用于集成电路的反射仪测试装置制造方法

文档序号:6165113阅读:273来源:国知局
用于集成电路的反射仪测试装置制造方法
【专利摘要】一种用于允许装置进行测试的反射仪,反射仪包含:脉冲辐射源;第一光导电元件,第一光导电元件被配置成响应于来自此脉冲辐射源的照射而输出脉冲;第二光导电元件,第二光导电元件被配置成接收脉冲;传输线设置,传输线设置被配置成将脉冲从第一光导电元件导至待测装置,并将反射自待测装置的脉冲导至第二光导电元件;以及终端电阻,终端电阻被提供为用于此传输线,且终端电阻被配置成匹配传输线的阻抗。
【专利说明】用于集成电路的反射仪测试装置
【技术领域】
[0001]本发明大体上关注测试系统的领域。更特定而言,关注用于测试电子装置完整性的测试系统。
【背景技术】
[0002]时域反射仪(TDR)是用于测试缆线、印刷电路板、电子装置与类似者的完整性。TDR藉由将短上升时间脉冲传送穿过欲测试的物件来操作,欲测试的物件通常被称为待测装置“Device Under Test”或DUT。若DUT在布线中具有任何断路或短路,则脉冲将至少部分地被反射。若不存在缺陷且装置布线被适当地端接,则脉冲将不会被反射。
[0003]先前已提出使用脉冲来执行TDR,见例如US7, 280,190,使用以光电取样技术来建置的兆赫兹(THz)发送器与接收器。

【发明内容】

[0004]本发明提供执行TDR的系统,或提供使用光导电元件作为接收器与产生器的反射仪,在第一个方面,本发明提供一种用于允许装置进行测试的反射仪,该反射仪包含:
[0005]脉冲辐射源;
[0006]第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0007]第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0008]传输线设置,该传输线设置被配置成将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件;以及
[0009]终端电阻,该终端电阻被提供为用于该传输线,且该终端电阻被配置成匹配该传输线的阻抗。
[0010]在一个实施方式中,由第一光导电元件输出的脉冲在10GHz至ΙΟΤΗζ的频率范围中。在另一个实施方式中,频率范围为50GHz至500GHz。
[0011]在一个实施方式中,光导电元件(PCE)与在分离基板上的微带或共平面(co-planar)传输线整合在一起。期望避免从波导背向反射,背向反射会在来自DUT的信号中产生人工因素。
[0012]为了至少部分地处理此问题,在一个实施方式中提供匹配电阻于产生器与接收器的至少一者上,而使沿着微带投射至产生器及/或接收器上的信号被实质上吸收。
[0013]在US4,896,109中,光导电接收器被直接连接至50欧姆(ohm)传输线。在此配置中,假定所述装置呈现高阻抗,且因此不会搅乱线上的信号。若传输线被形成在与产生器及/或接收器不同的基板上,则PCE对于微带的接近性,将无法避免地改变彼线的阻抗,且因此将无法避免背向反射。根据本发明实施方式的系统将此种问题最小化。
[0014]终端电阻可为位于传输线尾端的嵌入式电阻(在微带电路自身上),作为将终端电阻制造于光导电装置上的替代方案。[0015]在第二个方面,本发明提供一种用于允许装置进行测试的反射仪,该反射仪包含:
[0016]脉冲辐射源;
[0017]第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0018]第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0019]传输线设置,该传输线设置被配置成将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件,该传输线具有三终端设置,其中该第一光导电元件与该第二光导电元件被提供在分离的终端处,且对该装置的输入被提供在第二终端处。
[0020]DUT可直接或不直接地连接至第三终端。例如,至DUT的输入可包含连接至DUT的另一传输线。
[0021]可发生从产生器至接收器的直接电气脉冲传输。然而,在根据本发明实施方式的反射仪中,从产生器至接收器的路径长度是实质上短于从产生器至DUT至接收器的路径长度。因此,在时域中两个信号不会重叠,故不会难以辨别向外信号与经反射信号。
[0022]在一个实施方式中,从产生器至DUT至接收器的路径长度,是至少为从产生器至接收器的路径长度的两倍。
[0023]在一个实施方式中,三端传输线设置是为Y形的形式,称之为Y形分叉器设计。设计亦在产生器与接收器元件之间维持某些最小实体间隔,间隔足以容纳用以将泵浦光束与探测光束聚焦在每一装置的活动区域上的非球面透镜,亦即,装置间隔至少必须等于聚焦透镜的直径。
[0024]在另一个实施方式中,用于产生器的激发光束(泵浦光束)与用于接收器的激发光束(探测光束)的角度可为向内(angled inwards),以允许装置能较接近。
[0025]另外,根据本发明实施方式的装置,寻求避免任何所产生或接收的脉冲传输穿过光导电半导体基板。信号被随即由接合线导离光导电电极到100欧姆微带轨道。
[0026]前述传输线设置可结合终端电阻来使用。
[0027]在第三个方面,本发明提供一种用于允许装置进行测试的反射仪,该反射仪包含:
[0028]脉冲辐射源;
[0029]第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0030]第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0031]传输线设置,该传输线设置被配置成将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件,
[0032]其中至少一个光导电元件包含一对电极,该对电极是提供在第一基板的第一表面上,且该传输线设置是提供在第二基板的第二表面上,
[0033]该第一表面与该第二表面被提供为面对彼此,而使在该元件与该传输线设置之间存在脉冲通信。
[0034]前述设置为覆晶(flip-chip)设置,其中光导电器的顶表面被放置为向下面向微带电路。亦可使用覆晶安装以将光导电器耦合至共平面波导,以及微带/微带线(stripline)波导。光导电元件与微带之间的电气连结,是使用以下一般覆晶方法之一者来形成:
[0035]一回流焊接(reflow soldering)
[0036]一传导性环氧树脂
[0037]在使用回流焊接过程的情况中,使用版印刷过程(stencil printing)或一些其他沉积方法将焊料胶沉积至微带PCB的接触垫上。芯片被放置为向下面向PCB,而使胶接触芯片与PCB两者。组件随后在炉中被加热,以融化形成两者之间的接合的焊料。
[0038]使用传导性环氧树脂的方法是类似的,但可使用较低的温度以让环氧树脂固化。
[0039]为了光学激发在此覆晶体形中的光导电器,需要在PCB中提供小洞(例如使用诸如激光钻孔器的钻孔器),以提供穿过PCB组件对光导电器活动区域的光学存取。
[0040]提供对光导电器的光学存取的替代方法为,将光导电层制造在通透的基板上。可能使用嘉晶移除(epitaxial liftoff )方法来将1 μ m嘉晶层从GaAs晶圆转移到熔凝石英(fused quartz)晶圆上。
[0041]在另一个实施方式中,提供一种反射仪系统,该反射仪系统包含复数个反射仪,其中该复数个反射仪被提供单一通用第一基板,以使该复数个反射仪的所述光导电元件在同时间被覆晶接合。
[0042]上文提供了多通道TDR系统,其中许多光导电元件被形成在单一半导体晶粒上,且此晶粒被覆晶安装至微波PCB电路,微波PCB电路传递自/至待测装置(通常为多接脚1C)上各个测试点的 脉冲。
[0043]在US4,896, 109中,线性光导电装置设置被描述为沿着单一传输线放置。在传输线的一尾端存在脉冲产生器。接收器装置被放置在沿着产生器与DUT之间的传输线的测量点处。
[0044]半导体基板的高介电常数使100欧姆传输线变得难以设计。共平面设计会遭受辐射损失,而微带设计需要非常薄的轨道宽度。亦难以将半导体基板上的传输线耦合至同轴线而不产生大反射或介入损失。
[0045]在本发明实施方式中,藉由将光导电元件直接耦合至形成在低介电常数(以PTFE为基础)基板上的微带波导,而在半导体上不具有干预波导,至少部分地处理了前述问题(Taconic TLY5或Rogers R04000为适合的铜包覆材料示例,可从铜包覆材料制造高频传输线)。在一个实施方式中,介电常数ε为10或更少。
[0046]在一个实施方式中,相对于探测光束路径长度来改变泵浦光束路径长度,或反之,相对于泵浦光束路径长度来改变探测光束路径长度。在先前技术中用于实现此变异的方法,包含使用以步进马达致动的光学延迟。此作法被将光学延迟光学器件在位置之间移动所需的时间,限制了测量速率。
[0047]在一个实施方式中,系统包含所谓的“快速扫描”系统,其中藉由使玻璃长菱体(rhomboid)振荡来获得光学延迟(如在ΕΡ1543372描述)。这允许了高的数据收集率。然而,藉由使用旋转快速扫描方案所能获得的最大延迟长度,对于适当的半导体装置特征而言可为不足。根据实施方式的进一步系统,结合快速扫描光学延迟与以长程“慢速”线性级为基础的第二光学延迟。随后,总体光学延迟为快速与慢速延迟的总和。获取方法涉及在每一长延迟位置值处收集一个或多个由快速扫描获取的波形。来自每一长延迟位置的波形在控制PC (个人电脑)内被结合,以产生总体波形,总体波形覆盖的范围要比快速扫描延迟分离覆盖的范围长得多。以此方式,获得了 150mm以上的光学延迟。此方法被称为“混合”扫描方法。
[0048]US4, 896, 109描述了如何可使用直流电压来偏压脉冲产生装置。在文献中已公开了光学削减(optical chopping)与相位灵敏检测,以作为增进信号测量系统的灵敏度与选择度(w.r.t.噪声)的手段。然而,光学削减不必要地减少了系统处理量,因为信号有50%的时间是关闭的。
[0049]在第四个方面,本发明提供一种用于允许装置进行测试的反射仪,该反射仪包含:
[0050]脉冲辐射源;
[0051]第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0052]扼流圈电阻,该扼流圈电阻被设置而使该第一光导电元件被经由该扼流圈电阻偏压,该扼流圈电阻具有至少100欧姆的电阻值;
[0053]第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0054]传输线设置,该传输线设置被配置成将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件。
[0055]在第一光导电元件的光导电间隙处光学激发之后,扼流圈电阻限制电流。
[0056]纯的单晶光学主动半导体通常具有Ins以上的电荷载子(carrier)生命期(或在Si或具有不直接能带间隙的其他材料的情况中大于1 μ s,)。对于测量或产生微微秒(picosecond)电气脉冲而言此生命期太长了。已知藉由以辐射伤害材料、离子植入、低温生长或嵌入其他结构(诸如量子点),来减少此种半导体的电荷载子生命期。以此方式,载子生命期可能为1微微秒以下。然而,在应用高电场的情况下,自由电荷较不会有效地被所述手段捕捉。在所述低生命期材料被用以制造光导电脉冲产生器时,已知所产生的脉冲并不会如从未偏压材料的性质推测般的短。
[0057]在以上的实施方式中,使用扼流圈电阻来限制电流,以允许产生次微微秒脉冲。因此,避免了需要形成具有天生低载子生命期的载子的半导体基板。
[0058]上文所描述的一种或多种终端电阻,可连同扼流圈电阻来使用。上文所描述的传输线设置,可连同扼流圈电阻及/或终端电阻来使用。
[0059]在一个实施方式中,扼流圈电阻被直接整合至光导电装置的基板上,且直接与装置电极邻接。在另一个实施方式中,扼流圈电阻被提供在另一基板上,且使用接合线、表面安装(surface mount)连结等等来制成对光导电器的连结。
[0060]根据本发明实施方式的方法,对脉冲产生器采用交流偏压。因而可能对直接自接收器装置测量的信号使用相位灵敏检测。泵浦光束与探测光束持续维持为开启,以将处理量最大化。应注意到激光以约80MHz的重复率产生一列次微微秒脉冲。这大大地快于电子设备或数字取样系统的响应率。80MHz脉冲被JFET前置放大器的输入电容完全平滑化。因此从获取系统的观点看来,光束可被视为连续的。在使用光学削减时,光束有50%的时间被阻挡,在被阻挡时光学功率事实上是被浪费的。使用交流偏压调变,避免浪费任何光学功率。
[0061]用于本发明实施方式中的接收器类型,通常具有相当高的源阻抗(约IM欧姆)。在包含前置放大器以将接收器的输出信号放大的实施方式中,前置放大器较佳地具有高输入阻抗,以测量此信号来源。前置放大器的输入阻抗主要由输入电容确定。使用JFET缓冲器,提供了约5pF的输入电容。
[0062]在另一个实施方式中,对于IM欧姆阻抗,偏压频率为
[0063]/ = YJiZC = ”.HKHz
[0064]其中C=5pF 而 Z=IM 欧姆。
[0065]此允许系统的最佳偏压频率被确定。在较高的频率处,JFET的输入电容对来源呈现较低的阻抗,而减少了信号振幅。在较低的频率处,需要较长的信号整合时间以用于相位灵敏检测,而限制了测量速率。
[0066]US4,896,109的图2元件33提到以电感作为RF扼流圈。再者,并未说明与光导电
器的整合。
[0067]根据本发明实施方式的系统中,使用电阻。电阻可具有相对于频率为定值的阻抗,而使电阻在低频维持当前的阻挡动作。在一个实施方式中,对于光导电器中的电荷载子,阻抗需对下至(I/再结合时间)的频率维持为高。在GaAs中,再结合时间为约1ns,因此,在一个实施方式中扼流圈阻抗必须对下至IGHz (或类似者)的频率维持为高。在一个实施方式中,在交流偏压频率处阻抗最少为100000欧姆。
[0068]在本发明实施方式中,使用光纤来提供对光导电装置的光学激发。在特定实施方式中,使用单模光纤。光纤亦可被色散补偿,以消除脉冲穿过光纤时的色散效应。亦可使用偏振维持光纤以避免由光纤动作造成的信号扰动。
[0069]在本发明的一些实施方式中,光导电装置被使用弓I线接合(wire-bonding)稱合至波导。接合线具有限制信号频宽的电感,因此此电感较佳地需被最小化。为此理由,楔接合方法(wedge bonding method)优于焊球接合(ball bonding)。带状接合(ribbon bonds)为甚至更佳的手段,以最小化此连结的电感。带状接合较佳于引线接合,因为带具有较引线为低的电感。楔接合为制成带状接合的一般方法(相对于焊球接合,楔接合一般使用圆形切面线)。
[0070]在一个实施方式中,光导电材料的基板被退火。基板可为GaAs、InP、GaInAs或其他II1-V族合金。
[0071]光导电装置通常在各自高频限制处平滑下降。此表示,虽然所产生与检测的功率大多位于小于70GHz的区域中,有少量的信号功率的频率高于此。系统的高动态范围,表示此对于信号的非常高的频率内容可用以增进系统的上升时间,该上升时间相对于使用未经处理而测量到的脉冲来获得的上升时间。
[0072]在一个实施方式中,使用准直自由空间光束与两个对准镜来制成光学耦合(亦即,不使用固定式柔引线(pig-tail)设置来将装置耦合至光纤),对准镜用以将光学对准调谐至装置上。这表示,装置方块(包含产生器与接收器PCE、Y形分叉器以及“火星塞(sparkplug)”微带至同轴连接器)可被轻易替换。
[0073]在一个实施方式中,穿过产生器装置的电流作为特征化装置的效能的手段而被测量。如果发生对产生器的ESD伤害,则穿过产生器的光电流改变。
[0074]在另一个实施方式中,在接收器光导电器被激光光束点亮(illuminated)时,测试信号被注入至接收器装置的接地连结,接地连结被耦合穿过至检测信号。此测试信号的大小提供对接收器装置的效能的指示。
[0075]使用前述两种测试方法,可能检查由ESD伤害所造成的各装置状态的变化或其他劣化。[0076]根据前述实施方式的系统,可适用于各种用途,诸如:
[0077]1.故障分析工具,故障分析工具探测装置上的单一接脚对。是使用手动定位。
[0078]2.品质确认工具,此为用于测试来自一批IC基板的大量取样的半自动工具。
[0079]3.大量制造,此为在封装与晶粒整合之前测试每一封装的高产量系统。
[0080]此高度可平行化的架构可需要平面光电路,平面光电路将所供应的光学功率分配至许多脉冲产生器/接收器。在另一个实施方式中,故障分析工具(FA-tool)将以1.55i!m光纤激光为基础。此种系统可进一步包含以光纤为基础的快速扫描延迟线与U形具座线性延迟,以避免需要光学具座或铸件。
[0081]在第五个方面,本发明提供一种对装置执行反射测量术测试的方法,该方法包含:
[0082]提供脉冲辐射源;
[0083]提供第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0084]提供扼流圈电阻,该扼流圈电阻经设置而使该第一光导电元件穿过该扼流圈电阻被偏压,该扼流圈电阻具有至少100欧姆的电阻值;
[0085]提供第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0086]将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电兀件。
[0087]在第六个方面,本发明提供一种对装置执行反射测量术测试的方法,该方法包含:
[0088]提供脉冲辐射源;
[0089]提供第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0090]提供第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0091]使用传输线将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件;以及
[0092]提供终端电阻,该终端电阻被提供以用于该传输线,且该终端电阻被配置成匹配该传输线的阻抗。
[0093]在第七个方面,本发明提供一种对装置执行反射测量术测试的方法,该方法包含:
[0094]提供脉冲辐射源;
[0095]提供第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;[0096]提供第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0097]使用传输线将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件,该传输线具有三终端设置,其中该第一光导电元件与该第二光导电元件被提供在分离的终端处,且对该装置的输入被提供在第三终端处。
[0098]在第八个方面,本发明提供一种对装置执行反射测量术测试的方法,该方法包含:
[0099]提供脉冲辐射源;
[0100]提供第一光导电元件,该第一光导电元件被配置成响应于来自该脉冲辐射源的照射而输出脉冲;
[0101]提供第二光导电元件,该第二光导电元件被配置成接收脉冲;
[0102]使用传输线将脉冲从该第一光导电元件导至待测装置,并将反射自该待测装置的该脉冲导至该第二光导电元件,
[0103]其中至少一个光导电元件包含一对电极,该对电极被提供在第一基板的第一表面上,且该传输线设置被提供在第二基板的第二表面上,
[0104]该第一表面与该第二表面被提供为面对彼此,而使在该元件与该传输线设置之间存在脉冲通信。
【专利附图】

【附图说明】
[0105]已参照以上非限定的实施方式描述了本发明,其中:
[0106]图1为反射仪的示意图;
[0107]图2为根据本发明实施方式的反射仪的详细示意图;
[0108]图3为根据本发明实施方式的反射仪的另一详细示意图,图示图2的反射仪的探针;
[0109]图3a为图2与图3的反射仪所使用的微带传输线的变异的示意图;
[0110]图4为根据本发明实施方式的反射仪的示意图,图示提供在对传输线不同的基板上的光导电材料元件;
[0111]图5为用于根据本发明实施方式的反射仪的光导电材料元件与传输线的示意图;
[0112]图6为根据本发明实施方式的反射仪的3D示意图;
[0113]图7图示图6的示意图的放大部分;
[0114]图8为图示微带与光导电元件之间的接合连结的示意图;
[0115]图9为根据本发明实施方式的具有收发器配置的反射仪的线图;
[0116]图10为根据本发明实施方式的具有收发器配置的反射仪的示意图;
[0117]图11为根据本发明实施方式的反射仪的示意图,其中光导电元件已被使用覆晶技术接合至传输线;
[0118]图12为图11的反射仪的示意图,反射仪具有通透光导电产生器以点亮在光导电产生器之下的金属轨道;
[0119]图13为图11的反射仪的示意图,反射仪具有通透光导电接收器以点亮在光导电接收器之下的布线;
[0120]图14为根据本发明实施方式的多通道反射仪的示意图,其中光导电元件被使用覆晶技术接合;
[0121]图15图示图14的放大区域;
[0122]图16图示图14的反射仪的下侧,反射仪具有光学输入;
[0123]图17a为根据本发明的另一个实施方式的测试系统,图17b为图17a的系统的光导电发射器的详图,而图17c为图17a的系统的光导电检测器的详图;
[0124]图18a为可用于图17a的系统中的wye分叉器的示意图,而图18b为可用于图17a的系统中的delta分叉器的示意图;
[0125]图19为图17a的微带基板与微带的示意图;
[0126]图20为具有RF吸收材料的图5的元件的示意图;以及
[0127]图21为用于根据本发明实施方式的系统中的光导电检测器电路的示意图,该光导电检测器电路具有TVS 二极管。
【具体实施方式】
[0128]图1为根据本发明实施方式的测试设备的示意图。光导电元件I沿着传输线传送脉冲至待测装置(DUT)5。在一个实施方式中,由第一光导电元件输出的脉冲在IOGHz至IOTHz之间的频率范围内。在另一个实施方式中,频率范围为50GHz至500GHz。
[0129]DUT沿着传输线将信号反射回光导电接收器3。藉由测量经反射的脉冲,确定DUT是否存在任何问题是可能的。在存在诸如短路或开路的一些缺陷时,脉冲将被反射。一般而言,DUT将包含许多将需要测试的接点。作为产生器I的光导电元件与作为接收器3的光导电元件将根据DUT而被放置。
[0130]图2图示根据本发明实施方式的测试系统。为了避免任何不必要的重复,将使用类似的元件符号来标志类似的特征。光导电元件I将辐射导入传输线组件7,且辐射被从DUT5穿过传输线组件7反射回光导电接收器3。
[0131]系统包含激光。在此特定实施方式中,激光为操作在约800nm波长的锁模次微微秒激光系统。激光21的输出随后被导入群速色散补偿器(GVDC)单元23。GVDC单元23用以将激光21发送的脉冲展宽压缩(chirp)。脉冲将通过光纤。脉冲在通过光纤时将可能被伸展,且因此单元23在此压缩脉冲,以补偿任何在光纤中产生的失真。
[0132]脉冲随后经由分光镜25被分成沿路径27行进的探测脉冲(probe pulse)与沿路径29行进的泵浦脉冲(pump pulse)。泵浦脉冲用以激发产生器,而探测脉冲用以激发接收器。为了取样脉冲的频率范围,需要改变泵浦脉冲与探测脉冲之间的光学延迟。这由使用快速扫描光学延迟线(delay line)31来执行。延迟线31可被提供于泵浦脉冲路径中或探测脉冲路径中。在此特定实施方式中,延迟线31被提供于探测脉冲路径27中。延迟线31具有两个路径:线性级慢扫描部分33与在EP1543372中描述的检流计(galvanometer)驱动部分。
[0133]慢扫描部分与检流计35驱动部分的组合,允许高数据收集率,同时允许延迟在长的长度上被扫描。获取方法涉及在长延迟位置的每一值处收集一或多个快扫描获取波形。来自每一长延迟位置的波形被组合在控制PC中,以产生具有较单独快扫描延迟的覆盖范围要长得多的覆盖范围的总体波形。以此方式,可获得150mm以上的光学延迟。
[0134]一旦探测光束已通过延迟31,探测光束被耦合入单模偏振维持光纤中,单模偏振维持光纤将光束运送至接收器3。泵浦光束亦被耦合入单模偏振维持光纤中,并被导向产生器。
[0135]在运送探测脉冲的光纤输出处的准直器(col limator )36,将光纤的近红外光束输出耦合入准直光束。准直光束随后被输出至透镜37,透镜37将近红外辐射导至光导电接收器3上。光导电接收器3包含JFET缓冲器电晶体71,JFET缓冲器电晶体71接收接收器3的输出信号。输出信号随后通过前置放大器(pre-amp) 73。
[0136]光导电接收器3—般地将具有相当高的来源阻抗(source impedance)(约IM欧姆)。使用前置放大器73以将接收器3的输出信号放大。前置放大器73较佳地具有高输入阻抗以测量此信号来源。前置放大器73的输入阻抗主要是由前置放大器73的输入电容值来确定。使用JFET缓冲器71,提供了约5pF的输入电容值。
[0137]泵浦脉冲被导入准直器41,准直器41将光纤的近红外泵浦光束输出耦合入准直光束。此准直光束随后由透镜43聚焦至产生器I上。
[0138]接收器3与产生器I两者皆被稱合至传输线,在此实施方式中传输线为微带波导Y形结线(microstrip waveguide Y-junction) 45。微带波导Y形结线包含第一臂47,第一臂47为连接至产生器I的100欧姆微带传输线波导。第二臂49亦为100欧姆微带传输线波导,并连接至接收器3。传输线的第一臂47与第二臂接合以形成第三臂51,第三臂51为50欧姆微带传输线波导。第三臂51随后被连接至内连线(interconnect)53,内连线53将微带波导的第三臂51接合至同轴缆线波导。更详细图示于图3中。
[0139]在一个实施方式中,为了允许在产生器与接收器之间的多重反射能有更多时间来衰减,经由DUT的路径需为两倍的产生器一接收器路径直接长度。例如在上文所描述的系统中。作为示例,产生器至接收器的直接路径为8mm,同时经由DUT的路径为约170mm。
[0140]微带波导Y形结线45可为具有小型中间臂的更“V”形。例如,线的50欧姆脚为非常短的短截,并直接连接至内连线。在另一个实施方式中,可能使用薄膜电阻网路来匹配阻抗,而以宽频实施50欧姆三端口分叉器,如图示于图3a:每一端口呈现50欧姆负载,其中16.7欧姆电阻如图示被插入结线。这只已知为6dB电阻性分叉器。6dB电阻性分叉器具有宽频频率特性(亦即,6dB电阻性分叉器的效率与分叉器比率是独立于频率)。因为TDR信号跨此装置必须有两个转变,分叉器所造成的总和损失将为12dB。相反的,用于此实施方式情况中的非对称性分叉器(两个100欧姆端口、一个50欧姆端口)对于每次通过仅具有3dB损失(亦即,总和6dB)。因此,相较于更传统的对称设计,处理量功率(throughput power)可提升4倍。
[0141]同轴连接器53随后被连接至同轴波导55。同轴波导55为50欧姆波导。同轴波导55是连接至高频探针57,高频探针57为同轴探测针尖,例如为GGB微微探针(picoprobe)型号110H。探测针尖57可被移动至待测装置5上的各个端口。
[0142]在图2中控制电子设备被图示为部分60。20Hz振荡器(oscillator)提供驱动信号至延迟线31。延迟线的位置随后被馈入模数转换器65。提供33KHz振荡器67以输出交流(AC)信号给产生器I。最简单形式的产生器I包含具有一对电极的光导电基板。电极被设置以使两个电极之间存在光导电间隙。藉由施加跨电极的交流偏压,在经由近红外线(NIR)辐射脉冲光束来点亮时,由产生器I产生微微秒脉冲。提供变压器69以将从振荡器67至产生器I的输出升压。[0143]接收器的配置类似于产生器,但在接收器中,接收到NIR探测脉冲与从DUT反射的脉冲,将使偏压在电极之间流动。偏压首先通过JFEI71、穿过放大器73、穿过相位灵敏检测(PSD)、穿过模数转换器65至PC81。在上文所描述的实施方式中,相位灵敏检测是在数字化之后在系统PC中执行。然而,可采用其他技术,诸如使用锁相放大器(lock-1namplifier)。
[0144]图4更详细图示根据本发明实施方式的测试模块。为了避免任何不必要的重复,将使用类似的元件符号来标志类似的特征。来自振荡器67的交流偏压被施加跨产生器I的电极91与93。产生器I随后沿着第一 100欧姆传输线47传送所产生的信号。微带波导47被形成于不同于光导电兀件的基板的基板上。
[0145]半导体基板的高介电常数使100欧姆传输线的设计变得困难。因此在此实施方式中,微带波导47被形成在低介电常数基板(诸如以PTFE为基础的基板,诸如Taconic TLY5或 Rogers R04000)。
[0146]此信号随后被传入50欧姆传输线,信号随后被经由同轴转换器53转换入同轴传输线55。信号随后被导入DUT5的端口中。从DUT反射的信号随后沿着同轴传输线55传回,经由传输线53的第三臂(未图示)并沿着传输线的第二臂49。输出随后被导至光导电接收器3上。输出随后通过JFEI71。光学激发为探测脉冲27,探测脉冲27为NIR脉冲,光学激发27与从DUT5反射的信号的组合将使偏压跨电极流动。随后使用放大器73将输出放大,且使用数据获取系统来处理输出。
[0147]图5更详细图示根据本发明实施方式的光导电元件。元件被形成在光导电基板101上。在此特定示例中,光导电基板101为半绝缘砷化镓,但光导电基板101可为任何光导电基板。提供上覆(overlying)基板的接地接合垫。在此特定示例中,接地接合垫为方形U形式,其中U的基部具有间隙。形状亦可被当作L形的接合垫,并提供接近第一 L形接合垫而放置的镜像L形接合垫。接地接合垫通常将为金,但亦可为招或任何其他已知的接地接合垫材料。
[0148]在U形接地接合垫103的底部提供间隙105。在此间隙中提供光导电元件的第一电极107。第一电极107经由传输线终端电阻连接至接地接合垫103的两侧。在此特定实施方式中,每一传输线终端电阻为约200欧姆。提供终端电阻以匹配传输线的阻抗,以避免背向反射,而在输出信号中产生人工因素(artefacts)。两个200欧姆电阻并联连接,以呈现100欧姆负载,此100欧姆负载匹配微带传输线的100欧姆阻抗。
[0149]第一电极107经由接合线113连接至100欧姆微带波导111。第二光导电元件电极115被提供为相对于第一光导电电极107。第一光导电电极107与第二光导电电极115经配置为在此两个电极的顶端之间具有由光导电基板101形成的小间隙。第二光导电电极115被提供为与100K欧姆限流(扼流圈)电阻117串联连接,且将限流电阻117与交流接合垫119连接。限流电阻117用以限制电流,以允许次微微秒脉冲的产生。
[0150]第二光导电电极115、电阻117与接合垫119被提供为在由接合垫103形成的U形的孔洞中成一线。
[0151]在配置为产生器时,交流偏压被施加至接合垫109且接合垫103被接地,因此跨第一光导电电极107与第二光导电电极之间的光导电间隙施加交流偏压。跨光导电间隙施加NIR辐射脉冲,产生从第一电极107经由接合线113传入100欧姆微带波导111的信号输出。
[0152]接合线具有限制信号频宽的电感,因此此电感较佳地必须被最小化。因此,楔接合方法是优于焊球接合。在一个实施方式中,在感兴趣的最大频宽处,线阻抗为100欧姆或更少。例如,在最大频率IOOGHz处,电感对应于160pH。在ITHz处,电感可为16pH。注意到,理论上,直径25 ii m的200 u m长线(典型的接合线)将具有约IOOpH的电感。
[0153]为了将PCE配置为接收器,100欧姆微带波导111接收从DUT反射的脉冲,且脉冲穿过接合线113发送至第一电极107。在NIR激发信号(探测脉冲)被施加跨光导电间隙106时,交流偏压在第一电极107与第二电极115之间流动,且交流偏压随后被检测。
[0154]图6图示可根据一个实施方式来使用的测试结构。光导电产生器201被提供并耦合至微带Y形分叉器203。可为与参照图5描述的相同类型的光导电产生器201,输出脉冲进入微带203的终端,如参照图5所描述。随后提供接收器205以检测所反射的脉冲。在图6所图示的实施方式中,接地接合垫103的设置是不同于图5所图示的设置。然而,存在相同的配置:跨光导电间隙提供两个电极,以及施加交流偏压跨间隙的能力,以及直接地耦合电极之一者至微带Y形分叉器203的臂的能力。
[0155]提供PCB209为邻接产生器装置,PCB209具有至产生器装置的连结,并提供包含JFET单元与前置放大器的PCB为邻接接收器装置。在产生器与接收器光导电元件之间提供传输线单元。来自传输线的输出随后穿过微带被提供至同轴转换器211。
[0156]图7图示图6的传输线、第一与第二元件的放大视图。为了避免任何不必要的重复,将使用类似的元件符号来标志类似的特征。
[0157]图8图示在光导电产生器第一元件107与100欧姆微带111之间的连结。第一电极107与第二电极115形成在两个电极顶端之间的光导电间隙106。接合线113将信号从第一电极107传送至微带波导111。
[0158]在以上的实施方式中,两个光导电装置被耦合至微带波导Y形结线。Y形结线具有三个端口:与光导电器耦合的两个100欧姆端口以及连接至50欧姆同轴缆线的50欧姆端□。
[0159]沿着微带从100欧姆端口的任一者传输的脉冲,由于阻抗失配,将在50欧姆端口处产生部分反射。然而,光导电装置包含匹配电阻,匹配电阻使微带端接100欧姆阻抗,100欧姆阻抗吸收任何反射回装置的响应信号。
[0160]从DUT反射回50欧姆端口的信号在彼端口不产生任何反射,因为两个100欧姆微带组合为对同轴线呈现50欧姆负载。信号被均等地分给微带并分别至产生器与接收器,在产生器与接收器处信号被装置上的匹配电阻吸收。
[0161]除了终端电阻(或作为替代方案)以外,还提供扼流圈电阻。扼流圈电阻限制穿过电极所施加的电流。
[0162]在另一个实施方式中,测试组件具有收发器(transceiver)。在此设置中,光导电产生器与光导电接收器被整合至单一半导体基板上,并由50欧姆微带传输线链结。
[0163]在此设置中,提供传输线设置201为具有DUT203,DUT203被提供在传输线设置201的尾端。传输线被画作两条线,较上方的线为信号线,较下方的线为电流接地返回路径。在Y形或V形传输线中,接地返回路径由接地层传送,接地层位于电路系统的其他部分之下并为不可见。[0164]产生器205被提供于微带201的相对于DUT203的尾端。产生器透过扼流圈电阻209被施以交流偏压207。在此特定实施方式中,扼流圈电阻为100K欧姆扼流圈电阻。
[0165]此外,微带被与50欧姆匹配电阻211端接。这样吸收入射在产生器上的来自传输线远端的信号,例如背向反射。
[0166]接收器213被直接地形成在微带与接收器电极之间的间隙。如上文,接收器亦包含JFET缓冲器,且信号被输出至前置放大数字化与获取系统。
[0167]在上文实施方式中,使用交流偏压以偏压装置。此允许在信号处理程序中使用相位灵敏检测。然而,亦可能使用直流(DC)偏压。再者,产生器与接收器装置的位置可被交换,以使接收器装置是位于传输线210的尾端处,且产生器紧靠(abut) 50欧姆微带线。
[0168]在一个实施方式中,微带201未直接连接至DUT203。在一个实施方式中,可制成对同轴传输线的转换器。随后可使用同轴线以运送信号至/自DUT。为了实现对同轴传输线的较高频宽转换器几何体形(geometry ),可使用薄的半导体基板,以更佳匹配标准同轴连接器的介电共直径(co-diameter)。在一个实施方式中,半导体基板具有在100 ii m至300 u m范围之内的厚度,在另一个实施方式中,基板为约200 y m厚。
[0169]图10图示如参照图9所描述的光导电收发器元件。收发器元件被形成在半导体基板301上。半导体基板301具有在100 ii m与300 U m之间的厚度,且较佳地约为200 y m,以与标准同轴连接器的宽度相同。
[0170]在基板的一个尾端处,提供微带至同轴转换器元件303。转换器元件303随后将信号传送至DUT (未图示)。两个接合垫元件305与307提供接地接合垫元件。所述元件一起形成U形,U形的空间中具有间隙。经由此间隙提供连接至传输线311的第一电极309。传输线311随后朝向转换器元件303延伸。第一电极309经由传输线终端电阻313连接至两个接合垫元件。终端电阻313的两者皆为100欧姆,使得在终端电阻313并联连接时呈现所需的50欧姆负载,以匹配传输线的电阻值。
[0171]相对于第一电极309的是第二电极315。第一与第二电极的两者被配置成具有顶端,且两个顶端被设置为面向彼此并具有小间隙,光导电间隙位于两个顶端之间。第二电阻315被经由交流偏压接合垫317偏压并穿过扼流圈电阻315。在此实施方式中扼流圈电阻315为IOOk欧姆。
[0172]在此特定实施方式中,第一电极与第二电极的设置形成了产生器光导电元件。
[0173]接收器光导电元件是由接收器电极319提供,接收器电极319被提供在沿着传输线311的一点处。接收器电极的输出随后在单独地提供至产生器时被与接收器相同的方式处理。
[0174]为了传送并检测次微微秒脉冲,收发器需要被泵浦脉冲与探测脉冲照射(irradiated)。产生器激发点在第一电极309与第二电极315的两个顶端之间接收泵浦脉冲。第二激发点321在接收器电极319与传输线311之间。第二激发点321为接收探测脉冲的激发点。
[0175]在另一个实施方式中,接收器光导电元件可被定位于在产生器处线的终端处,进一步沿着传输线朝向DUT。产生器与接收器光导电元件的相对摆放位置不重要。
[0176]然而,必须注意到在以上的实施方式中,传输线被电阻性地端接,而使来自线尾端的背向反射被最小化。[0177]产生器与接收器在空间上被分隔开,以确保在两个光导电元件之间不会发生光学串扰(cross talk)。产生器被穿过高电阻电流扼流圈偏压,且接收器必须驱动非常高输入阻抗的放大器,诸如由JFET缓冲器提供的放大器。
[0178]图11图示根据本发明实施方式的另一设备。在此,接收器与产生器光导电元件被提供于一分离元件中,该分离元件随后被覆晶安装至传输线。此避免了对于接合线的需求。
[0179]在图11的设置中,单元401用于安装并包含火星塞连接器403,火星塞连接器403将传输线连接至同轴线以传送信号至待测装置(未图示)。装置组件405具有为先前描述的类型的Y形微带传输线407。此传输线被形成在第一基板409上。还在第一基板409上提供两个电气连结411。所述终端由接合垫413与轨道415所组成,轨道415通往第一区域
417或第二区域419。提供终端电阻419在第一基板409上。所述电阻的每一者在该Y形微带传输线407的接点与尾端臂之间桥接(bridge)。微带传输线407的一个分支执行穿过第一区域417,且另一个分支穿过第二区域419。在此实施方式中,产生器光导电元件431被提供于第一区域417中,而接收器光导电元件433被提供在第二区域中。
[0180]产生器431被形成在产生器基板433上。光导电兀件是形成于产生器基板433的第一表面上。产生器基板随后被翻转,并接合至第一区域417的顶部。图12更详细图示结构。为了避免任何不必要的重复,将使用类似的元件符号标志类似的特征。在图12中产生器基板433被图示为线框(wireframe),以使产生器基板表面上的结构为可见。在此,结构包含穿过扼流圈电阻443连接至第一电极435的大垫411。随后提供面向第一电极435的大第二电极437。第一电极与第二电极两者皆包含面向彼此的顶端。在翻转结构时,传导性环氧树脂被施加至接合垫441与较大的第二电极437两者。较大的第二电极437必须足够大以允许被施加环氧树脂。随后结构被翻转,且接合垫441被放置在第一区域中在电气连结413轨道415之上,且提供第二电极437,使得在结构被翻转时,结构被环氧树脂接合至传输线407。
[0181]形成穿过第一基板409的洞451 (见图11),此洞被放置以使泵浦脉冲可用以激发第一电极435与第二电极437之间的光导电间隙。
[0182]图13图示接收器433。再次的,形成接收器于接收器基板461的一个表面上。在接收器基板461的表面上提供第一电极463,且在接收器基板461的表面上提供第二电极465。第一电极463与第二电极465 —起形成光导电间隙。
[0183]在接收器基板被翻转时,第一电极被配置成对准传输线407,且第一电极被接合至传输线407,且第二电极465被配置成对准延伸自电气终端413的轨道415的接合垫。提供穿过第一基板409的洞,以使第一电极463与第二电极465之间的光导电间隙可由探测脉冲来点亮。
[0184]在以上的实施方式中,光导电兀件被直接安装至形成于第一基板上的传输线电路上(亦即带线、微带或共平面波导结构)。在以上实施方式的设计中,光导电元件的基板不用以运送在装置中的脉冲,相反的,使用在第一基板上的分离PCB电路以运送在装置中的脉冲。
[0185]在此实施方式中,使用小型传导性环氧树脂区域,来形成产生器元件431与接收器433与微带电路之间的电气连结。通常在制造期间,将使用版印刷(stencil printing)过程来沉积微带电路。在另一个实施方式中,可在使用回流(reflow)过程形成的电气连结中沉积焊料胶(solder-paste)。此种回流过程包含加热组件以将胶融化,并随着组件冷却而将胶固化。
[0186]约50 y m的间隙50将余留在第一表面以及产生器431与接收器433的表面之间。此间隙是足够小,以使跨环氧树脂桥接的脉冲的传输不受阻,环氧树脂桥接位于产生器/接收器与微带之间,同时间隙是足够大,以使产生器基板的存在不会搅乱脉冲沿着微带电路的传输,并不会在用于接收器与产生器的两者的基板的边缘处产生反射。
[0187]在此实施方式的设计中,100欧姆终端电阻亦被实施为覆晶接合装置或表面安装装置。或者,终端电阻可直接使用薄膜过程方法在微带电路上制造,或蒸发至基板上。
[0188]图14为根据本发明实施方式的多通道反射仪的示意图。
[0189]多通道系统被提供在基板501上。多通道PCE晶粒503被提供为上覆并接触基板501。多通道PCE晶粒503包含设置在PCE晶粒503下表面的复数个光导电元件505(PCEs)0
[0190]如参照图11至图13所解释,PCE晶粒被覆晶接合至基板501上。
[0191]图15图示图14的基板501的放大区域。为了避免任何不必要的重复,将使用类似的元件符号标志类似的特征。在基板501的表面上存在通往DUT (未图示)的Y形或V形传输线507。Y形传输线具有通往产生器511的第一臂509,以及通往接收器515的第二臂513。(虽然将认知到,产生器511与接收器515的位置可被反转。)
[0192]产生器511包含接合垫517与轨道518,轨道518平行于传输线第一臂509而执行。存在提供于第一臂509与轨道518之间用于点亮539的洞519。光导电元件505被放置在晶粒503的下侧上。焊料凸块(solder bumps)被提供在传输线509与接近洞519的轨道518的部分上,以使光导电元件505在被翻转时可被跨间隙覆晶接合。光导电元件505被放置在洞519之上,以使光导电兀件505可被点亮。传输线设置509穿过扼流圈电阻525通往接地贯孔(ground Via) 523。扼流圈电阻525的功能与先前所描述的完全相同。
[0193]由此,所产生的信号被馈入DUT,并被反射回接收部分515。接收器515亦具有通往轨道533的接合垫531,轨道533平行于传输线513而执行。传输线513通过扼流圈电阻537通往接地贯孔535。轨道533与传输线513平行于彼此而执行,且在轨道533与传输线513之间存在用于点亮的洞539。光导电元件505随后被放置在晶粒503的下侧上。焊料凸块被提供在传输线513与接近洞539的轨道533的部分上,以使光导电元件505在被翻转时可被跨间隙覆晶接合。光导电元件505被放置在洞539之上,以使光导电元件505可被点売。
[0194]图16图示基板501的下侧。点亮洞539与519可被视为阵列,且透镜阵列被提供为与点亮洞539、519 —致。随后提供对准透镜阵列551的光纤准直器阵列553,以使光纤准直器阵列中的每一光纤输出至透镜,透镜随后将辐射从彼光纤导向穿过单一洞519、539。提供两个五向光纤分叉器,一个来自泵浦光束的来源,以提供辐射至光纤,且随后导向辐射穿过产生器的洞519,以激发产生器的光导电开关505。另一个准直器阵列557提供探测光束,以透过洞539激发接收器515的光传导元件505。
[0195]此设置允许在单一基板501上形成一行测试探针,如图14所示。在图14中,可见五个反射仪被设置为相邻于彼此,每一反射仪具有测试连结的能力。光导电天线505被制造在晶粒503上,且作为一个单元被覆晶接合至五个反射仪上。五个反射仪作为示例被图示于上文,可随需求延伸上文的制造技术为更多个反射仪。
[0196]在以上的实施方式中,使用扼流圈电阻来限制电流,以允许次微微秒脉冲的产生。然而,可藉由使用具有具天生为低载子生命期的载子的半导体基板,来避免使用扼流圈电阻。
[0197]图17a图示根据本发明的另一个实施方式的反射仪。
[0198]反射仪是基于如参照图2至图15所解释的设计。然而,在光导电元件与传输线的设置中存在差异。
[0199]系统包含光导电兀件601,光导电兀件601包含光导电半导体基板。光导电兀件601在图17b中更详细图不。在此,光导电兀件包含由光导电间隙与第二电极605分隔开的第一电极603。第一电极603与第二电极605被提供在光导电半导体基板上。在此特定不例中,光导电半导体材料为具有低载子生命期的砷化镓。
[0200]光导电元件所操作的方式类似于先前描述的跨光导电间隙施加偏压且以泵浦脉冲点亮间隙的方式。
[0201]第一电极603被连接至V形连接器设置607的顶端。V形连接器设置607包含第一臂与第二臂。每一臂连接至交流偏压垫609。臂607是经由轨道611连接至交流偏压垫。
[0202]在以上的设置中,制成由V形的两个臂提供的对第一电极603的两个连结。在此,对此低频(LF)侧的两个连结为均等的。
[0203]可对任一终端制成电气连结。若将电阻与LF连结串联加至GaAs,则可使用两个终端。提供两个终端,允许从两个LF终端之间的电阻值来检查电阻的值。然而,在不存在额外的电阻时,仅需使用一个装置终端。
[0204]第二电极605被连接至传输线621。传输线621在朝向分叉器623的一个方向与朝向电阻625的另一方向传载响应于泵浦脉冲所产生的测试信号。
[0205]以上已关于产生用于DUT的测试信号。提供第二光导电元件631以测试反射自DUT的测试信号。更详细在图17c中示出。
[0206]光导电天线631包含相对第二电极635的第一电极633。第一电极633与第二电极635是由间隙分隔。第一电极633与第二电极635是定位在光导电半导体基板上。
[0207]第一电极633是连接至V形连接器637的顶端。连接器637是经由连结轨道639连接至输出垫641。输出垫641将信号输出至前置放大器643。经反射信号脉冲的处理程序是与先前描述的相同。
[0208]第二电极635是连接至传输线651。传输线651的一个尾端是连接至分叉器623,而另一个尾端是连接至终端电阻653。终端电阻625与终端电阻653两者皆连接至接地。
[0209]分叉器623采取从光导电发射器601朝向待测装置(DUT)的输出,并采取从待测装置返回检测器631的输出。
[0210]在一个实施方式中,分叉器623为“Wye”分叉器或“Delta”分叉器。图18a中示出了 “Wye”分叉器的示例,而图18b中示出了 “Delta”分叉器的示例。在参照图2描述的实施方式中,使用三终端分叉器,三终端分叉器分别将来自DUT的50欧姆端口连接至两个光导电器的两个100欧姆端口。在图17a的实施方式中,连接50欧姆线至光导电器,而非连接100欧姆。此低阻抗增进了电路的暂态响应。[0211]在另一个实施方式中,使用Wye分叉器,Wye分叉器是从针对微波作业来设计的表面安装电阻来制造。在另一个实施方式中,使用Delta分叉器,Delta分叉器是使用薄膜过程整合在PCB层板上来制造。此种并入薄膜电阻的PCB层板是使用诸如OhmegaPly RCM与Ticer TCR电阻式薄层来制成。
[0212]如上文所述,对于(从DUT侧)入射在光导电装置上的脉冲,设置藉由在装置提供经匹配(亦即50欧姆)负载来防止背向反射。在较先前的实施方式中,在装置提供匹配电阻。在此实施方式中,使用另一长度部分的微带来提供负载。装置不贡献至微带上的负载,故投射脉冲行进通过装置至额外的微带“终端”长度部分。为了防止脉冲从此传输线新部分反射,使用终端电阻。对此,益处为终端电阻实体上可远离光导电元件,因此可使用传统的薄膜“芯片”电阻,而非在光导电天线的半导体上制造薄膜电阻。因此,图17的系统是容易制造的。
[0213]连接器611,为传输线朝向终端电阻625与653 (以及连接器639)延伸的部分,被RF吸收材料681覆盖。RF吸收器681抑制由暂态传输造成的在半导体装置的金属结构上的振铃效应。
[0214]吸收器被放置在TPR装置的金属结构上,TPR装置形成电路的低频部件。在此实施方式中,吸收器不被放置在装置的高频侧上,以避免在HF侧上的脉冲衰减。
[0215]在此实施方式中,RF吸收材料被放置在低频部件上,低频部件诸如偏压电极与接地。
[0216]适合的微波吸收器产品不例为Wurth Electronik WE-FAS Flexible AbsorberSheets。所述产品包含复合聚合物薄片(composite polymer sheet),复合聚合物薄片装载磁性可渗透粒子(铁氧磁体或铁金属(ferrite or ferrous metal))以产生在GHz区域与以上的高衰减。较佳地,薄片的厚度为100 ii m至300 ii m。在10 y m至3mm范围中的厚度可具有益处。或者,吸收材料可作为胶体或涂料来施加,或可藉由一些其他的应用方法来施加。
[0217]图19图示参照图17a描述的系统的位于微带基板661上的微带布线(layout)667。在此实施方式中,微带是由铜轨道制成。
[0218]光导电元件601与631是覆晶接合至微带667。电极603、605、633与635与V形连接器是形成于光导电基板的表面上。光导电基板随后被翻转,而使光导电材料上的电极与连接器面向基板上的微带。
[0219]可藉由减少半导体基板上的金属结构的自电容值(self-capacitance),来增进以上系统的效能。半导体的介电常数为高(对于Si与GaAs两者皆大于12),增强了电容值,SP使是对于最小的电极结构而言。此电容值随后根据负载电路的RC时间常数,扩展由激光脉冲产生的电气暂态反应。
[0220]虽然在GaAs上将电极制成得尽量小(小至实际上可能的值),藉由将低介电常数基板用于光导电器,将可获得大量的效能增进。可使用“磊晶移除(印itaxial liftoff)”过程来将非常薄(小于IOum)的光导电材料层从原基板转移到一些其他的材料上,来实现此效能增进。藉由选择具有低介电常数的新基板材料(诸如玻璃、石英与蓝宝石),可获得增进的效能。此外,光学通透基板藉由将激光脉冲导向穿过基板材料,来对光学地激发光导电器提供替代手段。[0221]图示穿过微带基板的洞663。所述洞提供来自激发激光的泵浦脉冲对光导电器的光学存取。
[0222]在以覆晶配置安装光导电元件时,微带波导必须通过半导体晶粒边缘之下,以到达光导电器电极。在微带之上的晶粒,提升了微带的等效每单位长度电容值。为了在微带通过晶粒之下时维持固定的传输线阻抗,微带的轨道宽度被减少以补偿晶粒的增强电容值效应。对于放置在50欧姆微带25 ii m之上的GaAs基板(50欧姆微带形成于具有Er=2.2的130 ii m高PTFE层板材料),已发现电容值提升40%。因此,在此实施方式中,微带在执行在GaAs晶粒之下时被窄化,以减少微带电容值至与远离晶粒的所期望的值相同的值。
[0223]图示被窄化以补偿在微带上的高介电常数GaAs的微带轨道665的区域。
[0224]图20图示图5的实施方式,其中使用RF吸收器701以对来自传输线电阻性终端的背向反射提供额外的抑制。换言之,假定终端将不会是完美的,特别是在最高的频率处。将吸收器加在经端接的线上,将除去任何残余的反射。为了避免任何不必要的重复,使用类似的元件符号来标志类似的特征。
[0225]图21为对单元外壳、光导电元件与微波传输线使用暂态电压抑制(TVS)二极管的示意图。此保护光导电元件不被从测量系统其他部分耦合入的ESD伤害。
[0226]光导电元件对静电放电(ESD)伤害极度敏感。此易感性来自装置的高阻抗与低电容值。同时,无法在不严重地降低高频效能的情况下,保护至/自DUT的信号输入线不受ESD伤害(电路被设计为用于高频暂态传输,因此,滤除此种暂态的任何手段将使装置不适合用于此目的)。然而,已知对所述系统的ESD伤害大部分来自于耦合入支援电路系统的电磁暂态(由静电放电造成)。此亦经由对装置的低频信号与电力连结传输至光导电器。
[0227]放置在对装置的连结上的暂态抑制二极管,防止来自此种暂态的伤害。注意到:对于脉冲接收器,TVS 二极管不直接连接至光导电器的信号输出,而是放置两个二极管以保护缓冲光导电器信号的JFET的外侧。
[0228]图21图示用于缓冲接收器光导电器信号的JFET前置放大器设计。信号与接地连结801与803是连至光导电元件上的电极。电力连结805与信号输出线两者皆受保护。对于发射装置(未图示),仅需要单一 TVS 二极管,且该单一 TVS 二极管可被直接放置为跨偏压连结,偏压连结连至光导电器。通常鉴于所施加于TVS 二极管的大偏压电压,发射器需要具有较大的关断电压(stand-off voltage)的TVS 二极管。
【权利要求】
1.一种用于允许一装置进行一测试的反射仪,该反射仪包含:一脉冲辐射源; 一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;一第二光导电元件,该第二光导电元件被配置成接收一脉冲;一传输线设置,该传输线设置被配置成将来自所述第一光导电元件的脉冲导至待测装置,并将反射自该待测装置的脉冲导至所述第二光导电元件;以及一终端电阻,该终端电阻被提供以用于所述传输线,且该终端电阻被配置成匹配所述传输线的阻抗。
2.一种用于允许一装置进行一测试的反射仪,该反射仪包含:一脉冲辐射源;一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;一第二光导电元件,该第二光导电元件被配置成接收一脉冲;一传输线设置,该传输线设置被配置成将来自所述第一光导电元件的脉冲导至待测装置,并将反射自该待测装置的脉冲导至所述第二光导电元件,所述传输线具有一三终端设置,其中所述第一光导电元件与所述第二光导电元件被提供在分离的终端处,且对该装置的一输入被提供在该第三终端处。
3.一种用于允许一装置进行一测试的反射仪,该反射仪包含:一脉冲辐射源;一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;一第二光导电元件,该第二光导电元件被配置成接收一脉冲;一传输线设置,该传输线设置被配置成将来自所述第一光导电元件的脉冲导至待测装置,并将反射自该待测装置的脉冲导至所述第二光导电元件,其中至少一个光导电元件包含一对电极,该对电极被提供在一第一基板的一第一表面上,且该传输线设置被提供在一第二基板的一第二表面上,所述第一表面与所述第二表面被提供为面对彼此,而使在所述元件与所述传输线设置之间存在一脉冲通信。
4.根据前述任一权利要求所述的反射仪,其中自所述第一光导电元件至所述第二光导电元件的路径长度,实质上短于自所述第一光导电元件至所述装置至所述第二光导电元件的路径长度。
5.根据权利要求2所述的反射仪,其中所述三端传输线设置为Y形式或V形式。
6.根据权利要求2所述的反射仪,其中所述三端传输线设置包含一Wye或Delta分叉器。
7.根据前述任一权利要求所述的反射仪,其中所述传输线设置被提供于具有一最大介电常数为10的一基板上。
8.根据权利要求1所述的反射仪,其中经由一另一传输线将所述终端电阻与所述光导电兀件分隔开。
9.根据前述任一权利要求所述的反射仪,其中不传输信号或传输低频信号的该系统的至少一些部分被一 RF吸收材料覆盖,所述低频信号为在该系统中的信号且不是由所述第一光导电元件产生并被所述第二光导电元件接收的脉冲。
10.根据权利要求3所述的反射仪,其中延伸于所述第一基板之下的所述传输线的部分薄于不延伸于所述第一基板之下的所述传输线的部分。
11.根据权利要求3所述的反射仪,其中在所述第二基板中有一洞,该洞允许点亮在所述第一基板上的光导电兀件。
12.根据前述任一权利要求所述的反射仪,该反射仪进一步包含至少一个暂态电压二极管,该至少一个暂态电压二极管被配置成保护至少一个所述光导电元件。
13.根据前述任一权利要求所述的反射仪,其中所述第一光导电元件为接收一泵浦光束的辐射的一产生器,而所述第二光导电元件为接收一探测光束的辐射的一接收器,所述泵浦光束与所述探测光束从相同的来源发出,所述反射仪进一步包含一延迟线,该延迟线被配置成相对于所述探测光束的路径长度来改变所述泵浦光束的路径长度,或相对于所述泵浦光束的路径长度来改变所述探测光束的路径长度。
14.根据权利要求13所述的反射仪,其中所述延迟线包含一快速扫描延迟部分与一慢速扫描延迟部分,其中所述快速扫描延迟部分由一振荡长菱体提供,而所述慢速扫描延迟部分包含一线性延迟线。
15.根据前述任一权利要求所述的反射仪,其中所述第一光导电元件被配置为一产生器,且所述第二光导电元件被配置为一接收器,所述反射仪进一步包含一交流偏压单元与一相位灵敏检测单元,该交流偏压单元提供一交流偏压至所述产生器,该相位灵敏检测单元被配置成对直接从所述接收器装置测量到的信号执行相位灵敏检测。
16.根据前述任一权利要 求所述的反射仪,其中所述第二光导电元件被配置为一接收器,所述反射仪进一步包含一放大器与一单元,该放大器将该接收器的输出放大,该单元被配置成提供一输入交流阻抗给所述放大器,该输入交流阻抗在交流偏压频率处为至少100000 欧姆。
17.根据权利要求1或2所述的反射仪,其中经由引线接合或带状接合将所述光导电元件耦合至所述传输线设置。
18.根据前述任一权利要求所述的反射仪,其中所述光导电元件包含GaAs、InP、GainAs或其他II1-V族合金。
19.根据权利要求3所述的反射仪,其中,由一覆晶接合方法将所述光导电元件的所述电极耦合至所述传输线,该覆晶接合方法选自以下:锡球凸块、传导性环氧树脂、铟球凸块或引线球凸块。
20.一种反射仪系统,该反射仪系统包含多个根据权利要求3所述的反射仪,其中所述多个反射仪被提供一单一通用第一基板,以使所述多个反射仪的所述光导电元件在同一时间被覆晶接合。
21.根据权利要求20所述的反射仪系统,其中所述多个反射仪被设置为与彼此平行。
22.—种对一装置执行一反射测量术测试的方法,该方法包含:提供一脉冲辐射源;提供一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;提供一第二光导电元件,该第二光导电元件被配置成接收一脉冲;使用一传输线将来自该第一光导电元件的脉冲导至待测装置,并将反射自所述待测装置的脉冲导至所述第二光导电元件;以及提供一终端电阻,该终端电阻被提供以用于所述传输线,且所述终端电阻被配置成匹配所述传输线的阻抗。
23.—种对一装置执行一反射测量术测试的方法,该方法包含:提供一脉冲辐射源;提供一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;提供一第二光导电元件,该第二光导电元件被配置成接收一脉冲;使用一传输线将来自所述第一光导电元件的脉冲导至待测装置,并将反射自所述待测装置的脉冲导至所述第二光导电元件,所述传输线具有一三终端设置,其中所述第一光导电元件与该第二光导电元件被提供在分离的终端处,且对所述装置的一输入被提供在第三终端处。
24.一种对一装置执行一反射测量术测试的方法,该方法包含:提供一脉冲辐射源;提供一第一光导电元件,该第一光导电元件被配置成响应于来自所述脉冲辐射源的照射而输出一脉冲;提供一第二光导电元件,该第二光导电元件被配置成接收一脉冲;使用一传输线将来自所述第一光导电元件的脉冲导至待测装置,并将反射自所述待测装置的脉冲导至所述第二光导电元件,其中至少一个光导电元件包含一对电极,该对电极被提供在一第一基板的一第一表面上,且所述传输线设置被提供在一第二基板的一第二表面上,所述第一表面与所述第二表面被提供为面对彼此,而使在所述元件与所述传输线设置之间存在一脉冲通信。
【文档编号】G01R31/28GK103635819SQ201280015538
【公开日】2014年3月12日 申请日期:2012年2月13日 优先权日:2011年2月11日
【发明者】B·E·科尔 申请人:特瑞视觉有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1