方形电池外壳及其制造方法

文档序号:6842400阅读:486来源:国知局
专利名称:方形电池外壳及其制造方法
技术领域
本发明涉及一种用于锂离子充电电池等各种方形电池壳的方形电池外壳,以及涉及一种利用DI(drawing与ironing,即连续同时进行拉深与减薄拉深加工)方法制作方形电池外壳的制造方法。
背景技术
近来来,随着电子技术的进步,实现了电子机器高性能化的同时,也实现了小型化、轻量化及低电力消耗。其结果,开发出了各种民用轻便机器,并被实用化。其市场规模也正急剧扩大。作为代表的有凸轮编码器、笔记本电脑、移动电话等。这些机器仍被要求更小型轻量化及具有更长的工作时间。呼应这些要求,人们不断开发并使用以使用寿命长、且能量密度高的锂离子充电池代表的锂充电电池,作为这些机器的动力用内置电池。
锂离子充电电池在目前使用的电池中具有下述优势,即不光作为电池小型化指标的单位体积能量密度高,且作为电池轻量化指标的单位重量能量密度也大。决定电池能量密度的主要原因是构成发电原料的正极与负极的电池活性物质,但构成发电要素的电池壳的小型化及轻量化也是重要因素之一。也就是说,如果电池壳体越薄,便可容纳更多的电池活性物质,提高电池整体的体积能量密度。如果用轻材料制作电池壳,使可减轻电池整体重量,提高重量能量密度。
在上述电池动态中,特别是,外部壳体使用薄方形电池外壳的方形电池由于适用于薄型机器且空间效果高,所以受到重视。以前,作为方形电池外壳的制造方法有通过利用连续自动压力机进行10~13次深度拉深及冲压加工工序,制作横截面为近长方形的方形电池。主要采用所谓的连续自动拉深制作方法。
但是,在利用连续自动拉深制作方法制造方形电池外壳的方法中,由于要反复进行10多次的深度拉深及冲压加工工序,所以生产效率不高,例如,其生产效率为20个/分钟左右。并且,利用自动连续拉深制作方法,在提高体积能量密度与谋求高容量化的目的下使电池壳坯料变薄时,由于反复进行深度拉深使其变薄,所以由此得到的方形电池外壳存在的问题是强度不够,无法确保电池发挥性能所需耐压强度。特别是方形电池外壳的情况下,作为电池使用时,与电池内压上升时形状稳定的圆筒型电池壳相比,体积大,且变形为类似形状稳定的圆筒状电池的鼓状,从而,有可能发生电解液泄漏和损伤机器。
作为圆筒形电池壳体的制造方法,在谋求薄型化、提高体积能量密度的同时,采用可高效制作能确保所需耐压强度的电池壳的DI制作方法(参照特公平7-99686号公报)。DI制作方法系对通过压床进行深度拉深而制成的杯状半成品连续进行拉深加工及冲压加工。与连续自动拉深制作方法相比,其长处是,通过减少工序数提高了生产效率,通过减小壳侧四周壁的厚度使电池壳变轻,且随着容量的提高也提高了电池的能量密度,降低了应力腐蚀,所以被广泛地用于制造圆筒型电池的电池壳。
因此,可考虑利用上述DI制作方法制作方形电池外壳。但是,在利用DI制作方法制作圆筒形电池壳时,类似将横截面形状为圆形杯状半成品制成横截面形状为圆形的电池壳,所以,在DI制作方法中的减薄拉深工序中,将均匀地减小四周壁的厚度,所以在加工时,材料速度匀速且可顺利变形。与此相对,如果利用DI加工制作方形电池外壳,与将横截面形状为圆形的杯状半成品制成横截面形态为近长方形的电池壳不同。所以会产生下述问题,如加工时材料流速不匀速,且无法进行稳定加工,特别是面积小的短边侧板部易发生裂纹及折断,以及有些部位会变形等。
因此,以前无法利用DI方法制作方形电池外壳,方形电池外壳主要通过连续自动拉深法及铝材料的冲压成形来制作。但这两种方法生产效率均非常低,并且为确保能切实防止电池内压上升时的变形所需强度,必须采取被迫舍弃薄、轻型化的形状,所以无法提高体积能量密度以及重量能量密度。
另外,还有方形电池外壳的其他制造方法的提案(特开平6-333541号公报),即分别对方筒与底板进行成形加工,通过激光焊接将底板焊接在方筒底部。但是,利用这种制造方法,与连续自动拉深方法等相比,工序数无法减少,并且由于要进行方筒与底板的正确定位工序以及激光焊接工序等繁琐的作业,所以无法谋求提高生产效率。另外,利用此种制造方法制成的方形电池外壳,无法在通过薄型化及轻量化实现高能量密度的同时,得到电池内压上升时不变形的耐压强度。
因此,本发明正是针对上述目前存在的课题而作,本发明的目的是提供一种可同时实现高能量密度与所需耐压强度的方形电池外壳以及利用DI方法制作方形电池外壳的制造方法。
发明的揭示为实现上述目的,本发明的特征是在将发电要素装于内部、构成方形电池的横截面形状为近长方形的方形电池外壳中,横截面短边侧板部的厚度比长边侧板部的厚度厚。
如果利用这样的方形电池外壳制造方形电池,由于横截面形状为近长方形的角形电池壳的短边侧板部厚度比较厚,所以在作为电池使用时,在电池内压上升的情况下,能切实发挥宛如支柱的作用,并切实防止膨胀变形成类似形状更稳定的圆筒状电池的鼓状。因此,该方形电池外壳可切实防止发生电解液漏液及损伤机器等故障,可构成可靠性高的方形电池。并且,与短边侧板部相比,面积大的长边侧板部厚度比较薄,所以这样的方形电池外壳容积大,可充填更多的电池活性物质,制成体积能量密度高的方形电池。再有,这种方形电池外壳由于短边侧板部厚度比较厚,可解决利用DI方法制作时短边侧板部易发生裂纹及断裂等的问题,所以易于利用有各种特长的DI方法进行制作。
在上述方形电池外壳中,如果短边侧板部的厚度为A,长边侧板部的厚度为B,底板部的厚度为C,则最好B=αA(0.6<α<1.0)、A=βC(0.2<β<0.8)。通过将电池壳的各厚度A、B、C限定在上述范围内,可切实得到上述电池壳的效果。
上述方形电池外壳希望使用以铁为主体、碳含量在0.1wt%以下的冷轧用碳钢为材料。更好的是,作为材料的碳钢,至少含有0.1wt%以下的钛与铌中的一种。
在以铁为主体的金属材料中,碳含量与减薄拉深的关系方面,碳含量越少其加工性越高,如果是至少含有0.1wt%以下的钛、铌中的一种的碳钢,则其加工性更高。因此,使用这样的材料,有助于上述发明的方形电池外壳的顺利成形。
此外,上述方形电池外壳加工后的侧板部HV值最好为显示加工前以铁为主体的金属材料的维氏硬度的HV值为1.5倍。
这样与目前为确保电池壳耐压强度及封口部的强度而采用相对高硬度的镀镍钢板(维氏硬度HV值在100-120)的电池壳坯料相比,通过对杯状半成品进行减薄率设定在规定值以上的减薄拉深加工,在将加工前电池壳坯料阶段的低硬度材料制成方形电池外壳阶段,可通过加工硬化将侧板部变成高硬度。因此,可对加工性良好、HV值在80~90的低硬度材料进行加工,使其成形为杯状半成品,可进一步切实防止发生裂纹及断裂。并且,在减薄拉深加工中,特别是通过减小长边侧板部厚部谋求高容量化,通过加工硬化提高长边侧板部硬度,得到有足够耐压强度的方形电池外壳。
上述方形电池外壳的形状较好的是,组成电池时的侧板部封口部各边部分的厚度至少要比上述侧板部其他部分厚10%以上。
这样,在使用该方形电池外壳的方形电池中,由于在电池内压上升时耐压强度最弱的电池封口部周边部分的厚度比其他部分厚10%以上,可保持其密闭强度。
又,本发明的方形电池外壳的制造方法的特征是第1道工序是对冲裁成规定形状的电池壳坯料进行深拉深加工,制成横截面形状为近椭圆形的第1杯体。第2道工序是,通过对上述第1半成品杯体连续同时进行拉深加工与减薄拉深加工的DI加工,制成横截面形状为近长方形,短边侧板部厚度比长边侧板部厚度厚的方形电池外壳。
在这种方形电池外壳的制造方法中,与作为以往方形电池外壳的主要制造方法——连续自动拉深法中所需要的10多道工序相比,在第2道工序中便可制作成希望形状的方形电池外壳,所以生产效率格外高。并且,由于短边侧板部的厚度比长边侧板部的厚度厚,所以在DI加工时,可防止短边侧板部出现裂纹与断裂,稳定地制造出希望形状的方形电池外壳。
此再有,本发明的方形电池外壳的其他制造方法的特征是第1道工序是,对冲裁成规定形状的电池壳坯料进行深拉深加工,得到横截面形状为近椭圆形的第1半成品杯体。第2道工序是,对上述第1半成品杯体进行多次连续的再拉深加工,制成与上述第1半成品杯体的横截面形状相比,短径/长径比小的近椭圆形横截面形状的第2半成品杯体。第3道工序是,通过对上述第2半成品杯体连续进行拉深加工与减薄拉深加工的DI加工,制成横截面形状为近长方形,短边侧板部厚部比长边侧板部厚度厚的方形电池外壳。
利用这种方形电池外壳的制造方法,除可得到如上所述的制造方法相同的效果外,由于在DI加工前,制成与第1半成品杯体横截面形状相比,近椭圆形横截面形状短径/长径比小的第2半成品杯体,所以DI加工类似于将横截面形状从接近长方形的椭圆形变形为近长方形的加工,不会发生歪曲形状、裂纹及断裂等不合格的情况,可稳定地制造出希望形状的方形电池外壳。
在上述方形电池外壳的制造方法中,在第2道工序中至少在第1段再拉深加工中,最好使用长径仅比第1半成品杯体长径长5~20%的近椭圆形拉深加工孔的拉深模具,对上述第1半成品杯体进行拉深加工,不受长径方向尺寸的限制,仅缩短短径方向的尺寸,使其变形为短径/长径比小于上述第1半成品杯体横截面形状的近椭圆形横截面形状。
这样,至少在第2道工序的第1段再拉深加工中,横截面形状为近椭圆形的第1半成品杯体变形不受其长径方向尺寸的限制,首选仅缩短短径方向尺寸,所以加工时变形部分的材料会向长径方向延伸,拉深成短径/长径比小的近椭圆形横截面形状的杯体。因此,第1半成品杯体不会因材料的顺利拉伸而产生歪曲形状的部位,可顺利地变形加工成所需形状的杯体。
在上述各方形电池制造方法中的第1道工序中,电池壳坯料最好冲裁成近椭圆形状。
以往,在将电池壳坯料冲裁成圆板状、横截面形状为近圆形的近椭圆形第1半成品杯体成形时,经最后工序制成的方形电池外壳的短边侧板部的上方会形成大飞边部突出的歪曲形状,因此会产生需切断、消除该飞边的麻烦。与此相比,在制作电池壳坯料中的方形电池外壳时,如果选取已预先除去相当于短边侧板部上方突出飞边部的椭圆形材料,那么选取材料便可使冲裁孔比以前更接近配置,所以可减小相当于在方形电池外壳成形时要切断的飞边部分的材料消耗。
本发明的方形电池的构造是,使用通过上述各发明的方形电池外壳任一制造方法制造的方形电池外壳,将发电要素装在该方形电池外壳的内部,且用封口剂液封开口部。
上述方形电池在提高体积能量密度的同时还具有很高耐压强度。
附图的简单说明图1A-图1C为按工序顺序显示本发明实施形态有关方形电池外壳制造方法中第1道工序的剖视图。
图2为上道工序中所用压床下料模及落料冲头咬合部分的切断左剖视图。
图3为上道工序中冲裁后的电池壳坯料的平面图。
图4为经上道工序制作成的第1中间杯体的斜视图。
图5为上述实施形状中第2道工序的纵剖视图。
图6为上道工序的横剖视图。
图7为显示上道工序中所用拉深压力机的金属模与第1半成品杯体及经上道工序制成的第2半成品杯体间关系的斜视图。
图8为上述实施形态中第3道工序的横剖视图。
图9为显示经上道工序制作的方形电池外壳的部分断裂的斜视图。
图10为经上道工序制作的方形电池外壳的纵剖视图。
图11为使用上述方形电池外壳构成的方形电池的纵剖视图。
实施发明的最佳形态下面参照


本发明的最佳实施形态。根据一个实施形态的方形电池外壳的制造方法,在图1的横截面示意图所示的第1道工序中,通过作为材料的电池壳坯料8的冲裁加工及深拉加工,形成图4所示横截面形状为近圆形的大致椭圆形状的第1半成品杯体。在图5的横截面示意图及图6的横截面示意图分别所示的第2道工序中,对第1半成品杯体进行连续4段的再拉深加工,形成图7所示短径/长径比小的大致椭圆形状横截面形状的第2半成品杯体。接着,在图8的横截面示意图所示的第3道工序中通过对第2半成品杯体进行DI加工,制作成图9的部分切断斜视图所示希望的方形电池外壳3。下面依次对第1到第3道工序进行详述。
图1A-图1C显示了第1道工序中进行冲裁加工及深拉深加工的压床,固定在模座9上的拉伸模4的开口端外嵌固定有突出状态的落料模7。该落料模7的端面上,如图1A所示,供给有电池壳坯料8。作为电池壳坯料8,为确保方形电池外壳3的耐压强度及封口部的强度,在本实施形态中最好使用镀镍钢板。使用镀镍钢板的电池壳坯料8如图3所示,作为带钢材料运送到落料模7的端面上,并依次定位。
电池壳坯料8定位后,如图1B所示,分别固定在第1及第2穿孔机座10、11上的落料冲头12及拉深冲头13同时向冲模4、7侧接近移动。这样,电池壳坯料8在被落料模7及落料冲头12冲裁的过程中,电池壳坯料8的被冲裁下部分8A被临时固定夹在落料冲头12与拉深冲头4之间。
图2为落料模7与落料冲头12相互咬合部分的切断左侧视图。落料模7与落料冲头12的各刀刃部7a、12a均为大致椭圆形形状,切成圆形的部分相当于制作方形电池外壳3时的长径方向L的两侧部分,即短边侧板部3a的部分。将电池壳坯料8冲裁成椭圆形出于下述理由。
即如果将电池壳坯料8冲裁成圆板状,则经第3道工序制作成的方形电池外壳3上的短边侧板部3a上方会有巨大飞边突出的变形形状,还要切除该飞边。因此,在本实施形态中选择材料时,预先将材料下成这样的形状该材料切除了相当于在将电池壳坯料8制作成方形电池外壳3时短边侧板部3a上方突出的飞边部分。图3为下料后形成有冲裁孔8a的带钢状电池壳坯料8。从该图就可知道,可选取冲裁孔8a相互之间间距较以前更为接近的配置的材料,所以可减少相当于方形电池外壳3成形后切除的飞边部分的部位以及冲裁孔8a间的空白,降低材料损耗。
接着,从电池壳坯料8上冲裁下来的夹在落料冲头12与拉深冲头4之间的冲裁部分8A,在拉深冲头13的按压下,如图1C所示,被拉入拉深模4内部,又如图2所示,被拉深成与拉深冲头13的接近圆形的大致椭圆形截面的外形状相同的形状,加工制作成图4所示第1半成品杯体1。
在上述第1道工序的深拉深加工时,落料冲头12对电池壳坯料8的冲裁部分8A施加一定的力(即不压轧冲裁部分8A的大小的力),将其按压在拉深模4的上端面上,附加张力,起到防皱压板的作用。因此,这种压床虽然不具备深拉深加工所需防皱压板,但由于落料冲头12具有防皱压板的作用,所以可进行深拉深加工。如上所述成形的第1半成品杯体,被固定在有弹簧的制动器17上,仅拉深冲头13及落料冲头12返回图1A所示原位置,后面重复与上述相同的动作。
通过上述第1道工序得到的横截面形状近圆形的大致椭圆形的第1半成品杯体1是通过有相当于电池壳坯料8厚度的间隙且相对的拉深冲头13与拉深模4的深拉深加工而成,所以第1半成品杯体1的厚度在整体过程中相对电池壳坯料8的厚度,几乎没有变化。
接着,上述第1半成品杯体1经图5及图6使用拉深压力机的第2道工序的4段再拉深加工,制成第2半成品杯体2。该拉深压力机通过同时进行4段拉深加工制作第2半成品杯体2,所以其设有半成品搬运部18、拉深冲头19、模装置20及卸料器21等。图7为模装置20的斜视图。
上述半成品搬运部18将在第1道工序中制作的第1半成品杯体1依次送到成形部位。模装置20设有第1至第4拉深模20A~20D,这些拉深模20A-20D以与拉深冲头19轴心同心的状态直列分布。被搬运到成形部位并定位的第1半成品杯体1,在受飞轮(未图示)驱动的拉深冲头19的按压下,首先被拉深与第1及第2拉深模20A、20B各内部形状相同的形状。
在这里,第1拉深模20A的拉深加工孔20a为近椭圆形形状,如图7所示,长径E1比第1半成品杯体1的长径e1长,并且如图6所示,短径F1比半成品杯体1的短径f1略短。第2拉深模20B的拉深加工孔20b的形态为近椭圆形,如图7所示,长径E2 略短于第1拉深模孔20A的长径E1,并略长于第1半成品杯体1的长径e1。如图6所示,短径F2略短于第1拉深模20A的短径F1。
因此,第1半成品杯体1在拉深冲头19的推压下,分别通过第1及第2拉深模20A、20B的拉深加工孔20a、20b,短径f1被逐渐拉深变小,同时随着拉深而变形部分的材料向长径方向延伸,拉深成横截面形状短径/长径比小的大致椭圆形状的杯体。这样,横截面为接近圆形的大致椭圆形第1半成品杯体1不会产生因材料的移动而变形的部位,也可顺利地变形加工成横截面形状为希望的大致椭圆形的杯体。
如上所述,将第1半成品杯体1拉深加工成向长径方向延伸,如果最初就在受到长径方向与短径方向两种尺寸限制的状态下进行拉深加工,由于长径方向与短径方向的面积差,材料无法顺利移动,所以会产生变形、裂纹或断裂等不合格的情况。并且,如果突然对第1半成品杯体1进行DI加工,制作方式电池壳,由于通过DI法是将横截面形状从接近圆形的近椭圆形加工成近长方形,所以易发生断裂和裂纹。如果第1及第2拉深模20A、20B的各拉深加工孔20a、20b的长径E1、E2设定相对第1半成品杯体1的长径e1仅长5-20%内,则可顺利拉深加工成无变形的杯体,最好设定在10%。
接着,经第2拉深模20B拉深加工成首先在大致为椭圆形状的横截面的短径方向限制尺寸的杯体,在拉深冲头19的连续推压下,依次通过第3及第4拉深模20C、20D,限定了横截面在大致椭圆形状的长径方向的尺寸。即,第3拉深模20C的拉深加工孔20c设定成近椭圆形形状,长径E3比第1半成品杯体1的长径e1短,并且短径F3也略短于第2拉深模20B的拉深加工孔20b的短径F2。第4拉深模20D的拉深加工孔20d设定有长径e2及短径f2的大致椭圆形状,所述长径e2及短径f2具有与欲获得的第2半成品杯体2长径e2和短径f2相同的长度。也就是说,第4拉深模20D的拉深加工孔20d的长径e2及短径f2,相对拉深冲头19形成与电池壳坯料8厚度d相等的间隙。
这样,由于第2半成品杯体2首先相对第1半成品杯体1,在长径方向延长的同时,也进行缩短短径方向尺寸的拉深加工后,将长径方向缩短修正至规定尺寸的拉深加工后制得,所以不会产生歪曲变形部位,可将其横截面形状作成为希望的大致椭圆形。并且,第2道工序仅是对第1半成品杯体1进行再拉深加工,由于不存在减薄拉深加工,所以,第2半成品杯体2的整体厚度几乎与电池壳坯料8的厚度相同。这样制成的第2半成品杯体2通过脱料装置从机器上卸下。
最后,上述第2半成品杯体2在图8所示第3道工序中,通过拉深减薄机连续进行1段拉深加工与3段减薄加工的DI加工,得到希望形状的方形电池外壳3。该拉深减薄机由半成品搬运部22、DI冲头23、模24及脱料器27构成。模装置24上设有拉深模24A、第1至第3减薄拉深模24B-24D,这些模24A-24D与DI冲头23轴心同心直列配置。
半成品搬运部22首先将第2半成品杯体2依次搬运到成形部位。被搬运到成形部位并定位的第2半成品杯体2在受飞轮(未图示)驱动的DI冲头23的推动下,被拉深模24拉深成与DI冲头23外部形状相同的形状。通过拉深模24A后的杯体首先被整形,相比第2半成品杯体2,其长径方向与短径方向的各尺寸有若干缩小,且其杯长发生变形,得到与希望的方形电池外壳3的长方形横截面形状相近的大致椭圆形的形状,但其厚度几乎没有变化。
接着,通过拉深模24A的杯体在DI冲头23的推动下进行,通过第1减薄拉深模24B进行第1段的减薄拉深加工,其侧边部伸展、厚度变薄的同时,通过硬化加工,硬度得以提高。通过第1减薄拉深模24B的杯体在拉深冲头23的推动下继续进行,通过减薄拉深孔比第1减薄拉深模24B小的第2减薄拉深模24C,以及通过减薄拉深孔比第2减薄拉深模24C更小的第3减薄拉深模24D,依次进行第2段及第3段的减薄加工。由此,其周壁部依次伸展,厚度进一步减小,同时通过加工硬化提高硬度。通过第3减薄拉深模24D后,便可得到希望形状的电池壳坯3A。此时,由于要对作成其短径/长径比小的大致椭圆形形状,即,接近长方形的近椭圆形横截面形状的第2半成品杯体2进行DI加工,所以合理地进行DI加工便可稳定制作成希望形状的方形电池外壳。
电池壳坯3A通过脱料器从拉深减薄机上取下后,其侧上部(挂耳部)由于经过多重加工会有一些变形,所以切断该部便是图9所示的方形电池外壳3。
如上所述,在利用本实施形态的方形电池外壳制造方法中,与作为以前方形电池外壳的主要制造方法的连续自动拉深法所需要的10多道工序相比,在第1-第3道工序的3道工序使可制作出希望形状的方形电池外壳3,所以生产效率格外高。另外,在第1道工序中电池壳坯料8的选料中,通过将电池壳坯料8冲裁成近椭圆形也可降低材料损耗。除此之外,还有如下效果。
即,上述方形电池外壳3短边侧板部3a的厚度A比长边侧板部3b的厚度B厚。此种方形电池外壳3的形状,由于DI冲头23与各模24A-24D间设定间隙,所以容易制作,其构造设定也简单,因此,省略了图示。也就是说,在第1段及第2段的减薄拉深加工中,将第1及第2减薄拉深模24B、24C的减薄拉深孔制成这样的形状,使相当于长边侧板部3b部分的减薄拉深加工量比相当于短边侧板部3a的部分大。最后,根据第3减薄拉深模24D的减薄拉深加工孔的形状,决定方形电池外壳3长边侧板部3b的厚度B相对短边侧板部3a的厚度A的比例。
较好的是,短边侧板部3a的厚度A与长边侧板部3b的厚度B的具体的数值比例如下述(1)公式所设定。
B=αA(0.6<α<1.0)……(1)又,由于相当于底板部3c的部位在第3道工序中仅由DI冲头23按压,几乎不进行减薄拉深加工,所以底板部3c的厚度C相对电池壳坯料8的厚度略小。因此,上述方形电池外壳3的短边侧板部3a的厚度A与底板部3c的厚度C的比例最好如下述公式(2)设定。
A=βC(0.2<β<0.8)……(2)这里,在方形电池外壳3的整体厚度形成比较大的情况下,最好将(1)公式的α设定为0.1,也就说,长边侧板部3b的厚度B与短边侧板部3a的厚度A相同。届时,省略第2道工序,通过对第1道工序中得到的半成品杯体1进行第3道工序的DI加工,即使一并制作所要方形电池外壳3,也可得到希望形状的方形电池外壳3。
将上述方形电池外壳3作为外部壳体,构成方形电池的情况下,方形电池外壳3的长径方向两侧的短边侧板部3a的厚度A比较厚,并且为具有更大的厚度C的底板部3c作一体支承。由此,在在作为电池使用、电池内压上升时,可以发挥宛如支柱的作用,切实防止长边侧板部3b变形膨胀成类似形状更稳定的圆筒形的鼓状。这样,上述方形电池可切实防止发生电解液泄漏及损伤机器等故障,具有很高的可靠性。
又,由于面积大的长边侧板部3b厚度B比较薄,所以同样大小的方形电池外壳3的内容积变大,可充填更多的电池活性物质,体积能量密度有所提高。而且,长边侧板部3b在第1与第2道工序及第3道拉深工序之前,厚度d与电池壳坯料8几乎相同,仅通过第3道DI加工中减薄拉深加工,比电池壳坯料8的厚度d薄,所以通过减薄拉深加工时的加工硬化,其硬度有飞跃的提高,即使被减薄加工成比较薄的厚度B,也具有足够的强度。换言之,方形电池外壳3的长边侧板部3b通过减薄拉深工序的加工硬化提高了硬度,同时,厚度变薄,所以与通过连续自动拉制作的方形电池外壳相比,其厚度可以作得格外薄,同时相对作为母材的电池壳坯料8,强度高近2倍。因此,上述方形电池外壳3可用于构成兼具因高容量化而带来的高能量密度及可切实防止电池内上升时变形的耐压强度的方形电池。
以下,说明上述实施形态方形电池外壳3的制造方法的实施具体例。首先,显示实施第1道工序时的实测值,作为电池壳坯料8使用图1A所示厚度d为0.4mm的镀镍钢板,将该电池壳坯料8按图3所示尺寸冲裁成近椭圆形,在用图1的压床对电池壳坯料8的冲裁部分进行深拉深加工成直径φ45mm、切掉部分的尺寸为41mm。制作成图4所示的近椭圆形的横截面的第1半成品杯体1,其长径e1为27.44mm、短径f1为22.6mm,高h1为16.1mm。第1半成品杯体1整体厚度几乎与电池壳坯料8相同,通过从电池壳坯料8上冲裁下近椭圆形部分,这样短径方向部分的上方几乎不会出现飞边。
又,显示实施第2道工序时的实测值时,使用如图5及图6所示的拉深压力机对第1半成品杯体1进行再拉深加工,可制作图7所示的第2半成品杯体2,其近椭圆形的横截面长径e2为26.1mm、短径f2为12.48mm,高度h2为23.5hmm。此时,第1拉深模20A的拉深加工孔20a形状长径为20.00mm,短径为19.00mm。经第2道工序得到的第2半成品杯体2完全不存在变形部位及断裂或裂纹等,相对第1半成品杯体1,其杯长长,且可得到与希望的方形电池外壳3相近的长圆形横截面的杯形。
最后,通过实施第3道工序,可得到下述形状的方形电池外壳3。即短边侧板部3a的外部尺寸f3为4.5mm,厚度A为0.17mm。并且长边侧板部3b的外部尺寸e3为22mm,厚度B为0.15mm。高度h3为45mm。短边侧板部3a与长边侧板部3b的角及底部3c与侧板部3a、3b间的角的R为半径0.1mm。这样,可通过以往不可能实施的DI法顺利地制作希望形状的方形电池外壳3。并且,得到的方形电池外壳3全然不见变形部位等形状不合格情况。
接着,补充说明一下上述实施形态。作为电池壳坯料8的原料,如上所述,使用以铁为主体、至少在电池内面侧镀有镍层的镀镍钢板。但对以铁为主体的金属材料进行研究后,感到要想顺利实施上述实施形态的制造方法,需使用铁系原料的碳含量在0.1wt%以下的冷轧用碳钢,最好使用至少含一种0.1wt%的钛(Ti)或铌(Nb)的碳钢。关于碳含量与减薄加工性的关系,目前已确认,碳含量越少其加工性越高。如果是至少含0.1wt%以下的钛(Ti)、铌(Nb)的碳钢,其加工性更高。又,作为电池壳坯料8的金属原料,不仅限于上述镀镍钢板,也可使用耐腐蚀性及耐压力性方面卓越的不锈钢或铝、铝合金、或镁合金等。特别是,铝或铝合金由于重量轻,可以实现电池的轻量化,并且由于耐生锈,所以不必进行电镀。作为铝合金,最好为JIS规格3000系列。
在上述第3道工序中,最好进行减薄拉深加工,使显示方形电池外壳3的侧板部3a、3b的维氏硬度的HV值达到作为电池壳坯料8使用的原材料的、以铁为主体的金属材料的HV值的1.5倍以上。这样,以前为确保电池壳的耐压强度与封口部的强度,作为电池壳原材料需使用硬度比较高的镀镍钢板(维氏硬度HV值为100-120),与此相比,在本实施形态中,通过减薄率在规定值以上的减薄拉深加工,可使在电池壳坯料8阶段HV值为80-90为低硬度镀镍钢板,在制作方形电池外壳3的阶段,通过加工硬化,侧板部3a、3b的硬度HV值达到200左右,实现高硬度。
为此,在第1及第2道工序中,可对加工性良好的HV值80-90的低硬度镀镍钢板进行深拉深加工及再拉深加工,所以可进一步切实防止发生裂纹及断裂等,同时在第3道工序的减薄拉深加工中,特别是通过长边侧板部3b的薄型化,谋求高容量化,同时也可提高长边侧板部3b的硬度,得到具有足够耐压强度的方形电池外壳3。
并且,更好的是,如图10纵剖视图所示的方形电池外壳3的结构。该方形电池外壳3与图9的方形电池外壳3不同之处仅在于在短边侧板部3a及长边侧板部3b开口部周围,即,在制作方形电池时的封口部周围,其厚度形成较其他部分厚约10%的厚壁部28。由于可通过几乎与上述实施形态相同的制造方法制作,所以与图9的标记相同。壁厚部28可通过第3道工序中拉深减薄机的DI冲头23使规定部位凹陷而得到。使用方形电池外壳3的方形电池,在电池内压上升时,由于耐压强度最弱的电池封口部周围的厚度比其他部分厚10%以上,所以可保持密封强度。
图11为使用上述方形电池外壳3构成的方形锂离子充电电池的纵剖视图。该方形电池的方形电池外壳3的开口上缘部嵌有封口板29,通过激光焊将方形电池外壳3与封口板29的嵌合部30焊接在一起,并且封口实现液密与气密密封。封口板29为中央部向内侧凹陷形状,并且有通孔,该通孔31由于涂抹有由吹制沥青与矿物油的混合物构成的密封剂,具有耐电解液性,并与绝缘的合成树脂制密封垫片32合为一体。
上述密封垫片32上固定安装着有负极端子的镍或镀镍钢制的铆钉33。该铆钉33插入密封垫片32的中央部,在其下部与垫片34嵌合状态下,通过对其尖端部进行铆接加工加以固定,并与密封垫片32对接,保持高的液密及气密性。本实施形态的密封垫片32通过注射成形与封口板29形成为一体。兼具负极端子的铆钉33与封口板29的长边侧外边间设有近椭圆形的排气孔37,该排气孔37通过压接于封口板29的里面而一体化的铝箔38封闭,形成防爆用安全阀。
方形电池外壳3上的发电要素充填部装有电极群40。该电极群40通过由微孔制聚乙烯薄膜的隔离物卷绕各1个正极(未图示)及负极(未图示),最外边用隔离物39包覆,其横截面为长圆形。该电极群40的正极导板41通过激光束焊接与封口板29的里面连接,负极导板42通过电阻焊连接在垫片34上。
封口板29上设有注液孔43,从该注液孔43注入规定量的有机电解液。之后,用盖体44盖住注液孔43,用激光焊接将盖体44与封口板29焊接在一起,从而制成方形电池。有关电极群40卷绕成横截面为长圆形状的情况已进行了说明,但,方形电池外壳3也可象一般方形电池外壳一样,适用于通过隔离片叠放多个正极及负极的电极群的方形电池。
方形电池由于是使用通过上述实施形态的制造方法制作的方形电池外壳3构成,所以方形电池外壳3的长边侧板部3b的厚度比短边侧板部3a的厚度要薄,因此,可容纳更多的电极群40,谋求高容量化。此外,由于方形电池外壳3的短边侧板部3a厚以及方形电池外壳3的侧板部3a、3b通过加工硬化实现了高硬度,可切实防止电池内压上升时电池变形膨胀成鼓状,所以不会发生电解液泄漏及损伤机器等故障,具有很高的可靠性。
产业上的可利用性如上所述,根据本发明的方形电池外壳,由于其横截面形状为长方形的短边侧板部的厚度厚于长边侧板部厚度,所以如果利用这种方形电池外壳制作电池,在发挥电池性能时电池内压上升的情况下,由于方形电池外壳长径方向两侧的短边侧板部比较厚,所以可切实起到支柱的作用,切实防止变形膨胀成类似长边侧板部形状更稳定的圆筒状电池的鼓状。因此,这种方形电池可切实防止发生电解液泄漏及损伤机器等故障,具有很高的可靠性。
又,由于面积大的长边侧板部厚度比较薄,所以这样方形电池外壳的容积也变大,可制作能充填更多的电池活性物质,体积能量密度更高的方形电池,因此,在提供了实现高能量密度与所需耐压强度的方形电池外壳方面具有实用性。
权利要求
1.一种方形电池外壳,所述方形电池外壳系用于构成其内部收置发电要素(40),构成方形电池、其横截面形状大致为长方形的方形电池外壳,其特征在于,在所述方形电池外壳(3)中,上述近长方形的短边侧板部(3a)的形成厚度比长边侧板部(3b)的厚度要厚。
2.如权利要求1所述的方形电池外壳,其特征在于,设短边侧板部(3a)的厚度为A、长边侧板部(3b)的厚度为B,底板部(3c)的厚度为C,则B=αA(0.6<α<1.0)A=βC(0.2<β<0.8)
3.如权利要求1所述的方形电池外壳,其特征在于,所述电池壳体用以铁为主体的碳含量在0.1wt%以下的冷轧用碳钢为原材料制成。
4.如权利要求3所述的方形电池外壳,其特征是,作为原材料的碳钢至少含一种0.1wt%以下的钛或铌。
5.如权利要求1至4之任一项所述的方形电池外壳,其特征在于,加工后的侧板部的HV值为加工前的以铁为主体的金属材料的维氏硬度HV值的1.5倍以上。
6.如权利要求1所述的方形电池外壳,其特征是,所述壳体用铝或铝合金为原材料制成。
7.如权利要求项1至4及6中之任一项所述的方形电池外壳,其特征在于,侧板部(3a、3b)构成电池时的封口部周围部分的厚度至少要比上述侧板部(3a、3b)的其他部分厚10%以上。
8.一种方形电池,其特征在于,所述电池系在权利要求1至4或6之任一项所述的方形电池外壳内(3)内装有发电要素(40)。
9.一种方形电池外壳的制造方法,其特征在于,所述制造方法包括下述工序对冲裁成规定形状的电池壳坯料(8)进行深拉深加工,使其成形为横截面为近椭圆形的第1半成品杯体(1)的第1道工序;连续同时对上述第1半成品杯体(1)进行拉深加工与减薄拉深加工,制成横截面形状为近长方形,短边侧板部(3a)的厚度厚于长边侧板部(3b)的方形电池外壳(3)的第2道工序。
10.一种方形电池外壳的制造方法,其特征是,所述制造方法包括下述工序对冲裁成规定形状的电池壳坯料(8)进行深拉深加工,使其成形为横截面为近椭圆形的第1半成品杯体(1)的第1道工序;连续同时对上述第1半成品杯体(1)进行拉深加工与减薄拉深加工,制成近椭圆形横截面形状短径/长径比小于上述第1半成品杯体(1)的横截面形状的第2半成品杯体(2)的第2道工序;连续同时对上述第2半成品杯体(2)进行拉深加工和减薄拉深加工,制成横截面形状为近长方形,短边侧板部(3a)的厚度厚于长边侧板部(3b)的方形电池外壳(3)的第3道工序。
11.如权利要求项10所述的方形电池外壳的制造方法,其特征在于,在第2道工序的至少第1段的再拉深加工中,使用拉深模(20A、20B),其设有长径仅比第1半成品杯体(1)的长径长5~20%的近椭圆形拉深加工孔(20a、20b),对上述第1半成品杯体(1)进行拉深加工,不限制其长径方向的尺寸,而缩短其短径方向的尺寸,使其变形为短径/长径比小于上述第1半成品杯体(1)的横截面形状的近椭圆形的横截面形状。
12.如权利要求9至11之任一项所述的方形电池外壳的制造方法,其特征在于,在第1道工序中,将电池壳坯料(8)冲裁成近椭圆形。
13.一种方形电池,其特征在于,使用如权利要求项9~11之任一项所述的制造方法制造的方形电池外壳(3),将发电要素(40)装在该方形电池外壳(3)内,并用封口剂(29)密封开口部,防止液体流出。
全文摘要
方形电池外壳(3)的制造方法,其特征是:将方形电池外壳(3)长方形横截面的短边侧板部(3a)的厚度(A)作成比长边侧板部(3b)的厚度(B)厚。制造方形电池外壳(3)时,对冲裁成规定形状的电池壳坯料(8)进行深拉深加工,得到横截面形状为大致椭圆形的第1半成品杯体(1),对上述第1半成品杯体(1)进行多次连续的再拉深加工,制成与上述第1半成品杯体的横截面形状相比,短径/长径比较小的近椭圆形横截面形状的第2半成品杯体(2),通过对上述第2半成品杯体(2)进行的DI加工,制成横截面形状为近长方形,短边侧板部(3a)厚度(A)比长边侧板部(3b)的厚度(B)厚的方形电池外壳。
文档编号H01M2/02GK1349666SQ00807232
公开日2002年5月15日 申请日期2000年5月1日 优先权日1999年5月7日
发明者森克彦, 北冈进, 山下祥治, 田中成和 申请人:松下电器产业株式会社, 一巧精工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1