陶瓷零件及其制造方法

文档序号:6970101阅读:303来源:国知局
专利名称:陶瓷零件及其制造方法
技术领域
本发明涉及一种以将半导体IC及芯片零件等搭载在一起且把它们相互配线的陶瓷多层基板为代表的陶瓷零件及其制造方法。
陶瓷多层基板的一般方法是由以下的工序组成。
(1) 陶瓷材料的调配、混合工序。
(2) 陶瓷基板的成型工序。
(3) 导体膏的制作工序。
(4) 由基板层及导体层所组成的复合层压体的烧成工序。
在上述的烧成工序中,在陶瓷多层基板上会由于烧结而产生收缩。由烧结而产生的收缩,因使用的基板材料,基板组成、粉体的批量等的不同而有所不同。这样在多层基板的制作中就会产生诸多问题。
重要的问题之一就是收缩误差。在陶瓷多层基板的制作工序中,先进行内层配线的烧成之后再形成最上层的配线。因此,若基板材料的收缩误差大,则由于和最上层配线图案有尺寸误差而不能完成与内层电极的连接。为了避免这种情况,必须在最上层电极部上形成面积大于所需面积的凸台而预先允许收缩误差,因此不适于需要高密度配线的电路上使用。
作为解决对策,可以采用针对收缩误差准备几个用于最上层配线的丝网版来克服基板收缩率的方法,但是这个方法必须准备多个网线板,是不够经济的,而如果使用同时进行最上层配线的形成与内层配线的烧成的同时烧成法就不需要大的凸台,但又存在其他的问题。也就是说,因为基板本身的收缩误差是始终存在的,那么就会在最后的部件搭载时的浆状软钎料印刷工序中,由于收缩误差而无法在必要部分进行印刷。
另外,在特许公报第2785544号中公开了按照需要层压多张在由低温烧结玻璃陶瓷混合粉体所组成的基板上形成电极图案的结构,并在这个层压体的两面或者是单面上夹入层压由在所述玻璃陶瓷混合粉体的烧成温度下不会烧结的无机组合物所组成的热收缩抑制基板(以下称的热收缩抑制板),等烧成所述层压体后,再除去热收缩抑制层的方法。其效果是,能够制作出基板材料的烧成多发生在厚度方向上而平面方向的收缩被抑制的基板,可以解决上述的问题。虽然采用上述公报所记载的方法能够制作在平面方向很难产生收缩的基板,但还存在一些问题。那就是由于基板收缩多发生在厚度方向,在烧成后的基板内部电极周边上会产生裂纹等缺陷。
导致这个问题的主要原因可以认为是在烧成过程中,在导体膏(paste)和基板层压体之间的烧结时间或者是热收缩特性的偏差上。因为在基板层压体和导体膏之间的烧结收缩特性有很大的偏差,就会在已烧成的基板和电极之间产生过大的应力和应变,从而产生所述裂纹等的缺陷。
如果是通常的烧成方法,在烧成过程中,若在三个方向上发生收缩而产生的裂纹较小,则可以在烧成过程中进行修复,但在上述公报所记载的方法中,因为在烧成过程中在平面方向上不产生收缩,那么一旦产生裂纹等的缺陷就很难修复。一旦在基板上产生这种裂纹等的缺陷,就会降低基板的可靠性。
本发明中要解决上述以往制造方法中的问题点,其目的是提供一种高可靠性、高尺寸精度的陶瓷零件,在用热收缩抑制板夹住玻璃陶瓷层压体进行烧成的高尺寸精度烧成工艺中,不使电气特性受很大的影响,且可以抑制在烧成后的基板的内部电极周围上所产生的裂纹等缺陷。
为了完成这一目的,本发明的陶瓷零件的制造方法包括在玻璃陶瓷基板上印刷具有与所述玻璃陶瓷基板相同的烧结速度的导体膏的导体印刷工序、和层压多个所述玻璃陶瓷基板形成层压体的层压工序、在所述层压体的单面或双面上进一步层压以无机物为主要成份的热收缩抑制基板而制成复合层压体的复合层压工序、从所述复合层压体上燃烧除去有机物的脱除粘合剂的工序、调整所述玻璃陶瓷基板和导体膏的烧结特性后烧结所述除去有机物后的复合层压体的烧成工序、以及除去所述热收缩抑制基板中的无机物的工序等,并能够制造高尺寸精度、高可靠性的陶瓷零件。
图2是说明导体层附近的缺陷产生部位的截面图。
图中,10 热收缩抑制基板20 玻璃陶瓷基板 30 导体层11 陶瓷多层基板 12 内部电极 13 裂纹等缺陷首先说明玻璃陶瓷混合材料的制作方法。本次所用的玻璃陶瓷混合材料是以三氧化二铝Al2O3、氧化镁MgO及氧化钐Sm2O3的混合物(以下称AMS混合物)和玻璃(SiO2-B2O3-CaO类玻璃粉体、软化点为780℃)为主要成份。以11∶1∶1的摩尔比例称出高纯度的Al2O3、MgO、Sm2O3的原料粉体并投入到球磨机中混合20个小时后进行干燥。将这个混合粉在130℃温度下进行2个小时的临时烧成,再将这个临时烧成的粉体在球磨机中进行20个小时的粉碎所得到的物质就是AMS粉。将这个AMS粉和SiO2-B2O3-CaO类玻璃粉体以重量比为50∶50的比例称出,再用球磨机混合20个小时后进行干燥就得到玻璃陶瓷混合材料(以下称AMSG材)。因为这个AMSG材能够在880℃~950℃的温度范围内被烧成成致密型,就可以和银电极一体同时烧成成。并且,介电常数是7.5(1MHz)。


图1所示,作为热收缩抑制基板10的材料使用的是氧化铝粉(纯度为99.9%、平均粒径为1.0μm)。
在所述AMSG材及氧化铝粉中添加了作为各种粘合剂的PVB树脂及作为增塑剂的邻苯二甲酸二丁酯树脂,以醋酸丁酯作为溶剂来制作浆料,并通过已知的刮刀片法分别制作成所需厚度的玻璃陶瓷基板(AMSG基板)20及热收缩抑制(氧化铝)基板10。
下面关于导体膏的制作方法进行说明。
相对银粉末100重量%,以任意比率混合添加剂,并相对整体膏剂加入20重量%的有机载色剂(乙基纤维素的萜品醇溶解物),将这些物料通过陶瓷3根辊进行混炼,制得导体膏。
用丝网印刷机将这个导体膏作为电阻测定用的图案(导体层30)印在所述AMSG基板20之后,层压一定张数的AMSG基板20形成图1的结构,并在其两面再层压氧化铝基板10。在该状态下进行热压接后形成层压体。热压接的条件是温度80℃、压强是500kg/cm2。将这个层压体切分成10×10mm的大小,放在氧化铝制的烧盆上,放入箱型炉中在500℃温度下进行10个小时的热处理。通过热处理使树脂成份燃烧后,在空气中以300℃/h的升温速度(不过在实施例3中升温速度是发生变化的)升温到900℃,其后在900℃保持30分钟完成烧成。
在这个烧成层压体的表面上,热收缩抑制基板10中的氧化铝残存在其上且并没有烧成,通过在醋酸丁酯中对它进行超音波清洗可以将其完全除去。
(实施例1)
在实施例1中就在导体膏中氧化钼的添加效果进行了探讨。将相对表1中银粉末(平均粒径4.0μm)的三氧化钼(平均粒径2.5μm)的添加量、和分析评价由此分别制得的陶瓷多层基板的结果示于表1中。
表1

表中、*号表示针对本发明的比较例。
还有,评价项目中[裂纹等缺陷的类型]如图2所示,对基板11进行研磨后,用光学显微镜观察基板的截面,在内部电极12附近的基板11上所产生的裂纹等缺陷13分成如下的A、B、C各个类型。(缺陷13的类型分类)

所谓基板的电阻值就是在内部导体层的侧面涂敷上银电极膏,烘干后形成端子电极,从用数字万用表来测定的直流电阻值、和电极厚度的实测值中可以计算出电极面积1mm2、电极厚度10μm时的换算电阻值。
在完全没有添加三氧化钼的试样1号、和添加少量的试样2号中,在导体层附近产生了很大的缺陷(类型C)。与此相对,在添加0.1重量%以上的三氧化钼的试样号3~7号上,观察不到裂纹等的缺陷(类型A)。可以认为通过添加三氧化钼,延缓了导体层的烧结,能够接近玻璃陶瓷层压体的烧结特性。当添加量不足0.1重量%时无法充分延缓导体膏的烧结。另一方面,如果像试样7号中那样过分添加而使添加量超过6.0重量%,则会产生导体层的板电阻值超过6mΩ而急剧增大的不良情况。
为了有效抑制缺陷的产生,并且保持低电阻值,三氧化钼的添加量优选0.1重量%~5.0重量%。
(实施例2)在实施例2中,关于构成导体膏的银粉末粒径的影响进行了探讨。如表2所示,使用平均粒径为2.2~10.2μm的银粉末,制作分别相对于导体粉末100重量%添加1.0重量%的三氧化钼的导体膏进行了评价。
表2

在银粉末粒径为3μm~8μm的试样4、8~10号中,在导体层附近没有观察到缺陷,但银粉末粒径较小仅为2.2μm的试样12号及粒径较大达10.2μm的试样11号中,在内部电极的前端产生了一些缺陷(B类型)。可以认为当银粉末粒径过小时由于银粉末表面被活性化,银粉末的烧成收缩起始温度过早,而银粉末的粒径过大时,银粉末的收缩起始温度过晚,因此导体层和玻璃层压体之间的收缩特性差增大,从而在电极附近产生了缺陷。银粉粒径不同对电阻值变化几乎没有影响。
从以上的结果可知,构成导体层的银粉末粒径的优选范围是3μm~8μm。
(实施例3)在实施例3中,对烧成处理工序中升温速度的影响进行探讨。所使用的膏是银粉末粒径为4.0μm、三氧化钼的添加量为1.0重量%的试样4号的膏。
表3

如表3所示,在平均升温速度为200℃/小时~5500℃/小时范围内的试样4及14~17号中,在导体层附近没有观察到缺陷,但在平均升温速度较慢的100℃/h的试样13号中产生了少量的缺陷(B类型)。还有在升温速度非常快的9000℃/h的试样18号上也观察到了缺陷。可以认为当延缓升温速度时,在烧成中因导体层和玻璃陶瓷层压体的收缩特性的时间差增大而会产生缺陷。如果升温速度过快,则因急剧的收缩力作用在导体层附近而产生缺陷。
从以上结果可以看出,在烧成处理工序中优选的平均升温速度是200℃/h~5500℃/h。
在上述实施例中是以三氧化钼来说明的,但使用除此以外的氧化钼也可以得到同样的效果。并且,其他的氧化钼的配合比优选换算为三氧化钼后在0.1重量%~5.0重量%。
另外,作为玻璃陶瓷材料,在本发明的实施例中使用的是(Al2O3-MgO-Sm2O3)+玻璃类材料,但不只限定为Sm2O3也可以使用特定的镧系氧化物LnxOy(Ln是从La、Ce、Nd、Sm、Eu、Gd、Tb中任选的至少一种,x、y是根据所述Ln的化合价而定的化学量论化值),因为其烧结收缩特性没有变化,可以判定能够得到同等的效果。
还有,本发明的制造方法也可适用于由所述(Al2O3-MgO-LnOx)和玻璃类材料组成的玻璃陶瓷以外的其他的玻璃陶瓷上。产业的可利用性通过使用本发明陶瓷零件的制造方法,在用热收缩抑制板夹住玻璃陶瓷层压体进行烧成的高尺寸精度的烧成工序中,能够提供一种不使电气特性受到很大损失且可以抑制在烧成后的基板内部电极周边上产生裂纹等的缺陷的高可靠性、高精度的陶瓷零件。
权利要求
1.一种陶瓷零件的制造方法,其特征在于,包括在玻璃陶瓷基板上印刷具有与所述玻璃陶瓷基板相同的烧结速度的导体膏的导体印刷工序、和层压多个所述玻璃陶瓷基板形成层压体的层压工序、在所述层压体的单面或双面上进一步层压以无机物为主要成份的热收缩抑制基板而制成复合层压体的复合层压工序、从所述复合层压体上燃烧除去有机物的脱除粘合剂的工序、使所述玻璃陶瓷基板和导体膏的烧结特性相匹配后烧结所述除去有机物后的复合层压体的烧成工序、以及除去所述热收缩抑制基板中的无机物的工序。
2.如权利要求1所述的陶瓷零件的制造方法,其特征在于,所述烧成工序是由混合于所述导体膏中的氧化钼抑制所述导体膏的烧结速度,并使其与所述玻璃陶瓷的烧结速度相匹配而烧结的工序。
3.如权利要求1所述的陶瓷零件的制造方法,其特征在于,用于所述导体印刷工序中的所述导体膏含有银粉末和氧化钼,所述氧化钼的以三氧化钼换算的配合比是整个导体粉末的0.1~5重量%。
4.如权利要求1所述的陶瓷零件的制造方法,其特征在于,所述烧成工序是,通过选择平均粒径为3μm~8μm的银粉末作为用于所述导体膏的银粉末,控制所述导体膏的收缩开始温度,使其匹配于所述玻璃陶瓷的收缩特性来进行烧结的工序。
5.如权利要求1所述的陶瓷零件的制造方法,其特征在于,用于所述导体印刷工序中的所述导体膏含有银粉末和氧化钼,所述银粉末的平均粒径为3μm~8μm。
6.如权利要求1所述的陶瓷零件的制造方法,其特征在于,所述烧成工序具有升温工序和高温保持工序,在所述升温工序中的升温速度为200℃/小时~5500℃/小时。
7.如权利要求1~6中任一项所述的陶瓷零件的制造方法,其特征在于,使用含有氧化铝、氧化镁及特定镧系氧化物和玻璃的所述玻璃陶瓷基板。
8.一种陶瓷电子零件,是具有所定图案的导体层的层压玻璃陶瓷零件,其特征在于,所述玻璃陶瓷含有氧化铝、氧化镁及特定镧系氧化物和玻璃,所述导体以银为主要成份且含有整个导体粉末的0.1~5重量%的氧化钼。
全文摘要
本发明的目的是,提供一种高可靠性、高尺寸精度的陶瓷零件,在用热收缩抑制板夹住玻璃陶瓷层压体进行烧成的高尺寸精度烧成工艺中,不使电气特性受到很大损失的情况下,可以抑制在烧成后的基板内部电极周边上产生裂纹等的缺陷。为达到这个目的,本发明陶瓷零件的制造方法包括在玻璃陶瓷基板上印刷具有与所述玻璃陶瓷基板相同的烧结速度的导体膏的导体印刷工序、和层压多个所述玻璃陶瓷基板形成层压体的层压工序、在所述层压体的单面或双面上进一步层压以无机物为主要成份的热收缩抑制基板而制成复合层压体的复合层压工序、从所述复合层压体上燃烧除去有机物的脱除粘合剂的工序、使所述玻璃陶瓷基板和导体膏的烧结特性相匹配后烧结所述除去有机物后的复合层压体的烧成工序、以及除去所述热收缩抑制基板中的无机物的工序。
文档编号H01L21/48GK1463261SQ02802130
公开日2003年12月24日 申请日期2002年6月18日 优先权日2001年6月25日
发明者胜村英则, 齐藤隆一, 若林都加佐, 加贺田博司 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1