头位置控制方法、盘装置以及伺服磁道写入方法

文档序号:6751621阅读:269来源:国知局
专利名称:头位置控制方法、盘装置以及伺服磁道写入方法
技术领域
本发明涉及一种头位置控制方法、一种盘装置以及一种伺服磁道写入方法,用于在盘的目标磁道上记录/再现数据,并且更加具体地涉及一种用于解调记录在偏心盘上的伺服信号并获得位置的头位置控制方法、盘装置以及伺服磁道写入方法。
背景技术
向/从一个旋转盘介质中记录或再现数据的盘存储装置被广泛地用作数据的存储装置。如图18所示,盘装置由用于存储数据的盘94、用于对盘94进行旋转的主轴电机96、用于记录/再现盘94上的信息的头90以及用于将头90移动到目标位置的致动器92构成。典型的这种装置是盘(HDD硬盘驱动器)和光盘装置(DVD-ROM,MO)。
在盘装置中,用于测定磁头90的位置的位置信号100被记录在盘94上。位置信号100由伺服标志、磁道号和偏移信息构成。利用磁道号和偏移信息可以获得磁头90的当前位置。
确定这一位置信息和目标位置之间的差异,并根据位置误差量进行计算,以提供用于驱动致动器92的驱动量,比如在VCM(音圈电机)情况下的电流,和在压电致动器情况下的电压。
为了在盘94上记录伺服信号(位置信号)100,已经提出了一种通过外部STW(Servo Track Write伺服磁道写入)装置记录伺服信号的方法来代替传统的STW方法,在该传统的STW方法中盘装置自己记录伺服信号。例如,这种方法已经在日本专利特开平第03-073406号《盘装置的伺服信息写入方法(Servo information writing method for a magnetic diskdevice)》(1991年3月28日公开)中提出了。
如果安装在一个HDD装置上的已经对其进行了外部STW的盘94发生了偏心,如图19所示,那么随着盘94的旋转,跟随位置信号100的磁头90的位置以正弦波方式振荡。换句话说,当位置信号100写在盘94的外周上时,很难在旋转中心94-1与主轴电机96的轴心98精确配合的条件下将盘94安置在主轴电机96上。因此,在旋转中心94-1和轴心98之间产生了位移。
如果磁头跟随这一位移运动,也就是跟随这一偏心运动,磁头将持续振荡(驱动电流流动),这将增加能量的消耗并且易于造成切换磁头的操作不稳定。为了解决这一问题,已经提出了不跟随偏心的致动器控制方法。例如,在日本专利特开平第9-128915号(1997年5月16日公开)以及日本专利特开平第9-330571号(1997年12月22日公开)中所提出的方法。
在这样的方案中,规定提供一个位置轨道(虚拟的圆形轨道)以忽略偏心,如图20所示,从磁头的解调信号中消去这一轨道,以得到解调位置,并且根据解调位置对致动器进行控制。通过这种方法,如图19所示,利用针对偏心位置信号100的圆形轨道的位置信号,磁头90被定位在以主轴电机的旋转轴98为中心的圆形轨道110上,从盘94中读出/向盘94中写入数据。磁头90的运行轨道110表现为一条直线,如图21中所示,那么轨道110横穿过由正弦波表示的位置信号的轨道102。
已经使用了一种面积解调方法,其中2相信号PosN和PosQ被用于位置信号。图22是表示2相伺服位置信号的示意图,图23是表示其位置解调电路的框图,而图24到26是位置解调信号的波形图。
如图22所示,位置信号(伺服信号)由伺服标志、格雷码(磁道号)、索引以及偏移信号(PosA-PosD)构成。如图23所示,在模块120中,磁道号和偏移信号(PosA-PosD)被从得自磁头90的位置信号中分离出来,并且以如下方式计算2相伺服信号PosN和PosQ。
PosN=PosA-PosBPosQ=PosC-PosD进行位置解调以使PosN或PosQ中较小的一个在模块122中被用作Pos1。这就是说,如图22所示,选择PosN和PosQ中较小的那个。
这意味着,来自磁头90的每个偏移信号(PosA-PosD)的读取输出的振幅与磁头90的位置处的偏移信号(PosA-PosD)的面积成比例。换句话说,通过解调由振幅表示的面积,这个伺服信号可以解调出磁头的位置。
位置敏感度增益124根据磁道位置改变增益。这样的解调方法在,例如,日本专利特开平第8-195044号(1996年7月30日公开)中进行了详细的说明。
在这种面积解调方法的2相伺服信号的情况下,在解调期间,产生了PosN和PosQ的跨越(切换),如图24所示。如果磁头90沿对角线穿过位置信号区,如图22所示,也就是当磁头90具有速率时,PosN和PosQ造成解调位置产生了误差。换句话说,如图24所示,仅当致动器的速度为零时,在磁道方向上,可以观察到2相伺服信号PosN和PosQ之间有1/4相移。
例如,图25示出了在该装置中,当磁头以20磁道/采样的速度移动时PosN和PosQ的状态的模拟结果。如图25所示,PosN和PosQ之间的相位关系改变了。图26表示此时的解调位置的计算结果,并且PosN和PosQ的切换导致不可能得出正确的位置解调结果。
如图25和图26所示,PosN和PosQ的解调块的偏移是不同的。为了校正速度造成的偏移,例如,日本专利特开平第2001-256741号(2001年9月21日公开),公开了将致动器的速度V输入到模块122中,以校正PosN和PosQ的方法。
然而,在上面所提到的速度偏移校正方法中,通过由图20中的解调位置得到的磁头速度V对PosN和PosQ进行校正。另一方面,如图19和图21所示,偏心在虚拟圆形控制中被忽略了,所以根据偏心的位置信号PosN和PosQ的速度校正值与由解调位置所得到的不同。
因此,在虚拟圆形控制的情况下,精确的速度偏移校正是困难的。特别是,由于记录密度的增加,目前的磁道间距非常窄,其中偏心的磁道数量增加并且要求较高的定位精度,所以校正速度的差异不能再被忽略了。

发明内容
根据前面所述的内容,本发明的一个目的是提供用于即使执行了虚拟圆形控制,也能精确地进行位置信号的速度偏移校正的一种头位置控制方法、一种盘装置以及一种伺服磁道写入方法。
本发明的另一个目的是提供一种头位置控制方法、一种盘装置以及一种伺服磁道写入方法,以从面积解调方法的位置信号中获得精确的解调位置,即使对在偏心盘上的磁头执行了虚拟圆形控制。
本发明还有另一个目的是提供一种头位置控制方法、一种盘装置以及伺服磁道写入方法,以利用面积解调型方法的位置信号进行高精度的位置控制。
为了实现这些目的,本发明是一种用于控制盘上的虚拟圆形轨道上的头位置的头位置控制方法,包括以下步骤对由磁头读取的盘的位置信号进行解调、根据解调结果计算解调位置、从解调位置中减去由盘的偏心所引起的位置波动以及根据减去之后的解调位置与目标位置之间的位置误差计算控制量,以控制致动器来驱动磁头。并且计算步骤包括以下步骤用根据磁头的虚拟圆形轨道基准的速度以及虚拟圆形轨道与盘的位置信号之间的相对速度的校正值对解调结果进行校正、并计算解调位置。
本发明的盘装置是一种用于控制磁头在盘的虚拟圆形轨道上的位置的盘装置,包括用于读取盘的位置信号的磁头,用于驱动磁头的致动器,以及对得自磁头的位置信号进行解调并且控制致动器来驱动磁头的控制部件。并且控制部件使用根据磁头的虚拟圆形轨道基准的速度以及虚拟圆形轨道与盘的位置信号之间的相对速度的校正值对解调结果进行校正、计算解调位置、从解调位置中减去由盘的偏心所导致的位置振动、并根据减去之后的解调位置和目标位置之间的位置误差来计算致动器的控制量。
在本发明中,在执行面积解调方法的虚拟圆形控制时,使用虚拟圆形轨道基准的磁头速度以及虚拟圆形轨道与位置信号之间的相对速度进行2相伺服信号的速度偏移校正,所以,即使执行了虚拟圆形轨道控制也可以在较高精度条件下实现磁头位置控制。因此,即使盘的磁道间距变窄和偏心磁道的数量增加了,也可以实现较高精度的虚拟圆形轨道控制,并且读/写性能可以得到提高。
在本发明中,解调步骤最好包括以下步骤利用面积解调从上述位置信号中解调相位相互不同的第一位置信息和第二位置信息。由于使用了利用第一和第二位置信息的面积解调方法,所以可以容易地进行虚拟圆形轨道控制。
在本发明中,还有,计算步骤最好包括以下步骤以预定的加权值对第一位置信息和第二位置信息进行合并,并计算解调位置。由于包括了对第一和第二位置信息进行合并而进行的解调,所以不用切换阶跃差(step difference)就可以获得解调位置。
在本发明中,还有,计算步骤最好包括以下步骤用根据磁头的虚拟圆形轨道基准的速度以及虚拟圆形轨道与盘的位置信号之间的相对速度的第一校正值来校正第一位置信息,并且用根据磁头的虚拟圆形轨道基准的速度以及虚拟圆形轨道与盘的位置信号之间的相对速度的第二校正值对第二位置信息进行校正。由于根据第一和第二位置信息的记录位置对速度偏移进行了校正,所以可以更加精确地进行速度偏移校正。
在本发明中,还有,计算步骤最好进一步包括以下步骤通过将第一位置信息乘以预定加权值M、将第二位置信息乘以另一个预定加权值(1-M)、并将这些相乘结果合并来计算解调位置。
还有,本发明最好进一步包括以下步骤通过对用于减去位置振荡的虚拟圆形位置轨道进行微分,来计算相对速度。由于是通过利用虚拟圆形位置轨道得到相对速度,不需要单独存储数据,从而可以得到与虚拟圆形位置轨道同步的相对位置。
本发明的伺服磁道写入方法是一种用于向所装配的盘写入位置信号的伺服磁道写入方法,包括以下步骤对由磁头读取的盘的位置信号进行解调;通过由根据磁头的虚拟圆形轨道基准的速度以及虚拟圆形轨道与盘的位置信号之间的相对速度的校正值校正解调结果,来计算解调位置;从解调位置中减去由盘的偏心所引起的位置振荡;根据减去之后的解调位置和目标位置之间的位置误差计算控制量,以控制致动器来驱动磁头;以及沿着磁头的虚拟圆形轨道重写位置信号。
根据本发明的这一特征,当执行面积解调方法的虚拟圆形控制时,利用虚拟圆形轨道基准的磁头速度以及虚拟圆形轨道与位置信号的相对速度二者进行2相伺服信号的速度偏移校正,所以可以通过虚拟圆形轨道控制以较高精确度重写位置信号。因此,即使盘的磁道间距变窄并且偏心磁道的数量增加,也可以实现较高精度的虚拟圆形轨道控制,并且读/写性能可以得到提高。
在本发明中解调步骤最好包括以下步骤对盘的位置信号进行解调,其中位置信号已经在安装着该盘的设备之外被写入。因此,不跟随偏心的虚拟圆形控制可以高精确度执行,即使使用了位置信号已经在外部写入的盘。


图1是表示本发明的一个实施例的盘存储装置的框图;图2是表示图1中的盘上的位置信号的示意图;图3是详细表示图2中的位置信号的示意图;图4是表示读取图2中的位置信号的波形的波形图;图5是表示图1中的磁头的搜索操作过程的示意图;图6是表示根据第一实施例的图1中磁头位置控制部件的位置解调部件的功能的框图;图7是表示图6中的虚拟圆形控制的速度偏移校正的示意图;图8是表示图6中的虚拟圆形轨道表的结构的图表;图9是表示本发明的第二实施例的位置解调部件的框图;图10是表示图9中的PosN和PosQ的波形图;图11是表示图9中的加权增益函数的波形图;图12是表示将图9中的PosN和PosQ合并的解调方法的波形图;图13是表示没有在比较例中执行虚拟圆形控制时的试验实例的波形图;
图14是表示在比较例中执行了虚拟圆形控制而没有执行速度偏移校正时的试验实例的波形图;图15是表示执行了根据本发明的虚拟圆形控制中的速度偏移校正时的试验实例的波形图;图16是表示执行了根据本发明的虚拟圆形控制中的速度偏移校正时的临界速度的试验实例的波形图;图17是表示根据本发明的伺服磁道写入方法的实施例的示意图;图18是表示传统的磁盘装置的结构的示意图;图19是表示一种传统的虚拟圆形控制的示意图;图20是表示一种对于虚拟圆形控制的传统的位置解调方法的示意图;图21是表示虚拟圆形控制中的伺服信号轨道和虚拟圆形轨道之间的关系的示意图;图22是表示面积解调型位置信号的位置信号的示意图;图23是表示执行速度偏移校正的传统的位置解调部件的示意图;图24是表示图22中的2相伺服信号的波形图;图25是表示速度比较快时的2相伺服信号的波形图;和图26是表示通过图25中的2相伺服信号得到的解调位置的波形图。
具体实施例方式
现在将按照如下顺序对本发明的各个实施例进行说明盘存储装置、位置解调系统的第一实施例、位置解调系统的第二实施例、实例、伺服磁道写入方法以及其它实施例,不过本发明并不仅限于下面的实施例。
图1是表示本发明的一个实施例的盘存储装置的结构的示意图、图2是表示图1中的磁盘的位置信号的分布的示意图、图3是图1和图2中的磁盘的位置信号的结构的示意图、图4是表示图3中的位置信号的读取波形的波形图以及图5是图1中的磁头位置控制的示意图。
图1示出了用作盘存储装置的磁盘装置。如图1所示,磁盘10被设置在主轴电机18的旋转轴19上,该磁盘10是磁性存储介质。主轴电机18使磁盘10旋转。致动器(VCM)14在末端有一个磁头12,并在磁盘10的径向上移动磁头12。
致动器14由音圈电机(VCM)构成,它以旋转轴为中心进行旋转。在图1中,两个磁盘10被安装在磁盘装置上,并且四个磁头12由同一致动器14同时驱动。
磁头12由读元件和写元件构成。通过在滑块上层叠包括磁阻元件的读元件,并且在其上层叠包括写线圈的写元件而构成磁头12。
位置检测电路20将由磁头12读取的位置信号(模拟信号)转换成数字信号。读/写(R/W)电路22对磁头12的读/写进行控制。主轴电机(SPM)驱动电路24对主轴电机18进行驱动。音圈电机(VCM)驱动电路26为音圈电机(VCM)14提供电流,并驱动VCM 14。
微控制器(MCU)28从得自位置检测电路20的数字位置信号中检测(解调)出当前位置,并根据所检测到的当前位置和目标位置之间的误差计算VCM驱动指令值。换句话说,微控制器28执行位置解调和伺服控制。只读存储器(ROM)30存储着MCU 28的控制程序。硬盘控制器(HDC)32根据伺服信号的扇区号在磁道中判断一个位置并记录和再现数据。随机存取存储器(RAM)34临时存储所读取的数据和写入的数据。HDC 32通过接口IF与主机进行通信,例如通过ATA和SCSI。总线36将这些组件连接起来。
如图2所示,伺服信号(位置信号)从外环到内环以等间距分布在圆周方向上。每条磁道由多个扇区构成,并且图2中的实线表示伺服信号的记录位置。如图3所示,位置信号由伺服标记Servo Mark、磁道号GrayCode、索引Index以及偏移信息PosA、PosB、PosC、PosD组成。
图4是表示由磁头12对图3中的位置信号进行读取时的信号波形图。利用图4中所示的信号波形的磁道号Gray Code和偏移信息PosA、PosB、PosC以及PosD,可以检测到磁头在径向上的位置。而且,根据索引信号Index,可以得到磁头在圆周方向上的位置。例如,当检测到索引信号时,扇区号被设为零,它在每次检测到伺服信号时将被递增,以得到磁道的每个扇区的扇区号。
这一伺服信号的扇区号成为进行数据记录或再现时的基准。每磁道有一个索引信号。可以产生扇区号以代替索引信号。
图5表示致动器的搜索控制的一个例子,这是由图1中的MCU 28执行的。通过图1中的位置检测电路20,MCU 28确定致动器的位置,进行伺服计算,并向VCM 14提供适当的电流。图5表示从搜索开始的,用于将磁头12从某一个磁道位置移动到目标磁道位置的控制中的致动器14的电流、致动器(磁头)的速度以及致动器(磁头)的位置的变化。
换句话说,对于搜索控制,磁头12可以经过粗控制、稳定控制以及跟随控制(following control)的转换被移动到目标位置上。粗控制主要是速度控制,而稳定控制和跟随控制主要是位置控制。并且对于这两种情况,都必须检测磁头的当前位置。
为了确定这样的位置,将伺服信号预先记录在磁盘上,如图2所示。换句话说,如图3所示,记录表示伺服信号的起始位置的伺服标记、表示磁道号的格雷码、索引信号以及同样表示偏移的PosA-PosD。这些信号由磁头进行读取,位置检测电路20将这些伺服信号转换成数字值,而MCU 28对位置进行解调并控制致动器14,如图6所示及后面的说明。
图6是表示本发明的一个实施例的位置解调系统的框图、图7是说明其操作过程的波形图、图8是表示它的虚拟圆形轨道表62的图表。图6中的位置解调系统由图1中的MCU 28执行。MCU 28利用图6中的解调位置作为当前位置执行公知的伺服计算(例如观察器控制(observer control)),并计算VCM 14的控制量。
在图6中,信号解调部件40从来自磁头12的位置信号中分离出磁道号和偏移信号(PosA-PosD)(见图22)。运算单元42和44通过下面的运算分别计算2相伺服信号PosN和PosQ。
PosN=PosA-PosB (1)
PosQ=PosC-PosD (2)乘法器48和50将PosN和PosQ乘以来自位置敏感度增益表46的位置敏感度增益。位置敏感度增益是用于利用PosN和PosQ确定位置的转换因子,并根据磁道位置而变化。表46存储着每一个区域的位置敏感度增益,以致可以根据所解调的磁道位置读出一个区域的位置敏感度增益。这个位置敏感度增益校正已经在,例如,日本专利特开平第8-195044(1996年7月30日公开)中有详细的说明。
然后对速度偏移进行校正。速度偏移校正将在下面说明。对于PosN和PosQ,对其已经进行了速度偏移校正,由选择部件52选取其中一个,从而得到Pos1。
位置解调部件68将偏移(读和写元件的位置之间的差)和位置Pos1添加到所解调的磁道号中。在虚拟圆形控制中,产生虚拟圆形轨道表62。虚拟圆形轨道随盘10上的扇区同步产生,而其相位和振幅依装置和磁头而不同。这一位置轨道是根据下面的公式产生的位置轨道=S[磁头]×sin(ωt)+C[磁头]×cos(ωt) (3)这里,ω是盘的旋转角频率。用于每个磁头的因子S和C的值存储在表62中。图8是表示虚拟圆形轨道表62的图表,其中存储着每个磁头0、1、…、n的正弦波因子S和余弦波因子C。
这个表62是以磁头号Head进行索引的,可以导出相应的正弦波因子和余弦波因子C,并且可以通过使用上面给出的位置轨道公式产生位置轨道。位置解调部件68从上面所提到的磁道号、偏移和位置Pos1的相加值中减去位置轨道,并输出解调位置。
现在将对上面所提到的速度偏移校正进行说明。在上面所提到的现有技术中,致动器的速度V是磁头跟随的圆形轨道基准的速度。因此,在磁头不跟随伺服信号的圆形轨道并且位于虚拟圆形轨道上时的情况下,如本发明中的情况一样,产生了用于定位的虚拟圆形轨道和盘上的伺服信号之间的相对速度量的误差ΔV。
如图7所示,用于将磁头定位在虚拟圆形轨道上的已校正轨道呈现为正弦波,所以相对速度为余弦波,这可以容易地计算出来。实际上,如上面所提到的,虚拟圆形轨道是与盘10上的扇区同步产生的,并且其相位和振幅依装置和磁头而不同。这样一个位置轨道是由公式位置轨道=S[磁头]×sin(ωt)+C[磁头]×cos(ωt)产生的,其中ω是盘的旋转角频率。并且对于每个磁头都已经存储了正弦波因子S和余弦波因子C的值。依靠这种情况,对于在盘径向上的每个位置,可以给出因子S和C的值的表。
通过对位置轨道进行微分,得到此时虚拟圆形轨道的速度(相对速度)。换句话说,轨道的速度={S[磁头]×cos(ωt)-C[磁头]×sin(ωt)}/ω(4)因此,使用微分器64由位置轨道计算轨道的速度,微分器对位置轨道进行微分。由于位置轨道随采样变化,所以这一速度也随采样变化。因此,PosN和PosQ的速度偏移也随采样变化。即使磁头被定位在虚拟圆形轨道上而没有“0”误差,对于每次采样也必须对速度偏移进行计算并连续地添加。
当进行搜索控制时,致动器的速度增加得甚至更多。在搜索控制过程中,不断地对速度V进行计算,以致当前的速度和下一次采样时的速度总是已知的。所以,通过加法器66,将由于搜索控制所造成的速度V和上面所提到的由于轨道所造成的速度ΔV相加,并被用于PosN和PosQ的速度偏移校正。
为了进行PosN和PosQ的速度偏移校正,通过加法器54和56,把速度偏移的值与PosN和PosQ相加。这个速度偏移值是由下面的公式确定的。速度所乘的因子可以根据图3中所示的伺服信号的说明被唯一地确定(从Gray Code的0比特位到PosA与PosB的边界和PosC与PosD的边界),并且被分别看作放大器58和60的增益。
PosN偏移=速度×(格雷码GrayCode的0比特位与PosA和PosB的边界之间的时间)/抽样周期(5)PosQ偏移=速度×(格雷码GrayCode的0比特位与PosC和PosD的边界之间的时间)/抽样周期(6)
换句话说,因子是根据Gray Code(磁道号)的0比特位与PosA和PosB的边界,或与PosC和PosD的边界之间的时间确定的。
通过这种方法,在虚拟圆形控制中,相对速度可以根据已知的正弦波位置轨道(位置是正弦→速度是余弦)被计算出来,所以在跟踪期间的PosN和PosQ的偏移可以唯一地确定。
如图6所示,位置轨道和速度轨道都可以根据虚拟圆形轨道的表62的输出而得到。把速度ΔV与致动器14相对于虚拟圆形轨道的相对速度V相加,并且把结果输入给PosN和PosQ的解调部件。这里,速度ΔV和相对速度V被合并和计算为一个位置。
图9是表示本发明的位置解调系统的第二实施例的框图、图10是表示其NQ合并解调操作过程的波形图、图11是表示其NQ合并解调操作的加权函数的波形图、图12是表示基于加权函数的NQ合并解调操作的示意图。
图9中的位置解调系统也由图1中的MCU 28执行。MCU 28使用图9中的解调位置作为当前位置进行公知的伺服运算(例如观察器控制),并且计算VCM 14的控制量。
在图9中,与图6中所介绍的附图标记相同的附图标记表示相同的元件,并且信号解调部件40从来自磁头12的位置信号中将磁道号和偏移信号(PosA-PosD)分离出来(见图22)。计算单元42和44分别计算2相伺服信号PosN和PosQ。
并且乘法器48和50将PosN和PosQ与得自位置敏感度增益表46的位置敏感度增益相乘。然后对速度偏移进行校正。速度偏移校正与图6中的第一实施例相同。换句话说,在虚拟圆形控制中,设置了虚拟圆形轨道表62。虚拟圆形轨道与盘10上的扇区同步产生,并且其相位和振幅依装置和磁头变化。为了产生这样的位置轨道,位置轨道由位置轨道=S[磁头]×sin(ωt)+C[磁头]×cos(ωt)
给出,并且对于每个磁头,因子S和C的值被存储在表62中。该表62由磁头号Head索引,可以导出相应的正弦波因子S和余弦波因子C,并且利用上述位置轨道的公式产生位置轨道。
通过对位置轨道的微分得到了此时的虚拟圆形轨道的速度。换句话说,轨道的速度(相对速度)={S[磁头]×cos(ωt)-C[磁头]×sin(ωt)}/ω因此使用微分器64由位置轨道计算轨道的速度ΔV,其中微分器对位置轨道进行微分,并且通过加法器66把由搜索控制引起的速度V与上面所提到的由轨道引起的速度ΔV相加,并用于PosN和PosQ的速度偏移校正。
将由加法器54和56进行相加的速度偏移值通过下述公式进行确定。速度所乘的因子可以根据图3中所示的伺服信号的说明被唯一地确定,并被分别设置为放大器58和60的增益。
PosN偏移=速度×(格雷码0比特位和PosA与PosB的边界之间的时间)/抽样周期PosQ偏移=速度×(格雷码0比特位和PosC与PosD的边界之间的时间)/抽样周期如图9所示,位置轨道和速度轨道都可以由虚拟圆形轨道的表62的输出来获得。把速度ΔV与致动器14对于虚拟圆形轨道的相对速度V相加。并且把上面所提到的从速度(V+ΔV)而得到的PosN偏移值和PosQ偏移值通过加法器54和56与PosN和PosQ相加,并且该结果被输入到解调部件52。
对于解调部件52,使用了利用PosN和PosQ合并解调方法的位置解调方法,该方法是本发明人在日本专利申请第2001-269871号(2001年9月6日申请)《盘装置的位置解调方法及电路》中提出的。
当选择了PosN和PosQ其中之一时,由于PosN和PosQ之间的切换,产生了阶跃差,所以NQ合并解调方法通过合并PosN和PosQ对PosN和PosQ进行解调的方式解决了由于横跨PosN和PosQ的边界所造成的阶跃差的影响。
将参照图10到12对NQ合并解调方法进行说明。图10表示由图9中的加法器42和44计算所得的位置信息PosN和PosQ。在NQ合并解调中,位置解调不是通过选择其一而是通过使用全部两者而进行的。
如图10所示,在传统的解调方法中,PosN和PosQ中绝对值较小的任一个,被选作解调位置。在NQ合并解调方法中,使用在同一块中的用于PosQ的黑体线84和用于PosN黑体线86和88对位置进行解调。
图12是当分别使用图10中的PosN和PosQ对位置进行解调时的特征曲线图,其中纵坐标是所解调的检测位置,而横坐标是实际位置。这里,在纵轴上,包含误差的位置敏感度增益以k表示,而检测(解调)位置以kx表示。如果位置敏感度增益是正确值,可以得到直线90中的线性特征检测位置,且没有如现有技术中所见的由切换PosN和PosQ所引起的阶跃差。
如果位置敏感度增益带有误差,PosN呈现直线90的特征,而PosQ呈现直线92和95的特征,以上面所提到的黑体线块为中心。因此,如果如现有技术中那样切换PosN和PosQ,当PosN跨越PosQ(-0.25)时以及当PosQ跨越PosN(+0.25)时,将产生切换阶跃差。
为了消除这一切换阶跃差,NQ合并解调方法通过合并PosN和PosQ对位置进行解调,下面将对其原理进行说明。直线90和直线92的特征由下列公式ya和yb表示,其中y为纵坐标。
ya=kx(7)yb=k(x-0.5)+0.5 (8)关于实际位置x的解调(检测)位置y具有y=x的关系是理想的,即使位置敏感度增益k的值具有误差。所以通过将两条直线90和92合并,得到了一条由虚线94所表示的没有阶跃差的直线。
据此,利用加权增益M,解调位置ya与加权增益M相乘,解调位置yb与解调增益(1-M)相乘,并且两个结果被合并。换句话说,计算下面的公式(9)。
y=Mkx+(1-M)(k(x-0.5)+0.5)=0.5(k-1)M+kx-0.5(k-1)(9)
这里为了防止位置敏感度增益k对公式(9)的影响,解调位置kx必须与实际位置x相匹配,所以利用公式(9)如下计算增益M。
x=0.5(k-1)M+kx-0.5(k-1)0.5(k-1)M=-(k-1)x+0.5(k-1)∴M=-2x+1 (10)换句话说,加权增益M必须是实际位置x的线性函数。
这里在图12中所讨论的直线92对于直线90来说位于正侧,不过,同样地,对于与直线95的关系是位于负侧的加权增益M由下述公式给出。
M=2x+1(11)并且通过确定实际位置x的绝对值,公式(10)和(11)可以综合为公式(12)。
M=-2|x|+1 (12)图11是表示这一加权函数的波形图。这里加权函数M是实际位置x的函数,所以位置敏感度增益k的影响没有包含在公式(12)中。然而,实际可以检测到的位置只是检测位置kx。位置敏感度增益k所造成的影响包括非常明确地出现在PosN和PosQ的切换边界周围的区域内的误差,那就是图12中的±0.25。在这个切换边界内,必须使用接近于M=0.5的值以得到没有阶跃差的直线94,如图12所示。
然而,在该边界,由于是y=kx而不是y=x被用于加权增益的计算,因此M不等于0.5。所以条件M<0.5被当做M=0.5加入到公式(12)中。图11表示加权函数M,其中当使用y=kx时,加权函数的下限值被认为是0.5。
再次参考图9,图11中的加权函数被存储在加权函数表70中。解调部件52对PosN和PosQ的绝对值进行比较,并根据比较结果计算Pos1和Pos2。这由下面的公式给出。
当abs(PosN)≤abs(PosQ)时,Pos1=-sgn(PosQ)*PosN+Vel*T1/Ts (13)Pos2=sgn(PosN)*(PosQ-sgn(PosQ)*0.5)+Vel*T2/Ts(14)当abs(PosN)不≤abs(PosQ)时,
Pos1=sgn(PosN)*PosQ+Vel*T2/Ts (15)Pos2=-sgn(PosQ)*(PosN-sgn(PosN)*0.5)+Vel*T1/Ts (16)Vel*T2/Ts和Vel*T1/Ts是上面所提到的速度偏移值。然后利用Pos1(=kx)参考加权函数表70,得到加权函数M和1-M。乘法器72将Pos1乘以M。而乘法器74将Pos2乘以(1-M)。
位置解调部件68将偏移(读元件和写元件之间的位置差)和所校正的位置Pos1及Pos2添加到所解调的磁道号中,减去得自虚拟圆形轨道表62的位置轨道,并输出解调位置。
现在将对一种通过C语言程序进行计算的方法进行说明。假设对于PosN的调制加入了速度偏移的增益T1/Ts,对于PosQ的调制加入了T2/Ts。如果此时的速度是Vel而PosN和PosQ的相位关系没有发生反转时的最大速度是VEL_MAX,那么以下述方式计算位置。
<pre listing-type="program-listing">PosN=Gsns*(PosA-PosB);  PosQ=Gsns*(PosC-PosD);  Track=Gray;  Position=Track;  If(abs(Vel)<=MAX_VEL){  if(abs(PosN)<=abs(PosQ)){  Pos0fs=-sgn(PosQ)*PosN+Vel*T1/Ts;  if(sgn(PosQ)*even(Track)>0.0)  Position+=sgn(PosQ)*sgn(PosN)*1.0;  Pos0fs2=sgn(PosN)*PosQ-sgn(PosQ)*0.5+Vel*T2/Ts;   }else{  Pos0fs=sgn(PosN)*PosQ PosN+Vel*T2/Ts;  Position=sgn(PosN)*even(Track)*0.5+Track;Pos0fs2=-sgn(PosQ)*(PosN-sgn(PosN)*0.5)+Vel*T1/Ts;   }   G1=M(Pos0fs);&lt;!-- SIPO &lt;DP n="16"&gt; --&gt;&lt;dp n="d16"/&gt;   G2=1-G1;   Position+=G1*Pos0fs+G2*Pos0fs2;   }</pre>这样,通过使用NQ合并解调方法,解决了由跨越PosN和PosQ的解调边界的解调所产生的阶跃差,该方法通过将PosN和PosQ乘上加权增益并将结果不断地相加以进行解调。还通过包含NQ的速度偏移校正,避免了面积解调方法的虚拟圆形控制中的位置误差恶化。
为了检验本发明的效果,现在将介绍对2.5英寸HDD所进行的一个实际的实验的例子。这个硬盘驱动器(HDD)是这样一个装置,其中盘的旋转频率是4200rpm,而盘的磁道间距是61500 TPI。图13到图16表示了实验结果。
在该装置中,伺服信号由一个外部STW装置预先记录在盘上,并且该盘随后被组装成HDD。因此从一开始就存在着偏心。在磁头跟随盘上的磁道的状态下,产生了跟随偏心所需的校正电流,并且该电流以正弦曲线方式振荡。
这里引入正弦曲线位置轨道以检查虚拟圆形控制的问题。如上面的对于原理的示意图所示,进行了正常的位置解调,并且随后正弦曲线位置轨道被减去。对状态的变化进行观察,同时改变此时位置轨道的振幅。最终的目的是减小致动器的电流直至为“0”。不过在这种情况中,有意地使致动器振荡以观察对位置解调的影响。因此电流不会变为“0”。
图13是一个比较例,其中,此时正弦曲线位置轨道具有±0磁道振幅,也就是此时没有进行虚拟圆形控制,在时轴上显示了索引信号、观测位置(位置误差信号)以及VCM电流。由于观测位置是均衡的,所以可以看到RPE(可重复性位置误差)。
图14表示除图13之外的另一个比较例,其中,此时提供一个±64磁道位置轨道作为正弦波轨道(执行了虚拟圆形控制),在时轴上显示了索引信号、观测位置(位置误差信号)以及VCM电流。定位精确度明显地降低了。这主要是因为没有进行速度偏移校正,并且也是因为跨越PosN和PosQ之间的解调边界进行了解调。
图15是在图14中的虚拟圆形控制中进行了NQ速度偏移校正和NQ合并解调时的一个例子,其中在时轴上显示了索引信号、观测位置和VCM电流。即使提供了一个±64磁道位置轨道并且进行了虚拟圆形控制,与图14中所示的上述例子相比,位置误差也明显地降低了。通过这种方法,通过与NQ合并解调一起引入NQ速度偏移校正,可以避免面积解调方法的虚拟圆形控制中的位置误差的恶化。
图16是在图15中虚拟圆形控制中的位置轨道振幅增加到±128磁道时的实例的结果。位置误差不是0,并且是振荡的。这一问题的出现是因为由于位置轨道所导致的速度太高了,并且产生了PosN与PosQ之间的相位关系反转的部分,如在上面所提到的申请(日本专利特开平第2001-256741号)中所介绍的那样。在这样的状态中,不管如何进行NQ速度偏移校正,问题都不能得到解决。
这样,在使用了面积解调型方法的虚拟圆形控制的使用中,PosN和PosQ间的相位关系没有发生反转时的临界速度决定了虚拟圆形控制的位置轨道振幅的上限。
现在将对如何使用一种可以避免PosN和PosQ的解调边界的阶跃差的影响以及PosN和PosQ的速度偏移的影响的盘装置进行说明。
第一种方法与使用常规HDD装置的方法相同。当伺服信号已经单独通过一个外部STW装置被记录在盘上时,一个或多个这样的盘被安装在HDD装置上。在这种情况下,问题在于这些盘的偏心的差异。
为解决这一差异,使用了本专利申请中所介绍的虚拟圆形控制技术,那么就可以避免磁头之间和盘之间的偏心差异的影响了。如果没有使用虚拟圆形控制,当磁头进行切换时致动器的移动距离依磁头在圆周方向上的位置而不同。通过使用本专利申请的虚拟圆形控制,可以解决这一问题。
第二种方法是使用STW本身。图17是表示本发明的伺服磁道写入方法的示意图。在一个外部STW装置中,伺服信号被记录在盘上。并且一个这样的盘10-1被安装在盘装置1上。然后多个没有记录伺服信号的盘10-1被安装在盘装置1上。
然后使用虚拟圆形控制对已经记录了伺服信号的盘面10-1进行磁头12-1的定位控制,以便不跟随偏心。并且对于所有的磁头12-1和12-2,新的伺服信号被记录在所有的盘10-1和10-2上的盘10-1的原始伺服信号之间的区域内。最后,当使用最新记录的伺服信号进行定位时,初始盘10-1的原始伺服信号就被擦除了。
这样,使用已经在外部进行了伺服信号记录的盘,可以根据这些伺服信号在所有的盘上无偏心地记录伺服信号。在此情况下,虚拟圆形控制仅用于伺服磁道写入,并且在伺服磁道写入之后,利用普通的伺服信号进行解调,而不用虚拟圆形控制,并且通过这种方法,磁头的位置得到了控制。
已经使用一种磁盘装置对盘存储装置进行了说明,不过本发明可以被应用于其它盘存储装置,例如光盘装置和磁光盘装置。在切换期间磁头的校正方法不仅限于对两个或多个盘,而是可以被应用于对一个盘的正面和反面使用的磁头之间。盘的形状也不仅限于盘状,而是可以是卡片状。
本发明已经通过实施例进行了说明,不过可以在本发明的基本特征的范围内做出多种变型,这不应当被排除在本发明的技术范围之外。
如上面所介绍的,利用虚拟圆形轨道基准的磁头速度以及虚拟圆形轨道与位置信号的相对速度二者进行对2相信号的速度偏移校正,所以即使进行了虚拟圆形轨道控制,也可以实现较高精度的磁头位置控制。因此,即使盘的磁道间距变窄和偏心磁道的数量增加了,也可以进行较高精度的虚拟圆形轨道控制,并且可以提高读/写性能。
由于通过引入一种合并解调方法解决了PosN和PosQ之间的解调边界阶跃差,因此可以实现较高精度的定位控制。
权利要求
1.一种用于在盘的虚拟圆形轨道上控制一个头的位置的头位置控制方法,包括如下步骤对由所述头读出的所述盘的位置信号进行解调;根据所述解调结果计算解调位置;从所述解调位置中减去由所述盘的偏心所导致的位置振荡;根据所述减去之后的解调位置与目标位置之间的位置误差计算控制量;和通过所述控制量对用于驱动所述头的致动器进行控制,其中所述计算步骤包括以下步骤使用一个根据所述头的所述虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的校正值,对所述解调结果进行校正并且计算所述解调位置。
2.根据权利要求1的头位置控制方法,其中所述的解调步骤包括以下步骤通过面积解调从所述位置信号中解调相位彼此不同的第一位置信息和第二位置信息。
3.根据权利要求2的头位置控制方法,其中所述的计算步骤包括以下步骤通过以预定的加权值合并所述第一位置信息和所述第二位置信息来计算所述解调位置。
4.根据权利要求2的头位置控制方法,其中所述计算步骤包括以下步骤利用根据所述头的所述虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的第一校正值来校正所述第一位置信息,并且利用根据所述头的所述虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的第二校正值来校正所述第二位置信息。
5.根据权利要求3的头位置控制方法,其中所述计算步骤包括以下步骤通过将所述第一位置信息与预定加权值M相乘、将所述第二位置信息与另一个预定加权值(1-M)相乘、并合并这些相乘结果,来计算所述解调位置。
6.根据权利要求1的头位置控制方法,还包括以下步骤通过对用于减去所述位置振荡的虚拟圆形位置轨道进行微分,来计算所述相对速度。
7.一种用于在盘的虚拟圆形轨道上控制一个头的位置的盘装置,包括用于读取盘的位置信号的头;用于驱动所述头的致动器;和控制单元,用于解调来自所述头的位置信号并控制所述致动器以驱动所述头,其中所述控制单元利用根据所述头的所述虚拟圆形轨道的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的校正值来校正所述解调结果,计算解调位置,从所述解调位置中减去由所述盘的偏心引起的位置振荡,并且根据所述减去之后的解调位置和目标位置之间的位置误差来计算所述致动器的控制量。
8.根据权利要求7的盘装置,其中所述控制单元通过面积解调从所述位置信号中解调相位彼此不同的第一位置信息和第二位置信息。
9.根据权利要求8的盘装置,其中所述控制单元通过以预定的加权值合并所述第一位置信息和所述第二位置信息来计算所述解调位置。
10.根据权利要求8的盘装置,其中所述控制单元利用根据所述头的所述虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的第一校正值来校正所述第一位置信息,并利用根据所述头的所述虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的第二校正值来校正所述第二位置信息。
11.根据权利要求8的盘装置,其中所述控制单元通过将所述第一位置信息与预定加权值M相乘、将所述第二位置信息与另一个预定加权值(1-M)相乘、并合并这些相乘结果来计算所述解调位置。
12.根据权利要求7的盘装置,其中所述控制单元具有一个用于存储要被减去的所述位置振荡的表,并通过对所述表的位置振荡进行微分来计算所述相对速度。
13.一种用于向所安装的盘写入位置信号的伺服磁道写入方法,包括以下步骤解调由一个头读出的所述盘的位置信号;根据所述解调结果计算解调位置;从所述解调位置中减去由所述盘的偏心引起的位置振荡;根据所述减去之后的解调位置和目标位置之间的位置误差来计算控制量;和控制一个致动器以驱动所述头,其中所述计算步骤包括以下步骤通过利用根据所述头的虚拟圆形轨道基准的速度以及所述虚拟圆形轨道与所述盘的位置信号的相对速度的校正值校正所述解调结果来计算所述解调位置,并且其中所述伺服磁道写入方法还包括沿着所述头的虚拟圆形轨道重写所述位置信号的步骤。
14.根据权利要求11的伺服磁道写入方法,其中所述解调步骤包括以下步骤解调所述盘的位置信号,其中所述位置信号已经在安装所述盘的装置的外部被写入。
全文摘要
一种头位置控制方法、盘装置以及伺服磁道写入方法,执行不跟随盘的偏心的虚拟圆形控制,并且即使使用了面积解调方法的伺服信号,也能实现高精度的虚拟圆形控制。该方法通过在面积解调方法中对位置信号解调进行虚拟圆形控制,并通过使用虚拟圆形轨道基准的头速度V以及虚拟圆形轨道与位置信号的相对速度ΔV进行2相伺服信号的速度偏移校正来计算解调位置。
文档编号G11B5/596GK1471084SQ0314574
公开日2004年1月28日 申请日期2003年7月2日 优先权日2002年7月3日
发明者高石和彦, 原武生 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1