制造加速度检测元件的方法

文档序号:6864998阅读:371来源:国知局
专利名称:制造加速度检测元件的方法
技术领域
本发明涉及一种在冲击检测中使用的加速度检测元件的安装配置结构。
现有一种由两端固定型的双压电晶片型元件构成的加速度检测元件。例如在

图11中以简化方式表示的常规元件的实例中,加速度传感器20a包括一作为加速度检测元件的双晶片型元件1和包含该元件的绝缘壳体2,在将该壳体2定位之后将其以固定的方式安装到例如为电路板的传感器安装端面3上。
双晶片型元件1呈矩形片状,由叠层的两个压电陶瓷片6结合构成。在每个陶瓷片的顶面和底面形成有信号电极4和中间电极5。经过中间电极5对置粘接的两压电陶瓷片6中的每一个沿着厚度方向产生极化,与另一个压电陶瓷片6的极化传感方向相反。在图11中的虚线箭头标志标注该极化方向。在这个实例中的各个信号电极4沿着各个压电陶瓷片6的纵向形成。并延伸到彼此不同的端部部分。
同时,绝缘壳体2是由一对紧固框形件7和一对壳体盖板8构成。该紧固框形件7在平面上呈沟道状,仅在厚度方向沿双晶片形元件1的纵向将两个端部部分压紧,一对壳体盖板8将由双晶片型元件1和与该元件横向相对配置的两个固紧框形件7形成的敞开端面封闭。包含在绝缘壳体2中的双晶片型元件1的各个信号电极4连接到在绝缘的壳体2的外部端面上形成的彼此不同的外部电极上(未表示)。
将构成绝缘壳体2的紧固框形件7或壳体盖板8的外表面定位并安装在传感器安装端面3上,借此安装加速度传感器。双晶片型元件1的各个信号电极4经过在绝缘壳体2上形成的外部电极连接到在传感器安装端面3上的连线图形线路(未表示)上。这些连线图形线路连接到信号处理电路(未表示)上。信号处理电路通过处理由加速度传感器输出的电信号检测由冲击引起的加速度。
图12表示这种加速度检测元件的另一个常规实例,其与上述常规实例的区别在于极化的形式。图12表示的电极及元件比在图11中的加速度检测元件的相应部分更详细。
加速度传感器20b包括的压电陶瓷元件主体23呈矩形片状,在其主表面上形成信号输出电极21,以及在其之中内置与信号输出电极21相平行的内部电极22。每一个信号输出电极21是由三个表面电极24和一个连接电极25构成的,三个表面电极24沿着压电陶瓷元件主体23的纵向分别在中央位置和二端部位置分布,连接电极25将各表面电极24共同覆盖起来。
一个加速度元件由信号输出电极21和压电陶瓷元件主体23构成。
信号输出电极21中的一个侧电极(在图12中为顶侧)延伸直到压电陶瓷元件主体23的一个外端面(在图12中为左侧)上。同时,信号输出电极21中的另一个侧电极(在图12中为底侧)延伸直到另一外端面上(在图12中为右侧)。此外,构成两压电陶瓷元件主体23且隔着内部电极22彼此对置的陶瓷元件区26和27沿纵向分别分成三个部分,即中央部分26a和27a以及经过边界形成的两侧端部部分26b和27b,在该边界处由于加速度操作引起的应力是变化的。通过利用内部电极22和各表面电极24,在沿厚度且彼此不同的传感方向上,中央部分26a和27a以及端部部分26b和27b的两侧产生极化。
其中,用H和I指示构成陶瓷元件区26的中央部分26a和端部部分26b的极化方向,它们彼不同,用J和K指示构成陶瓷元件区27的中央部分27a和端部部分27b彼此不同的极化方向。此外,在这种情况下,例如中央部分26a和27a的极化方向指示H和J是向内指示的,其中这两个方向指示是彼此相同的;端部部分26b和27b的极化方向指示I和K是向外指示的,其中两个方向指示是彼此相背的。
加速度传感器20b沿纵向的两端以固定方式由一对在侧向视图上呈沟道状的固紧框形件28支承。在压电陶瓷元件主体23的主表面上形成的各个信号输出电极21连接到压电陶瓷元件主体23和紧固框形件28的不同外端面上形成的外部输出电极29和30上。
由于如下的原因,使用具有这种结构的加速度传感器20b。当在包括由信号输出电极21、压电陶瓷元件主体23构成的加速度检测元件的加速度传感器20b上产生加速度时,构成加速度陶瓷元件主体23的陶瓷元件区26和27中的中央部分26a和27a以及端部部分26b和27b由于惯性力的作用产生变形。在这种情况下,各个部分26a、27a、26b和27b承受由该变形引起的拉伸应力和压缩应力。在各个部分26a、27a、26b和27b,产生电荷的数量由于各个指示方向(从H到K)的极化作用的叠加作用而增加,加速度传感器20b承受的应力和总的电荷产生量得到增加,这就提高了加速度传感器的检测灵敏度。
同时,当沿与压电陶瓷片6或23的表面垂直的方向即沿厚度方向产生加速度时,在加速度传感器20a或20b中输出最大电信号。此外,当沿相反的方向即沿与之成180°的方向产生加速度时,输出具有相同绝对值但具有相反的正/负号的最大电信号。即产生加速度的方向为形成最大灵敏度的方向,即为称为加速度传感器主轴的最大灵敏度方向P。当沿与在加速度传感器20a或20b中的压电陶瓷片6或23的表面相切的方向产生加速度时,没有电信号输出,因而检测灵敏度为零。同时,当沿介于垂直方向和切线方向之间的一个方向产生加速度时,检测灵敏度具有的量值对应于由最大灵敏度方向P和产生加速度的方向形成的夹角θ,即该方向的灵敏度的量值为最大灵敏度S与Cosθ的乘积。
当将具有上述常规结构的加速度传感器20a装到如图11所示的传感器安装端面3上时,最大灵敏度方向P或者平行或者垂直于传感器安装端面3。如图11所示,将二维正交座标轴(平面座标轴)X和Y置于传感器安装端面3上,并设定三维坐标轴(空间坐标轴)X、Y和Z以传感器安装端面3作为X-Y平面,使得在其中,把与双晶片型压电元件1结合的绝缘壳体2的其中一个壳体盖板8安装在传感器安装端面3上,以及这样设定。以便在其中加速度传感器20a的纵向配置的最大灵敏度方向P就是传感器安装端面3上的Y轴的方向,那么沿X轴或Z轴的加速度即在X-Z平面中的任一方向上产生的加速度就不能被检测到。
此外,尽管没有说明,当将绝缘壳体2的紧固框形件7的其中之一装在传感器安装端面3上时,其中设定正交的坐标轴X和Y以及使加速度传感器20a的最大灵敏度方向P为与传感器安装端面3垂直的Z轴的方向,在由X轴和Y轴构成的X-Y平面中的任一方向的加速度不能被检测到。因此,要检测沿相互正交的坐标轴X、Y和Z的各自方向产生的加速度,需要在传感器安装端面3上安装三个加速度传感器,它们的最大灵敏度方向P分别为X轴、Y轴、Z轴的方向,这就增加了加速度传感器元件的数量和安装空间,使得费用提高,使处理由三个加速度传感器输出电信号的信号处理电路复杂。
此外,当将图12所示的加速度传感器20b安装到传感器安装端面3上取代加速度传感器20a时,自然会产生同样的问题。
为了避免这种不便,已经提出一种加速度检测元件,通过使加速度检测元件的最大灵敏度方向从传感器安装端面向上倾斜,使该元件能够检测沿正交的X、Y和Z轴的三个方向产生的加速度。尽管没有说明,这种加速度检测元件已公开在未经审查的日本专利公开文件133974/93号上,其中呈矩形片状的加速度检测元件的最大灵敏度方向被倾斜,与传感器安装端面成45°,以及加速度检测元件中的一边线进一步倾斜,从元件安装基底的一条边线倾斜成45°。当使用在加速度传感器中具有这种结构的加速度检测元件时,某种程度上,沿X轴、Y轴和Z轴(在下文中这三个方向与图11中所示一致)的三个方向产生的加速度可以利用单一的元件来进行检测。
然而,即使沿三个正交的坐标轴X、Y、Z的三个方向产生的加速度可以被检测,沿所有方向的加速度仍不能被检测。不可能检测在与最大灵敏度方向正交的平面中产生的加速度。再者,尽管在上述结构中采用使最大灵敏度方向与Z轴自然倾斜45°,在这种情况下,X轴和Y轴的方向与最大灵敏度方向实际上成60°倾斜,因此,沿X轴、Y轴和Z轴的检测灵敏度实际上是不相同的。
考虑克服这种不便而提出本发明,本发明的目的是提供加速度检测元件的安装装置,利用尽可能少数量的检测元件能够检测宽方向范围的加速度,并且对在沿正交的坐标轴各方向产生的加速度具有基本相同的灵敏度。
为了实现该目的,根据本发明的一种制造加速度检测元件的方法,包含的步骤是制备两个呈矩形片状且由压电陶瓷制的半成品片;沿第一个半成品片的第一表面的纵向将导电糊敷在中央位置和端部位置,借此形成各自的内部电极图形结构;将第二个半成品片的第一面层叠在第一半成品片的第一面上,在该第一半成品片上已经形成内部电极图形结构;通过烘焙处理进行烘焙,以便同时形成内部电极和压电陶瓷元件主体;在压电陶瓷元件主体的第二主表面上敷以导电糊之后,通过烘焙处理形成信号输出电极;以及通过利用各信号输出电极和各内部电极,使压电陶瓷元件主体的中央部分和端部部分产生极化。
此外,为了实现该目的,根据本发明的另一种制造加速度检测元件的方法,包含的步骤是制备和烘焙两个呈矩形片状的压电陶瓷片;沿着各个压电陶瓷片的第一面的纵向将导电糊敷到中央位置和端部位置,借此形成各自的内部电极;在将导电糊敷在各个压电陶瓷片的第二面形成信号输出电极图形结构之后,通过烘焙处理形成内部电极和信号输出电极;通过利用各自的信号输出电极和各自的内部电极使各个压电陶瓷片的中央部分和端部部分形成极化;以及粘接其上已形成内部电极的压电陶瓷片的各第二面,借此形成压电陶瓷元件主体。
图1是表示根据第一实施例的加速度检测元件结构的局部切去的透视图;图2是表示第一实施例的加速度检测元件的安装结构的解释性视图;图3是表示第一实施例的安装结构的工作状况的功能方块图;图4是表示根据第二实施例的加速度检测元件的安装结构的局部切去的透视图;图5是表示第二实施例的加速度检测元件的安装结构的解释性视图;图6是表示第二实施例的安装结构的工作状况的功能方块图;图7是根据第三实施例的加速度检测元件的局部切开的透视图;图8(a)、8(b)和8(c)是表示在第三实施例中的制造方法的前级步骤的说明性断面图;图9(a)和9(b)是表示在第三实施例中的制造方法的后级步骤的说明性断面图;图10(a)、10(b)和10(c)表示在第三实施例中的制造方法的前级步骤变换实例的说明性断面图;图11是表示根据常规实例的加速度检测元件结构的局部切去的透视图12是表示根据另一个常规实施例的压电元件的结构的局部切开的透视图。
实施例1参照附图对本发明的实施例1进行解释。
图1是表示加速度传感器的局部切去的透视图,它是根据第一实施例的加速度检测元件的局部安装结构,图2是表示该加速度检测元件的总体安装结构的解释性视图,以及图3是表示第一实施例的安装结构的工作状况的功能方块图。此外,包括加速度检测元件的加速度传感器的结构基本上与在常规实例中的结构相同。因此,与在图11中所示相同的图1和图2中的部分或元件用相同的标注表示,对它们的详细解释省略了。
如图1所示,在第一实施例中的加速度传感器A或B由用作加速度检测元件的两端固定型双晶片型元件1和包含双晶片型元件1的绝缘壳体2构成。将加速度传感器A和B安装到例如为电路板的传感器安装端面3上。在这一实例中的双晶片型元件1安放和定位在绝缘壳体2中,其中的状态为最大灵敏度方向P与传感器安装端面3成倾斜关系。将最大灵敏度方向P设定为向上与传感器安装端面3成一倾斜角度,为40°或40°以上和50°或50°以下,在下文例如为45°。
在第一实施例的双晶片型元件1中,一对压电陶瓷片6呈矩形片状,在每个陶瓷片的顶面和底面上形成信号电极4和中间电极5,将这一对陶瓷片对置并粘接在一起,它们的端部部分按与厚度方向成45°倾斜角的相应倾斜面切去。经过中间电极5粘接的各个压电陶瓷片6沿厚度方向以彼此不同的传感方向被极化,并且各个信号电极4沿与常规实例相同的各自的压电陶瓷片6的纵向延伸到互不相同的端部部分。此外,在这个实例中的绝缘壳体2由像在常规实例中一样的紧固框形件7和壳体盖板8构成。并且双晶片型元件1的各个信号电极4连接到在绝缘壳体2的彼此不同的外端面上形成的外部电极(未表示)上。
同时,由图2所示,加速度检测元件的安装结构具有两个加速度传感器A和B,它们与分别沿正交的坐标轴X和Y的方向相同的方向安装在传感器安装端面3上。此外,由图3所示,该安装结构连接到第一和第二比较器电路X1和X2上,这二个比较器电路实现比较器的功能,对由电子元件A、B分别输出的电信号VA和VB进行比较处理,一个逻辑电路X3对由第一和第二比较器电路X1和X2分别输出的比较器信号VS1和VS2实现或逻辑运算处理。比较器电路X1和X2以及逻辑电路X3集成在一信号处理电路(未表示)中。
通过将构成绝缘壳体2的壳体盖板8的外表面定位和固定在传感器安装端面3上来安装加速度传感器A和B。双晶片型元件1的各个信号电极4经过在绝缘壳体2上的外部电极(未表示)利用焊接等方式连接到已经形成在传感器安装端面3上的连线图形线路(未表示)上。用作加速度检测元件和包含在加速度传感器A中的双晶片型元件1的最大灵敏度方向P处在向上倾斜即从Y轴到Z轴取45°角的方向上。另用作加速度检测元件并包含在加速度传感器B中的双晶片型的元件1的最大灵敏度方向P处在向上倾斜即从X轴到Z轴倾斜的方向上。
下面,参照图2和图3将解释在这一实施例中的加速度检测元件的安装结构的工作状况。在如下的解释中,加速度检测元件(加速度传感器A和B)的最大灵敏度为S(mv/G),其中G是重力加速度,以及用于检测冲击的处在某些量值或其以上的阈值指定为S1和S2。
首先,假设一种情况,其中使按图2所示的定位关系配置的两个加速度传感器A和B的安装结构,沿正交的座标轴X的正方向产生1G的加速度。那么,沿与Y轴方向相同的方向配置的加速度传感器A的检测灵敏度为0,而沿与X轴方向相同的方向配置的加速度传感器B的检测灵敏度由最大灵敏度S与Cos45°的乘积来表示。因此,在这种情况下由加速度传感器A输出的电信号VA为0(mv),由加速度传感器B输出的电信号VB为Cos45°×1(mv)。在仅输入电信号VB的第二比较器电路2中,利用作为阈值的预定值S2进行比较器运算处理。即当VB>S2时,比较器信号VS2=1以及当VB≤S2时,比较器信号VS2=0。由第二比较器电路X2输出的比较器信号VS2送到逻辑电路X3。
此外,当沿正交的Y坐标轴的正方向产生1G的加速度时,沿与Y轴方向相同的方向配置的加速度传感器A的检测灵敏度由最大灵敏度S与Cos45°的乘积表示,而沿与X轴方向相同的方向配置的加速度传感器B的检测灵敏度为0。相应地,在这种情况下,由加速度传感器A输出的电信号VA由S×Cos45°×1(mv)来表示,由加速度传感器B输出的电信号VB为0(mv)。因此,在仅输入来自加速度传感器A的电信号VA的第一比较器电路X1中,利用作为阈值的预定值S1进行比较器运算处理。即当VA>S1时,比较器信号VS1=1,当VA≤S1时,比较器信号VS1=0。在此之后,由第一比较器电路X1输出的比较器信号VS1送到逻辑电路X3。
同时,当沿正交的坐标轴Z的正方向产生1G的加速度时,加速度传感器A和B的两个检测灵敏度由最大灵敏度S与Cos45°的乘积表示,由加速度传感器A和B输出的信号VA和VB由S×Cos45°×1(mv)表示。此外,在仅输入来自加速度传感器A的电信号VA的第一比较器电路X1中,利用作为阈值的S1进行比较器运算处理,而在仅输入来自加速度传感器B的电信号VB的第二比较器电路X2中,利用作为阈值的S2进行比较器运算处理。在此之后,由第一和第二比较器电路X1和2输出的比较器信号VS1和VS2送到逻辑电路X3。+此外,在输入来自比较器电路X1和X2的比较器信号VS1和VS2的其中两个或其中一个逻辑电路X3中,根据比较器信号VS1和VS2进行或逻辑运算处理,即进行假如VS1=1或VS2=1时产生逻辑电路信号VL=1的或逻辑运算处理。在此之后,将逻辑电路信号VL输出到外侧。
如上面解释的,当采用这一实施例中的加速度检测元件的安装结构时,对于正交的坐标轴X、Y和Z的其中任一个方向,各检测灵敏度具有基本相同的范围,即形成的检测灵敏度为最大灵敏度S与Cos45°的乘积。此外,在这一实施例中的安装结构中,检测灵敏度为0的方向仅为与加速度A和B的最大灵敏度方向P相正交的方向,因此形成一个可以在宽方向范围检测加速度的优点。
顺便说,尽管在这一实施例的安装结构中,分别包含在加速传感器A和B中的双晶片型元件1的最大灵敏度方向P由传感器安装端面3倾斜为45°的倾斜角。然而,已由本发明的发明人确认,该倾斜角并不限于45°,而是实际上可以在40°或40°以上及50°或50°以下的范围内。在40°倾斜角的情况下,Cos40°与Cos45°之比即Cos40°/Cos45°=1.083…。在50°倾斜角θ的情况下,Cos50°与Cos45°的比即Cos50°/Cos45°=0.909……。因此,该比值基本上处在在45°倾斜角的情况下的数值的±10%的范围内。因此,很明显,沿正交的坐村轴X、Y和Z中的任一方向上可以产生与在这一实施例中基本相同的检测灵敏度。
实施例2图4是表示一个加速度传感器的局部切去的透视图,它是在第二实施例中的加速度检测元件的部分安装结构,图5是表示加速度检测元件的总体安装结构的解释性视图,图6是表示第二实施例的安装配置结构的工作状况的功能方块图。此外,由于包括加速度检测元件的加速度传感器的结构本身与在常规实例和第一实施例中所述基本相同,因而在图4和图5中与图11和图1相同的部分或元件,附加相同的标注并且对它们的详细解释将被省略。
如图4所示,与第二实施例相对应的每个加速度传感器分别由双端固定型双晶片型元件1和包含该元件的绝缘壳体2构成。将这些加速度传感器安装到例如电路板的传感器安装端面3上。在这一实例中的双晶片型元件1安放和定位在绝缘壳体2中,所处状态为与传感器安装端面3成倾斜关系,以及将最大灵敏度方向P设定成使其与传感器安装端面3形成向上倾斜角θ,其范围为20°及20°以上和30°及30°以下,例如为25°。
在用作第二实施例的加速度检测元件的双晶片型元件1中,一对压电陶瓷片6都呈矩形片状,在每一个陶瓷片的顶面和底面上形成信号电极4和中间电极5,两陶瓷片对置并粘接,并且它们的边缘部分被沿与厚度方向成相应倾斜角θ为25°的倾斜面切去。此外,经过中间电极5粘接的各个压电陶瓷片6在厚度方向上按彼此相反的传感方向形成极化,各自的信号电极4沿着与常规实例相同的各个压电陶瓷片6的纵向延伸到彼此不同的端部部分。此外,在这一实例中的绝缘壳体2像常规实例中一样由紧固框形件7和壳体盖板8构成。将双晶片型元件1的各信号电极4连接到在绝缘壳体2的不同外端面上形成的外部电极(未表示)上。
如图5和图6所示,在第二实施例中的加速度检测元件的安装配置结构连接到两个加速度传感器A’和B’上,这两个传感器沿与正交的坐标轴X和Y方向相同的方向安装到同一传感器安装端面3上,还连接到计算装置X4再连接到比较电路X5上,计算装置X4用于计算分别由加速度传感器A’和B’输出的电信号的绝对值的和(|VA’|+|VB’|)。实现上述计算的计算装置X4的结构是公知的,对它们的详细解释将省略。
将构成绝缘壳体2的壳体盖板8的外表面定位和固定,借此将各个加速度传感器A’和B’安装固定在传感器安装端面3上。将双晶片型元件1的各个信号电极4经过在绝缘壳体2上形成的外部电极(未表示)利用焊接等方式连接到在传感器安装端面3形成的各自连线图形线路(未表示)上。在这一实例中,包含在加速度传感器A’中的双晶片型元件1的最大灵敏度方向P向上倾斜,由Y轴向Z轴倾斜25°,而包含在加速度传感器B’中的双晶片型元件1的最大灵敏度方向P向上倾斜,由X轴向Z轴倾斜25°。
下面参照图5和图6详细介绍在第二实施例中加速度检测元件的安装配置结构的工作状况。在如下的介绍中,加速度检测元件(加速度传感器A’和B’)的最大灵敏度为S’(mv/G),其中G是重力加速度。
下面,假设一种情况,其中使由按图9所示的位置关系分布的两个加速度传感器A’和B’构成的安装结构沿正交的座标轴X的正方向产生1G的加速度。那么,沿与Y轴方向同方向安装的加速度传感器A’的检测灵敏度由最大灵敏度S’与Cos90°的乘积表示,沿与X轴方向同方向安装的加速度传感器B’的检测灵敏度由最大灵敏度S’与Cos25°的乘积表示。由加速度传感器A’输出的电信号VA’由S’×Cos90°×1(mv)表示,由加速度传感器B’输出的电信号VB’由S’×Cos25°×1(mv)来表示。在计算装置X4中,计算由加速度传感器A’和B’分别输出的电信号A’和B’的绝对值的和(|A’|+|B’|)即,|S’×Cos90°|+|S’×Cos25°|=S’×0.91(mv)作为合成信号VAB’。将根据这一程序已经计算的合成信号VAB’输出到比较电路X5。在比较器电路5中,利用作为阈值的预定值S0进行比较器运算处理。在比较器电路X5中,当VAB’>S0时,比较器信号VS’=1,当VAB’<S0时,比较器信号VS’=0。在此之后,将比较器信号VS’输出到外部。此外,尽管上面介绍是针对这样一种状况,即其中沿正交的坐标轴X的正方向产生1GR加速度,但同样适用于这样一种状况,即其中沿正交的坐标轴Y的正方向产生1G的加速度,计算出S’×0.91(mv)作为合成信号VAB’。
此外,在使用图5所示的安装结构沿正交的坐标轴Z的正方向产生1GR加速度的情况下,进行如下的运算处理。沿与Z轴方向相同方向的加速度传感器A’和B’的检测灵敏度由最大灵敏度S’与Cos65°的乘积来表示,即由S’与Cos(90°-25°)的乘积表示,这是由于加速度传感器A’和B’与传感器安装端面3所成倾斜角为25°。因此,在这种情况下,分别由加速度传感器A’和B’输出的电信号两者都用S’×Cos65°×1(mv)来表示。在计算装置X4中,计算分别由加速度传感器A’和B’输出的电信号VA’和VB’的绝对值的和,即|S’×Cos65°|+|S’×Cos65°|=S’×0.85(mv)作为合成信号VAB。
在第二实施例中的加速度检测元件的安装结构中,沿正交的坐标轴X、Y和Z轴的任一方向,具有基本上相同的检测灵敏度。此外,在第二实施例的安装配置结构中,检测灵敏度为0的方向是分别与加速度传感器A’和B’的最大灵敏度方向P正交的方向,因此提供的优点是可以在宽方向范围内检测加速度。
顺便说,根据第二实施例,在沿X轴和Y轴方向产生加速度情况下的合成信号VAB’是S’×0.91(mv),以及在沿Z轴方向产生加速度情况下的合成信号VAB’是S’×0.85(mv)。由于从方便制造的观点出发,在加速度传感器A’和B’中的加速度检测元件(双晶片型元件1)与传感器安装端面3形成的倾斜角θ设定为25°,故引起该差别。通过该倾斜角θ设定为26.565…°,在计算中得到沿X轴、Y轴和Z轴中任一方向的完全相同的检测灵敏度。
已经由本发明的发明人进行的调查研究所证实,当各双晶片型元件1的最大灵敏度方向P与传感器安装端3形成的倾斜角在0°到90°之间变化时,且分别包含两个加速度传感器A’和B’的双晶片型元件1沿着与正交的坐标轴X和Y的方向相同的方向在传感器安装端面3上分布,将由加速度传感器A’和B’输出的电信号VA’和VB’的绝对值的和(|VA’|+|VB’|)的变化表示在表1中。
在表1中通过计算由加速度传感器A’和B’输出的电信号VA’和VB’的绝对值的和清楚地表明,仅在这样一种情况下,即其中各个加速度传感器A’和B’的最大灵敏度方向P与传感器安装端面3所成倾斜角在从20°到30°的范围时,在相互正交的三个轴的方向上的检测灵敏度才基本相同。
表1
实施例3下面解释本发明的第三实施例。第三实施例公开了适用于第一和第二实施例的加速度检测元件的结构和制造方法。
图7是表示移去壳体盖板状态下的加速度传感器的部分剖开的透视图,包括了根据第三实施例的加速度检测元件,图8(a)到8(c)为表示了在加速度检测元件的制造方法的前级步骤的说明性断面图,图9(a)和9(b)为表示了上述制造方法的后级步骤的说明性的断面图,以及图10(a)到10(c)为在上述制造方法的前级步骤中的改进实例的说明性断面图。
包括一个加速度检测元件的加速度检测元件C由双晶片结构构成。它能实现与常规实例中相同的功能。如图7所示,传感器包括呈矩形片状且具有预定厚度的压电陶瓷元件主体32,例如用对半成品压电陶瓷制的片进行焙烧的方法制成的压电陶瓷元件主体32。在每个压电陶瓷元件主体32的主表面上形成单层结构的信号输出电极33。在一侧上的信号输出电极33(在图7中为顶侧)延伸到压电陶瓷元件主体32的一侧外缘表面(在图7中为左侧)。同时,在另一侧上的信号输出电极33(在图7中为底侧)延伸到压电陶瓷元件主体32的另一侧外缘表面(在图7中为右侧)。
在各压电陶瓷元件主体32的内部部分处,内置沿纵向分别在中央位置和端部位置分布的三个内部电极34使其与信号输出电极相平行。通过隔着三个内部电极34彼此对置且构成压电陶瓷元件主体32的陶瓷元件区35和36,与内部电极34相似,沿压电陶瓷元件主体32的纵向分为3个部分即中央部分35a和36a以及端部部分35b和36b。此外,在陶瓷元件区35和36中的各个中央部分35a和36a以及端部部分35b和36b沿厚度方向像在常规实例中一样,沿相互不同的传感方向形成极化。
加速度检测元件由压电陶瓷元件主体32,信号输出电极33和内部电极34组成。
通过利用信号输出电极33和内部电极34形成陶瓷元件区35和36的极化。这里,构成陶瓷元件区35的中央部分35a和端部部分35b产生沿传感方向H和I的极化。构成陶瓷元区36的中央部分36a和端部部分36b产生沿传感方向J和K的极化。此外,沿加速度传感器C纵向的两个端部边缘由在侧向视图上呈沟道状的一对紧固框形件37以固定方式支承。将形成在压电陶瓷元件主体32的主表面上的信号输出电极33连接到形成在二压电陶瓷元件主体32的相互不同的外端面和紧固框形件37上的各自外部输出电极38和39上。
接着,参照在图8(a)到8(c)以及图9(a)和图9(b)中表示步骤的说明性的断面图,解释如在图7中所示的包括加速度检测元件的加速度传感器C的制造过程。此外,在这些视图中,利用虚线将与每个加速度传感元件和加速度传感元件C相对应的范围和形状分隔开来。
首先,如图8(a)所示,制备呈矩形片状且尺寸和形状与构成加速度检测元件的多个压电陶瓷元件主体32的尺寸和形状相对应的半成品片,即制备由压电陶瓷制的和最终要变为陶瓷元件区35和36的两个半成品片。另外,利用丝网印刷法或类似方法在一个半成品片40的一个表面上(在图8(a)中为底部的一个)敷上银、银-钯或类似物的导电糊,即敷在沿纵向与每个压电陶瓷元件主体32相对应的一个端面上的每个中央位置和每个端部位置上,在接近100℃的温度下干燥导电糊,借此形成彼此分开分布的内部电极图形结构41.
如图8(b)所示,在半成品片的另一侧面,即未形成内部电极图形结构41的半成品片40的侧面层叠到已经形成各自内部电极图形结构41的半成品片40的端面上,将该组件在接近100℃的温度下进行烘焙。然后,通过烘焙将呈层叠状态的两个半成品片40粘接在一起。借此制备一个整体的压电陶瓷基体42。进而,与烘焙处理一起同时进行对夹在两个半成品片40之间的内部电极图形结构41的烘部,形成彼此分开分布的各个内部电极34接着,如在图8(c)中所示,将导电糊分别敷在压电陶瓷基体42的主表面上,通过在接近100℃的温度下,干燥该敷糊的基本42形成信号输出电极图形结构43,并将该组件在接近800℃的温度下烘焙,借此形成各自的信号输出电极33。在此之后,通过在信号输出电极33和内部电极34之间施加直流电场,使构成压电陶瓷元件主体32的陶瓷元件区35和36的中央部分35a和36a以及端部部分35b和35b形成极化。此外,各个部分35a、36a、35b和36b的极化产生如图7所示的从H到K的极化传感方向。
在此之后,如图9(a)所示,制备各紧固框形件基体45,其中在内表面上的每个预定位置处形成每一个都具有预定宽度的凹槽44,并且通过将各自的紧固框形件基体45糊到已经形成信号输出电极33的压电陶瓷基体42上而形成一整体。另外,在各个虚线处将压电陶瓷基体42和紧固框形件基体45切断,各虚线是分隔各个范围而确定的,每个范围具有的尺寸和形状与每个压电陶瓷元件主体32相对应。这样,就构成了图9(b)中所示的加速度传感器,即由一对紧固框形件37和包含压电陶瓷元件主体32、信号输出电极33和内部电极34的加速度检测元件构成。
然后,将外部输出电极38和39形成在加速度检测元件的各自外端面上,即形成在压电陶瓷元件主体32和紧固框形件37的外部端面上,利用框形件37才最终形成如在图7中所示的双晶片结构的加速度传感器C。进而,将各自的信号输出电极33连接到成T形的各个外部输出电极38和39上并且使其彼此导通。
顺便说,根据第三实施例的加速度传感器C的制造方法并不限于从图8(a)到8(c)所示的工艺过程,也可采用在图10(a)到图10(c)所示的工艺过程。图10(a)到10(c)表示了在制造加速度检测元件的前级步骤中的改进实例,在图10(a)到10(c)中,对于与在图8(a)到8(c)中的各元件和各部分共同的对应部分附加相同的标注。
如在图10(a)中所示,在这一改进实例中,首先制备先前已经经过烘焙的呈矩形片状的压电陶瓷片,即其尺寸和形状与构成加速度传感器的多个压电陶瓷元件主体32相对应的两个压电陶瓷片47。在各个压电陶瓷片47的表面上,即在每个与单个压电陶瓷元件主体32相对应的表面上沿纵向分布的中央位置和端部位置处敷以导电糊并进行干燥,借此形成彼此分开分布的各个内部电极图形结构41。
在此之后,如图10(b)所示,将导电糊敷到各个压电陶瓷片47的另一个面上,借此形成信号输出电极图形结构43,将内部电极图形结构41和信号输出电极图形结构43同时进行烘焙,通过烘焙形成各个信号输出电极33和各个内部电极34。通过在各个压电陶瓷片47中的各个信号输出电极33和内部电极34之间施加直流电场,使沿各个压电陶瓷片47的纵向分布的中央部分47a和端部部分47b产生极化。各个压电陶瓷片47最终变成陶瓷元件区35和36,以及在这种作业中在陶瓷元件区35和36中的中央部分35a和36a以及端部部分35b和36b被极化。
此外,如图10(c)所示,将其上已经形成各个内部电极34的压电陶瓷片47的表面利用热固性粘接剂(未表示)进行粘接,并将该组件加热,通过加热使各压电陶瓷片47结合成为压电陶瓷基体42。根据在上述工艺过程中已经形成的压电陶瓷基体42具有如图8(c)中所示的相同结构。在此之后,对整体的压电陶瓷基体42进行如在图9(a)和9(b)中所示制造方法的后级步骤,借此最终形成如图7所示的具有双晶片结构的加速度传感器C。
根据在第三实施例中的加速度检测元件和制造方法,在将内部电极分开之后,进行极化处理。因此,在分开先前形成的表面电极之后,不需要进行极化处理,以及在极化处理之后,也不需要通过形成连接电极来构成信号输出电极。
此外,由于能够自然地形成第三实施例中的加速度传感器C,使得由压电陶瓷元件主体32、信号输出电极33和内部电极34构成的加速度检测元件像在第一和第二实施例中所用的加速度传感器一样,与传感器安装端面形成倾斜角。
如上面解释的,根据本发明的加速度检测元件的安装结构,通过利用两个加速度检测元件能够在具有基本相同的检测灵敏度的情况下检测沿相互正交的三个轴的方向上产生的加速度,并可以检测宽方向范围内的加速度。因而,本发明产生的效果是不仅简化了安装配置结构而且降低了成本。
此外,根据本发明的加速度检测元件和制造方法,在压电陶瓷元件主体的内侧部分配置分开分布的内部电极并且利用内部电极使在陶瓷元件区中的各个部分产生极化。因此,在压电陶瓷元件主体的主表面上先前形成分开的表面电极之后不需要进行极化处理,以及在极化之后,不需要通过形成连接电极来构成具有两层结构的信号输出电极。因此,本发明产生一种效果,在构成两层结构的信号输出电极时不会引起各种不便,可以节省制造加速度检测元件的时间和劳动量。
权利要求
1.一种制造加速度检测元件的方法,包含的步骤是制备两个呈矩形片状且由压电陶瓷制的半成品片;沿第一个半成品片的第一表面的纵向将导电糊敷在中央位置和端部位置,借此形成各自的内部电极图形结构;将第二个半成品片的第一面层叠在第一半成品片的第一面上,在该第一半成品片上已经形成内部电极图形结构;通过烘焙处理进行烘焙,以便同时形成内部电极和压电陶瓷元件主体;在压电陶瓷元件主体的第二主表面上敷以导电糊之后,通过烘焙处理形成信号输出电极;以及通过利用各信号输出电极和各内部电极,使压电陶瓷元件主体的中央部分和端部部分产生极化。
2.一种制造加速度传感元件的方法,包含的步骤是制备和烘焙两个呈矩形片状的压电陶瓷片;沿着各个压电陶瓷片的第一面的纵向将导电糊敷到中央位置和端部位置,借此形成各自的内部电极;在将导电糊敷在各个压电陶瓷片的第二面形成信号输出电极图形结构之后,通过烘焙处理形成内部电极和信号输出电极;通过利用各自的信号输出电极和各自的内部电极使各个压电陶瓷片的中央部分和端部部分形成极化;以及粘接其上已形成内部电极的压电陶瓷片的各第二面,借此形成压电陶瓷元件主体。
全文摘要
一种制造加速度检测元件的方法,包含的步骤是:制备两个呈矩形片状且由压电陶瓷制的半成品片;沿第一个半成品片的第一表面的纵向将导电糊敷在中央位置和端部位置,借此形成各自的内部电极图形结构;将第二个半成品片的第一面层叠在第一半成品片的第一面上,在该第一半成品片上已经形成内部电极图形结构;通过烘焙处理进行烘焙,以便同时形成内部电极和压电陶瓷元件主体;在压电陶瓷元件主体的第二主表面上敷以导电糊之后,通过烘焙处理形成信号输出电极;以及,通过利用各信号输出电极和各内部电极,使压电陶瓷元件主体的中央部分和端部部分产生极化。
文档编号H01L41/113GK1322956SQ0111973
公开日2001年11月21日 申请日期1995年12月12日 优先权日1994年12月12日
发明者多保田纯, 宇波俊彦, 井上二郎 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1