一种利用聚焦离子束制备大尺寸透射样品的加工方法

文档序号:10486881阅读:876来源:国知局
一种利用聚焦离子束制备大尺寸透射样品的加工方法
【专利摘要】一种利用聚焦离子束制备大尺寸透射样品的加工方法,包括首先对试样完成顶部保护;然后进行样品提取,提取时保证试样一侧完全与基体相连的情况下,刻蚀样品底面与另外一个侧面,使刻蚀后试样底面能够完全穿透,形成L形的悬臂梁式结构,同时避免试样与基体发生断裂;之后将原位纳米操纵杆与样品进行焊接,在确认样品与基体无粘连后,通过移动原位纳米操纵杆提取出样品,将提取出的样品转移至载样铜网,使原位纳米操纵杆与样品分离,焊接确保样品与铜网两个柱头固定牢靠;最后采用对称切割的方式对样品两面进行均匀减薄,得到透射样品。本发明能够有效地避免透射样品在制备过程中发生弯曲变形。
【专利说明】
一种利用聚焦离子束制备大尺寸透射样品的加工方法
技术领域
[0001]本发明属于微尺度材料样品制备领域,具体涉及一种利用聚焦离子束制备大尺寸透射样品的加工方法,在该加工方法中利用了原位纳米操纵杆(Omniprobe)提取技巧,样品在铜网上进行焊接的方式,以及样品减薄技巧来获取大尺寸的透射样品。
【背景技术】
[0002]微尺度下材料所表现出来的性能特点与宏观块体材料有着明显的区别,例如在力学性能上表现出越小越强的现象,这一点激发了众多学者的研究兴趣。随着研究的深入,人们需要观察微尺度材料内部组织结构的变化,而传统机械研磨方式制备透射样品的方法不适用于微尺度试样,从而限制了微尺度材料的研究。近年来,材料学者利用聚焦离子束(FIB)并装载原位纳米操纵杆附件(Omniprobe)用来制备微尺度试样的透射样品。即在不破坏微尺度试样完整性并且不改变内部组织结构的前提下,利用聚焦离子束对试样进行切割并利用原位纳米操纵杆将微尺度试样从块体试样上提取出来,焊接在铜网上,随后对微尺度样品进行减薄处理,最终得到完整形貌的透射样品。目前利用聚焦离子束制备的透射样品尺寸一般在4μπι*2μπι以下,但是较大尺寸的透射样品在加工过程中容易卷曲变形,降低成功率。同时,一般情况下利用聚焦离子束制备出的透射样品是直接在块体试样中切取薄片,焊接到铜网上进行减薄处理。但是微尺度柱状变形试样的透射样品制备方法有别于普通透射样品的加工。微尺度柱状试样位于块体试样凹坑内,试样顶面与块体上表面相平齐,因此在提取透射样品时要保证一方面能从凹坑中将试样提出,另一方面不能破坏试样内部组织结构。

【发明内容】

[0003]本发明的目的在于针对上述现有技术中的缺陷,提供一种利用聚焦离子束制备大尺寸透射样品的加工方法,能够有效地避免透射样品在制备过程中发生弯曲变形。
[0004]为了实现上述目的,本发明采用的技术方案为,包括以下步骤:
[0005]步骤一、向试样顶端所需观测部分区域沉积Pt,完成试样顶部保护;
[0006]步骤二、样品提取;
[0007]2.1)确定刻蚀面积及刻蚀深度对试样进行初步加工;
[0008]2.2)完成第一次刻蚀后,倾转载物台,修整试样侧面的锥度;
[0009]2.3)保证试样一侧完全与基体相连的情况下,利用离子束刻蚀样品底面与另外一个侧面,使刻蚀后试样底面能够完全穿透,形成L形的悬臂梁式结构,同时避免试样与基体发生断裂;
[0010]2.4)将原位纳米操纵杆与样品进行焊接;
[0011]2.5)利用离子束将样品与基体连接处切断,在确认样品与基体无粘连后,通过移动原位纳米操纵杆提取出样品;
[0012]2.6)将提取出的样品转移至载样铜网,沉积Pt使得样品底部两端点与铜网柱头同时紧固,利用离子束刻蚀使原位纳米操纵杆与样品分离,焊接确保样品与铜网柱头固定牢
A+-.罪;
[0013]步骤三、采用对称切割的方式对样品两面进行均匀减薄,得到透射样品。
[0014]所述的试样为钛合金试样。
[0015]刻蚀采用型号为Hel1sNanoLab 600的双束聚焦离子束系统完成。
[0016]所述的步骤2.2)完成第一次刻蚀后,倾转载物台±2°,修整试样侧面的锥度。
[0017]所述的原位纳米操纵杆尖端直径为2μπι-5μπι。
[0018]所述的步骤2.4)中向原位纳米操纵杆尖端沉积Pt,沉积面积大于原位纳米操纵杆尖端直径,Pt沉积2?3次,确保Pt沉积层厚度能够将原位纳米操纵杆与样品之间的缝隙填满。
[0019]所述的步骤2.5)中样品与基体切断后留有样品活动空间。
[0020]所述的步骤2.6)中对样品与铜网柱头接触位置采用两点式焊接并且正反面均进行焊接。
[0021]所述的步骤三减薄过程中使载物台在倾转52°的基础上再倾转±(I?2)。。
[0022]与现有技术相比,本发明在样品提取时通过离子束刻蚀使样品与基体形成L形的悬臂梁式结构,由于制备的透射样品尺寸大,在加工过程中透射毛胚自身重力比普通较小尺寸试样的重力大许多,与传统刻蚀方式相比,悬臂梁式结构能保证在刻蚀的过程中样品不会由于自身重力导致在连接处断开使样品掉落。将提取出的样品转移至载样铜网,沉积Pt使得样品底部两端点与铜网柱头同时紧固,传统方式是在样品一侧焊接,这样在减薄的过程中,离子束流在一侧通过时容易使样品向内卷曲。两点焊接能够在样品减薄前固定样品位置,在离子束减薄样品产生弯曲倾向时,焊接点可以对样品有拉应力,有效阻碍样品弯曲。采用对称切割的方式对样品两面进行均匀减薄,降低了离子束加工过程中两面影响不均匀所造成的样品卷曲。减薄过程中,离子束流只在一个侧面减薄会在样品内产生背应力使样品向反方向弯曲,而两面交替减薄可以使上下背应力相互抵消或减小合力绝对值,明显降低样品弯曲的机率。
【附图说明】
[0023]图1试样原始结构电镜图;
[0024]图2悬臂梁状样品切片底部与基体分离电镜图;
[0025]图3悬臂梁状样品切片侧面与基体分离电镜图;
[0026]图4原位纳米操纵杆与样品焊接电镜图;
[0027]图5样品切片与基体脱离上升第一视角电镜图;
[0028]图6样品切片与基体脱离上升第二视角电镜图;
[0029]图7铜网形貌电镜图;
[0030]图8样品切片焊接到铜网柱头俯视电镜图;
[0031 ]图9样品切片焊接到铜网柱头侧视电镜图;
[0032]图10样品切片双面交替减薄形貌电镜图。
【具体实施方式】
[0033]下面结合附图对本发明做进一步的详细说明。
[0034]通过利用本发明大尺寸透射样品加工技术,能够对纯T1、T1-10V-2Fe_3Al以及T1-24Nb-4Zr-8Sn等钛合金进行透射样品的制备。下面仅以纯Ti单晶6μηι微柱的透射样品加工为例,利用型号为Hel1s NanoLab 600双束聚焦离子束系统进行具体实施的说明,而对于其他材料可通过改变加工参数来实现透射样品的制备。
[0035](I)将宏观块体样品用银胶固定在设备中的载样台上,同时将后续焊接透射样品切片的铜网放置在载样台上,抽真空,选定需要加工的微柱样品,如图1所示,调节样品高度,将载样台倾转至52°,然后锁定载样台,加热Pt,之后进Pt针。
[0036](2)在样品顶端沉积Pt,其中Pt的厚度为Ιμπι、宽为2μηι、长为7μηι,沉积完成后退Pt
针并解锁载样台。
[0037](3)以微柱样品的中点为中心,上下对称定义刻蚀图形,刻蚀模式选择Regular-cross Sect1n,刻蚀图形长为30μηι、宽为40μηι、深为15μηι,上下两个刻蚀图形中间预留宽度为2μπι左右,如图2所示。
[0038](4)Regular_cross Sect1n模式刻蚀完成后选择Cleaning-cross Sect1n刻蚀模式,分别倾转至50°或54°修切片锥度。
[0039](5)载样台转回0°,离子束观察角度选Scan Rotat1n 180模式。将载样台倾转至7°,刻蚀图形为L形,即刻蚀样品切片的底面和一个侧面形成悬臂梁结构,刻蚀深度为2μπι,刻蚀图形之间选择并联刻蚀模式。
[0040](6)刻蚀结束后倾转载样台的角度观察是否将切片底面与基体完全脱离,任何粘连都会影响后续提取步骤。若有粘连则继续刻蚀,若无粘连将载样台倾转至0°并锁定,如图3所示。
[0041](7)加热Pt针,并在电子束窗口打开状态下以最小放大倍数进纳米操纵杆Omniprobe。利用电子束和离子束两个窗口同时观察Omniprobe的移动状态。移动速度从快到慢,操纵杆离试样距离减小到3μηι-5μηι时进Pt针。当Omniprobe操纵杆尖端接触到试样时,电子束窗口会有明暗衬度变化。
[0042](8)利用Pt沉积方式将操纵杆尖端与试样焊接紧密,沉积面积为3μπι*2μπι,厚度为IMiuPt沉积面积中,试样与操纵杆各占二分之一,以便Pt均匀沉积确保试样与操纵杆之间的连接强度。Pt沉积次数为2-3次,确保Pt能够将操纵杆与试样之间的缝隙填满,如图4所示。选择刻蚀模式,将试样切片与基体断开,断开瞬间可以观察到Omniprobe操纵杆有轻微抖动。
[0043](9)以0.5nm/s的速度前后移动操纵杆,观察试样是否与基体有粘连。若无粘连,将操纵杆从慢到快升起,将试样切片从基体中完全脱离,如图5,6所示。退出Omniprobe操纵杆。
[0044](10)解锁载样台,适当降低载样台高度并寻找铜网,找到铜网后选择合适的焊接位置,如铜网上M形柱头顶端,如图7所示,调节高度后锁定载样台。
[0045](11)进Omniprobe操纵杆到合适位置,移动速度从快到慢落在M形柱头上方Ιμπι处,缓慢将样品切片落在M形柱头V形槽中,如图8所示,将切片底端与V形槽接触的两个点分别沉积Pt,沉积面积为2μηι*2μηι,厚度为Ιμπι。沉积方式与(8)相同。随后将纳米操纵杆与试样切片断开,检查样品是否牢固。最后将试样旋转180°后对两个焊接处背面再次焊接,确保试样紧固。
[0046](12)分别退出Pt及Omniprobe操纵杆。为了更加紧固试样,解锁载样台并倾转180°,对两个接触点背面再沉积I次Pt,如图9所示。
[0047](13)对试样载样台倾转角度叠加±1°?2°,防止试样出现上薄下厚的现象,最终减薄束流为7.7PA,厚度为50-60μπι,如图1O所示。
[0048](14)减薄结束后,在52°基础上将载样台倾转±5°,电压5KV,电流15ΡΑ,对试样上下两面进行离子束扫描,消除在减薄过程中产生的非晶层。
[0049](15)微尺度柱状透射样品制备结束。
[0050 ]本发明利用聚焦离子束(FIB)制备较大微尺度透射样品的加工方法,该加工方法制备的透射样品尺寸能达到7μπι*12μπι。与其他利用聚焦离子束(FIB)制备的方法相比,该方法不仅能够保证透射样品具有较大观察尺寸,而且能够保证样品薄区的厚度。此外,该方法的加工的透射样品能最大限度的保持试样平直程度,避免试样减薄过程中出现的卷曲现象。
【主权项】
1.一种利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于,包括以下步骤: 步骤一、向试样顶端所需观测部分区域沉积Pt,完成试样顶部保护; 步骤二、样品提取; 2.1)确定刻蚀面积及刻蚀深度对试样进行初步加工; 2.2)完成第一次刻蚀后,倾转载物台,修整试样侧面的锥度; 2.3)保证试样一侧完全与基体相连的情况下,利用离子束刻蚀样品底面与另外一个侧面,使刻蚀后试样底面能够完全穿透,形成L形的悬臂梁式结构,同时避免试样与基体发生断裂; 2.4)将原位纳米操纵杆与样品进行焊接; 2.5)利用离子束将样品与基体连接处切断,在确认样品与基体无粘连后,通过移动原位纳米操纵杆提取出样品; 2.6)将提取出的样品转移至载样铜网,沉积Pt使得样品底部两端点与铜网柱头同时紧固,利用离子束刻蚀使原位纳米操纵杆与样品分离,焊接确保样品与铜网柱头固定牢靠; 步骤三、采用对称切割的方式对样品两面进行均匀减薄,得到透射样品。2.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的试样为钛合金试样。3.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:刻蚀采用型号为Hel1s NanoLab 600的双束聚焦离子束系统完成。4.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的步骤2.2)完成第一次刻蚀后,倾转载物台±2°,修整试样侧面的锥度。5.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的原位纳米操纵杆尖端直径为2μπι-5μπι。6.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的步骤2.4)中向原位纳米操纵杆尖端沉积Pt,沉积面积大于原位纳米操纵杆尖端直径,Pt沉积2?3次,确保Pt沉积层厚度能够将原位纳米操纵杆与样品之间的缝隙填满。7.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的步骤2.5)中样品与基体切断后留有样品活动空间。8.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的步骤2.6)中对样品与铜网柱头接触位置采用两点式焊接并且正反面均进行焊接。9.根据权利要求1所述的利用聚焦离子束制备大尺寸透射样品的加工方法,其特征在于:所述的步骤三减薄过程中使载物台在倾转52°的基础上再倾转± (I?2)。。
【文档编号】G01N1/44GK105842045SQ201610165230
【公开日】2016年8月10日
【申请日】2016年3月22日
【发明人】孙巧艳, 寇文娟, 黄明达, 陈威, 肖林, 孙军
【申请人】西安交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1