da+40402Da40150Da+40309Da39791Da+42949Da39599Da+42848Da25780Da+40150Da+40309Da25780Da+37221Da+40150Da+40309Da39854Da+42871Da(33501+33606+33762)Da+38605Da+40972Da(33501+33606+33762)Da++38756Da40972Da(33229+33316+33476)Da(33554+33618+33777)Da37026Da从图l中可以看出,仪器参数优化前和优化后,普通六倍体小麦D1-13(98Y033)LMW-GS的MALDI-TOF-MS检测分辨度的变化,优化后的蛋白质图谱12分辨度明显提高。实施例2、LMW-GS的G/w-3位点等位变异的MALDI-TOF-MS鉴定一、植物材料(具体见表l-5)(1)小麦LMW-GS近等基因系材料I,共19份(表2);(2)小麦LMW-GS标准品种II,共22份(表3);(3)小麦LMW-GS近等基因系材料III,共76份(表4);(4)小麦LMW-GS近等基因系材料IV,共96份(表5);(5)小麦LMW-GS的六倍体缺体四体材料V,共28份(表6)。二、LMW-GS的提取、上样方法及质谱仪的参数设置基本同实施例1。其不同点在于提取的步骤2)中的温浴条件为60。C温浴60min;步骤3)中的温浴条件为50。C温浴50min;步骤4)中的温浴条件为60°C温浴30min。三、LMW-GS的G/m-3位点等位变异亚基的MALDI-TOF-MS鉴定不同的品种之间低分子量谷蛋白亚基组分有较复杂的变异,LMW-GS的MALDI-TOF-MS图谱上,每个亚基可大约鉴定出十几个甚至几十个蛋白峰,一般每个亚基有15个蛋白特征峰。其中,低分子量谷蛋白亚基G/w-A位点的特征峰较为简单也易于分辨,G/w-53位点稍复杂,G/w-Z^位点最复杂,这和SDS-PAGE的鉴定趋势是一致的。表2-6中的小麦材料I、III、IV、V的LMW-GS组成是相互验证、互相补充的,是一套较完整的近等基因系材料,是建立小麦LMW-GS的MALDI-TOF-MS的蛋白特征峰的标准图谱的建立的基础和保障。建立G/wJ3、G/w-53和G/m-D3位点各亚基的MALDI-TOF-MS蛋白特征峰的标准图谱,要进行横向和纵向的多重比较,还要进行正面比较和反面验证,不但要注意各亚基的特征峰,还要注意某些亚基的共有特征峰,而且某些蛋白峰的存在和缺失有时也是判断其是哪种亚基的特征现象。以LMW-GS亚基G/w-A56位点为例,具体阐述建立MALDI-TOF-MS标准特征峰图谱的过程。首先分析表2的品种,以Arill6-l(6,6,c)为例,结合Excel数据和图谱对蛋白峰进行综合分析。先纵向比较Arill6-l(6,6,c)和Aroona(c,6,c),那么Arill6-1(6,6,c)特有的蛋白峰都可能是G/w-」3/6的特征峰,二者共有的特征峰有可能是Glu-A3b的共同蛋白特征峰,也有可能是Glu-B3b或Glu-D3c的蛋白特征峰,然后再和表2的其他材料对比纵向逐步筛选。这个Arill6-l(6,6,c)特有的蛋白峰在其他的不含G/MJ3/6的小麦材料中不出现或者和某些其他亚基共同的13特征峰,这要经过多重比较验证方可初步判断,同时还要注意二者共有的蛋白峰也有可能是二者的共有特征峰,然后再和其他材料逐一比较做出判断。我们用同样的方法筛选表4的G/""3/6亚基。如果二者筛选出的结果一致,就可初步得出G^J3/6的MALDI-TOF-MS蛋白特征峰的,然后以此蛋白特征峰的图谱为G/mJ3/6亚基的标准图谱去鉴定表2、表4和表5中含G/wJ3/6亚基的品种,以验证这个图谱的正确性。其他亚基依次类推。LMW-GS的蛋白特征峰的标准图谱和小麦低分子量谷蛋白的六倍体缺失体图谱比对验证,每个小麦低分子量谷蛋白的六倍体缺失体材料只含有一个位点的低分子量谷蛋白亚基,Glu-3位点的LMW-GS的蛋白特征峰图谱只存在于各自对应的缺失体材料中。本发明中初步推断出6个G/twO位点(a,6,c,d,e,_y0、7个G/w-53(a,6,c,A/,g,/2)和4个G/"-ZW(,6,c,c/,/)等18个低分子量谷蛋白亚基的特征峰图谱。小麦低分子量谷蛋白亚基组成非常复杂,有些亚基的MALDI-TOF-MS特征峰图谱很难判断,如G7w"_/a和G/w-J3/c,G/w-D3/a和G/w-D3/6,下面以表5的小麦品种为例介绍这些亚基的MALDI-TOF-MS蛋白特征峰。1、G/m」3位点的MALDI-TOF-MS蛋白特征峰的鉴定G7"^J位点的低分子量谷蛋白亚基特征峰较为简单,每个亚基一般由1~3个特征峰组成。鉴定出的G/w-」3位点的6个亚基分别为G/M-^3/a、G/w-^M),G/w-刀/c、G/w-^3A/、G/w-J3/e和G/w-JJ《。其中,G/w-J3/6、G/w-^3/<i、G/w-」3/e和G/m-^3《亚基的MALDI-TOF-MS蛋白特征峰易于识别,只含有一个特征峰,分子量分别约为36285Da、43568Da、35409Da和37443Da。G/w"3/c的特征峰有两个,其分子量为37672Da和41854Da。其中,G/wJ3/"除含有和G/w-」3/c—样的两个特征峰(37672Da和41854Da)夕卜,根据推断结果,G/wJ3/"还应该含有第三个特征峰(36886Da),此结果还需更多的小麦材料验证。因此,当三个蛋白峰(368886Da、37672Da和41854Da)同时在LMW-GS的MALDI-TOF-MS图谱中出现时,则认为该G/w-J3位点的亚基是G/wJ3/a,若只有两个蛋白峰出现(37672Da和41854Da),而无蛋白峰36886Da出现时,G/w-yO位点的亚基是G/w-」3/c。小麦LMW-GS六个G/w-^位点(fl,6,c,Ae,/)的特征峰图谱如图2-7所示。2、G/m-W位点的MALDI-TOF-MS蛋白特征峰的鉴定G/"-53位点的低分子量谷蛋白亚基特征峰图谱稍复杂,每个亚基一般由2~4个蛋白特征峰组成。鉴定出的Wt/-万3位点的7个亚基分别为G/m-S3/"G/w-5V6、G/"-B3/c、G/"-53A/、G/"-j53《、G/"-53/g和G/w-53/Zz。其中,G/"-S3/fl亚基的独有的蛋白特征峰(40258Da、40402Da)较明显,很容易识别。其他的G/w-53位点的亚基蛋白特征峰的信息较复杂,必须相互结合考虑才能准确识别。其中G/w-W/6、G7w-M《和G/w-S3/g有其共同的特征峰(40137Da和40279Da)。其中G/m』3《和G/"-W/g还有另外一个共同的蛋白峰(25786Da),二者的区别只是G7w-^/g比G/w-SJ《多一个特征峰(37221Da)。因此,我们先识别G7w-55/g(25786Da、37221Da、40137Da和40279Da),同时存在这4个特征峰,再识别G/w-53《(25786Da、40137Da和40279Da),仅存在这3个蛋白特征峰而无蛋白峰37221Da,最后识别(40137Da和40279Da),只有2个存在特征峰而无峰25786Da和37221Da。因此,识别此三个亚基时,要相互结合充分考虑。G/w-53/c、G/w-S3/d和G7w^3/7亚基类型则无特征峰(40137Da和40279Da)存在,这与G/w-53/6、(/"』3//和G/"-53/g相反,这是识别其亚基类型的依据之一。其中,G/w-S3/c有一个蛋白特征峰(42949Da),较容易识别。G/w-B3/d和G/m-5J/;z相似,其蛋白特征峰组合分别为(39599Da、42851Da)和(39854Da、42871Da),二者共同的特征峰为42871Da,二者之间的差异特征峰(G/w-53/么39599Da)和(G/w-^J/Zz、39854Da)之间只相差200Da左右。小麦LMW-GS七个G/w-53位点(a,6,c,A,g,/z)的特征峰图谱如图8-14所示。3、G/w-Z)S位点的MALDI-TOF-MS蛋白特征峰的鉴定G/"-Z)3位点的低分子量谷蛋白亚基特征峰图谱最复杂,每个亚基由35个特征峰组成。共鉴定出5个G/w-D3位点亚基G/"-Z)3/fl、G/w-A5/6、G/m-Z)J/c、G/w-A5A/和G/w-D3《。其中,G/w-ZW/c依据其特征峰(33229Da、33316Da和33476Da)可以很容易识别出来。G/m-ZX5/a、G/w-D3/6和G/w-Z)3A/都有特征峰(33501Da、33606Da和33762Da),另外,G/w-D3/d、G/w-DJ/a和G7w-D3/6还有一个特征峰40986Da,而G/w-Z)3/d则没有这个特征峰,这也是G/m-Z)3/。和G/w-D3/6区别于G/m-D^4/的重要依据。G/w-D3/a和G/w-Z)3/6的区别在于它们各自的特异峰(G/w-Z)3/fl、38605Da)和(G/w-A/6、38756),G/w-A/fl和G/w-A/6很相似容易混淆,我们只是初步建立了它们的特征峰图谱,还需要更多的材料验证。""-/)3//容易识别,所有低分子量谷蛋白亚基的MALDI-TOF-MS图谱都有峰(33229Da、33316Da和33476Da)或者(33501Da+33606Da+33762Da),唯独G/w-D3《没有这两组蛋白峰,而且C/m-D3//还有一个自身的特异峰(37026Da)。小麦LMW-GS五个C7/w-A5位点(a,6,c,1A/)的特征峰图谱如图15-19所示。低分子量谷蛋白亚基G/W-A位点的亚基特征峰分子量的浮动范围一般不超过士100Da。因此,每次进行LMW-GS的MALDI-TOF-MS鉴定时,都要进行分子量的校正,以减少分子量的浮动。表2、<table>tableseeoriginaldocumentpage16</column></row><table>表1中,^^表示品种Aril作为供体与品种Aroona杂交,经过5次连续回交得到的重组近交系。_表3、小麦LMW-GS标准品种II_品种_^__^_Westonia国际玉米小麦改良中心Festin法国Halberd国际玉米小麦改良中心Insignia法国Tasman国际玉米小麦改良中心Orca法国Trident国际玉米小麦改良中心Petrel法国Marquis国际玉米小麦改良中心Thesec法国stiletto国际玉米小麦改良中心Brimstone法国Carnamah国际玉米小麦改良中心Nanbu-komugi日本ChineseSpring法国Wilgoyne国际玉米小麦改良中心Magdalena法国Millewa国际玉米小麦改良中心Gabo法国Chopin法国Cappelle-Desprez法国Apollo法国表4、小麦LMW-GS近等基因系材料III小麦品种小麦品种WAWHT2586WAWHT2884cWAWHT2589WAWHT2896cccWAWHT2590力WAWHT2661caWAWHT2639Z>OfWAWHT2772cOfWAWHT2777aWAWHT2721ccWAWHT2830WAWHT2793ccWAWHT2831WAWHT2847cgWAWHT2488WAWHT2848cWAWHT2631WAWHT2838cWAWHT2758/>&WAWHT2794ccWAWHT2846Z)WAWHT2799ccWAWHT2901WAWHT2898cgcWAWHT2920&&&WAWHT2595cgaWAWHT2927Z>WAWHT2883■c;WAWHT2585WAWHT2726cWAWHT2640WAWHT2727c&WAWHT26466gWAWHT27766WAWHT28216WAWHT2782c6WAWHT2822WAWHT2836cWAWHT2826gWAWHT2784ccWAWHT2833WAWHT2882c/;cWAWHT2843/WAWHT2886cWAWHT2897化?WAWHT2925ccWAWHT2607/WAWHT2732WAWHT2887//WAWHT2786WAWHT2928WAWHT2751WAWHT2892//cWAWHT2752WAWHT2750caWAWHT2929WAWHT2895cWAWHT2934WAWHT2734cWAWHT2770WAWHT2737c&&WAWHT2773WAWHT2739cWAWHT2902AcWAWHT2740cZWAWHT2851gWAWHT2811cWAWHT2924WAWHT2893cWAWHT2730aWAWHT2926cWAWHT2767/WAWHT2933cWAWHT2769OfWAWHT2192c66WAWHT2736/6表5、小麦LMW-GS近等基因系材料IV小麦品种小麦品种DA6+8*,B3fc/cAril21-2,B3accAril26-1,B3fc/cDA3*,D3aca.DA叫ll,D3acOfTrident/cZ>Aril28-4,B3hc/zcAril34-1,D3aca.DA5+10,A3ecAril36-2,D3b6DA7+8,B3h1866Aril2-4,2*6Aril35-1,D3f办/Aril19-2,A3eAril29-4,B3ic/cAril15-4,A3aChinese.SpringaAril15-4,A3aaAril27-6,B3gccAril27-6,B3gcAril20-1,A3f/Gabo办Aril23-4,B3cccDA5+10,B3hDA2*,A3eAril18-5,A3dAril18-5,A3dH45/lDA7+8,B3acacAroomAril33-1,D3dDA7*,A3dAril23-4,B3cccAril14-3,Aril18-9,A3dcDA2*,A3dAril19-2,A3eTA,A3d,B3i/cCalidad/Aril29-4,B3ic/cGaboBiggar/Aril24-3,B3dAroonacDA2*,B3mc附cAril13-3,JabiruFrameDAB3d,D3acH45cCalidadcAril34-1,D3aAril18-9,A3dYitpic//Aril5-2,7*Aril30-1,D3aGaboAril30-1,D3aaDA7+8,A3acDA5+10,B3ccccBiggar/z>Aril28-4,B3hDA2*,B3dc/cAril4-3,3*Aril3-2,叫llccDA2.2+12,A3dDA2*,B3m附cAril20-1,A3f/cAril12-3,3+12c6Aril21-2,B3aa<formula>formulaseeoriginaldocumentpage20</formula>D9167/98-一D10302/98-一Dll585/96--Gl173/98-—G2174/98--o'G3292/98--G42術98-G5534/96--cG6288/96.1--G7288/96.2-一G8288/96.3-一G9289/98.1--/G10289/96.2--/权利要求1、一种鉴定低分子量谷蛋白亚基等位变异的质谱方法,是用基质辅助激光解吸电离飞行时间质谱对低分子量谷蛋白亚基进行鉴定,根据其蛋白特征峰,确定低分子量谷蛋白亚基的等位变异。2、根据权利要求1所述的方法,其特征在于所述低分子量谷蛋白亚基的制备方法包括以下步骤(1)用体积百分含量为30-70%乙醇溶液除去小麦中的醇溶蛋白,取沉淀;(2)在上述步骤(1)获得的沉淀中加入异丙醇溶液,60-70。C温浴40-60min,取沉淀;(3)在上述步骤(2)获得的沉淀中加入溶液A,30-50°C温浴50-60min;所述溶液A由异丙醇、DTT、Tris-HCl和水组成;所述溶液A中,异丙醇的体积百分含量为50%,DTT的体积百分含量为1%,Tris-HCl的pH为8.0,Tris-HCl终浓度为80mM;(4)在上述步骤(3)的溶液中加入溶液B,50-60°C温浴30-40min,取上清;所述溶液B由异丙醇、4-乙烯基吡啶、Tris-HCl和水组成;所述溶液B中,异丙醇的体积百分含量为50%,4-VP的体积百分含量为1.4%,Tris-HCl的pH为8.0,Tris-HCl的终浓度为80mM;(5)在上述步骤(4)获得的上清中加入丙酮溶液,取沉淀,得到小麦低分子量谷蛋白亚基。3、根据权利要求2所述的方法,其特征在于所述步骤(1)中,所述乙醇溶液为体积百分含量为70%的乙醇水溶液。4、根据权利要求2所述的方法,其特征在于所述步骤(2)中,所述异丙醇溶液为体积百分含量为55%的异丙醇水溶液。5、根据权利要求2所述的方法,其特征在于所述步骤(5)中,所述丙酮溶液为体积百分含量为80%的丙酮水溶液。6、根据权利要求2所述的方法,其特征在于所述步骤(2)中,温浴的条件为65。C温浴50min;所述步骤(3)中,温浴的条件为40。C温浴55min;所述步骤(4)中,温浴的条件为55。C温浴35min。7、根据权利要求2-6中任一所述的方法,其特征在于所述低分子量谷蛋白亚基上样前还进行预处理;所述预处理是将低分子量谷蛋白亚基溶于溶液C中;所述溶液C由乙腈、TFA和水组成;所述溶液C中,乙腈的体积百分含量为50%,TFA的体积百分含量为0.05%。8、根据权利要求7所述的方法,其特征在于所述低分子量谷蛋白亚基的上样包括以下步骤将芥子酸溶液滴加到靶板的样品孔内,待芥子酸溶液干燥后,在样品孔内再滴加预处理过的低分子量谷蛋白亚基溶液,待低分子量谷蛋白亚基溶液干燥后,再在样品孔内滴加芥子酸溶液;所述芥子酸溶液是将芥子酸溶解于溶液C中得到的;所述溶液C由乙腈、TFA和水组成;所述溶液C中,乙腈的体积百分含量为50%,TFA的体积百分含量为0.05%;所述芥子酸溶液中,芥子酸的浓度为10mg/ml。9、根据权利要求8所述的方法,其特征在于所述基质辅助激光解吸电离飞行时间质谱仪的参数设置如下(1)加速电压25kV;(2)导丝电压0.15%;(3)电网电压94%;(4)延迟时间950ns;(5)激光功率1900-2400(step100);(6)分子量范围10-50kDa;(7)Lowmassgate:10kDa;(8)DigitizerBinsize:4nsec;(9)输入带宽250MHz;(10)50lasershots/Massspectra,自动积累随机模式。10、根据权利要求1-9中任一所述的方法,其特征在于所述低分子量谷蛋白亚基等位变异的位点为低分子量谷蛋白亚基的G/"-3位点。全文摘要本发明公开了一种鉴定低分子量谷蛋白亚基等位变异的方法。该方法是用基质辅助激光解吸电离飞行时间质谱对低分子量谷蛋白亚基进行鉴定,根据蛋白特征峰,确定低分子量谷蛋白亚基的等位变异。利用本发明的方法可以对LMW-GS进行精确的分子量测定以及利用建立的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)蛋白特征峰的标准图谱鉴定LMW-GS的等位变异。通过这一方法可以快速、准确的测定出小麦LMW-GS的分子量和不同小麦品种LMW-GS等位变异亚基的组成,为进一步研究LMW-GS的遗传与生化特性以及LMW-GS对小麦加工品质的贡献提供了强有力的技术手段,进而为小麦种子蛋白质组的深入研究奠定了基础。文档编号G01N1/28GK101566599SQ20091008525公开日2009年10月28日申请日期2009年5月27日优先权日2009年5月27日发明者晏月明,王爱丽,高利艳申请人:首都师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1