制造掺碳氧化物膜的方法

文档序号:6978771阅读:234来源:国知局
专利名称:制造掺碳氧化物膜的方法
技术领域
本发明涉及半导体层沉积。具体地说,本发明涉及掺碳氧化物沉积。
背景技术
在半导体器件的制造中,具有不同用途的层被形成在半导体衬底上。如层间电介质(inter-layer dielectric,ILD)这样的一个层被沉积并图案化以隔离和支撑诸如平行导电金属线之类的电容器构造(feature)。随着半导体器件和器件线宽减小,这样的导电线275之间的距离相应减小。如果所有的其它因子保持不变,这就导致了更大的电容(C)。例如,给定所述的平行导电线275,电容(C)可以被看作 其中d是导电线275之间的距离,A是每个导电线相对面的面积,ε是ILD的磁导率,k是介电常数(ILD材料对电容器值影响程度的因子)。
从上述公式可以看出,当所有的其它因子保持不变时,随着距离(d)的减小,系统的电容(C)增大。遗憾的是,当电容(C)增大时,信号传送时间也增加。另外的问题诸如功率耗散和窜扰增加也可能发生。因此,人们试图降低电容(C)。
上面指出的介电常数(k)没有度量单位。例如,如果电介质是真空或者空气,则介电常数(k)大约等于1,对电容没有影响。然而,大多数层内介电材料具有一定程度的极性,使介电常数(k)大于1。例如,作为一种常用的ILD材料,二氧化硅通常具有大于约4的介电常数。由于半导体器件线宽的减小以及例如距离(d)的减小而导致电容(C)增大,所以现在人们尽力减小ILD的介电常数(k)来作为降低电容(C)手段。就是说,如果电容(C)为 且所有其它的因子保持不变,则介电常数(k)的减小可以降低电容(C)。
诸如氟化硅玻璃(FSG)、丝和掺碳氧化物(Carbon Doped Oxide,CDO)的低介电常数(k)材料(即“低k”材料),已经被用来形成ILD,由此降低电容(C)。但是,“低k”材料的沉积包含导致半导体处理时间增加的低沉积速率的问题,还涉及到产量低的问题。


图1是在一个反应器中的半导体衬底的实施例的横截面侧视图。
图2A是在CDO膜沉积之后的图1中的衬底的横截面侧视图。
图2B是在沟槽刻蚀之后的图2A中的衬底的横截面侧视图。
图2C是在导电金属线形成之后的图2B中的衬底的横截面侧视图。
图3是概述了半导体衬底处理的实施例的流程图。
具体实施例方式
描述了CDO构造的沉积方法。通过附图描述和说明了实施例的若干方面。虽然参照具体的用于形成ILD的掺碳氧化物膜的沉积而描述了下列的实施例,但是这些实施例可应用到任何掺碳氧化物构造的形成中。这可以包括从前体(precursor)所形成的掺碳氧化物膜,其中所述的前体具有诸如HxSi(CH3)4-x和(CH3)xSi(OCH3)4-x的分子式,或者此外还包括四甲基环四硅氧烷。
下面所描述的实施例一般可应用到半导体衬底的处理中。一旦获得了衬底,初始的处理就可以包括在衬底的表面上形成介电层。此处所描述的实施例集中在CDO介电材料的沉积上,具体地说,通过在存在CDO前体的情况下引入氧来提高CDO沉积的速率。
参照图1,示出了暴露于包括CDO前体的气体混合物160的衬底100的实施例。如此处所进一步描述的,例如,当激发气体混合物160以使沉积发生时,氧也被包括在气体混合物160中以提高在衬底100上的CDO沉积的速率。
衬底100包括初始介电刻蚀终止层120。衬底100可以是硅和其它传统的材料。如此处所进一步描述的,虽然刻蚀终止层120不是必需的,但还是被示出以用于说明。此外,在本发明的其它实施例中,各种其它的绝缘的或者导电的层以及构造可以出现在衬底100上,而不必在这里描述。
衬底100被置于用于沉积衬底100上的材料的反应器180之中。在所示出的实施例中,将被形成在衬底100上的材料是用作ILD的掺碳氧化物(CDO)。CDO材料是一种包含硅(Si),碳(C),和氧(O)的材料,该材料提供相对减小的极性、密度和电导率。例如,CDO材料可以具有小于约3.0的介电常数(k)。因此,如此处进一步的讨论那样,当用作ILD时CDO材料通常被认为是“低k”材料,并且有助于降低电容。
在一个实施例中,反应器180是一个传统的化学气相沉积(CVD)装置。该CVD装置可以通过传统的方式操作并由等离子体增强(即PECVD装置)。在所示出的实施例中,该PECVD装置装备有一个被耦合到电源155上的喷淋板150。衬底100接地并置于喷淋板150的附近。在所示出的实施例中,衬底100被置于距离喷淋板150约15mm与约40mm之间的位置,优选在约24mm和约26mm之间。
一旦衬底100被放置,并且PECVD装置被封闭,气体混合物160就被以蒸汽的形式导入该装置。同时,通过该PECVD装置施加射频(RF),使得气体混合物160被激发成等离子态以在衬底100的表面上发生沉积。在可供选择的实施例中,气体混合物160的至少一部分在导入PECVD装置前的较远位置被激发成等离子态。在此实施例中,气体混合物160的这一部分可以在进入PECVD装置时已经处于等离子态。
上面所述的气体混合物160包括CDO前体和诸如氧气的沉积增强气体。如这里进一步讨论的那样,氧的引入提高了CDO材料的形成和沉积速率。诸如氦(He)的惰性气体也可以作为气体混合物160的一部分被提供以在沉积期间作为PECVD装置中体积填充物(volume-filler)。惰性气体还可以是热的良导体以提高热均匀性。然而,它实际上并不参与沉积中的化学过程。除了氦(He),其它的惰性气体诸如氩(Ar)、氖(Ne)、氪(Kr)和氙(Xe)也可以被用作辅助气体(background gas)。
CDO前体,即上述的气体混合物160的一部分提供用于形成CDO构造的碳(C)源和硅(Si)源。CDO前体还可以提供氧(O)源。但是,这不是必需的,因为按照此处描述的实施例,氧(O)是被单独提供的。CDO前体的实施例包括四甲基环四硅氧烷((HSiOCH3)4)和具有分子式为HxSi(CH3)4-x或者(CH3)xSi(OCH3)4-x的气体。例如,在一个实施例中,二甲基二甲氧基硅烷(CH3)2Si(OCH3)2被用作CDO前体。这样的CDO前体产生如上所述的具有介电常数(k)小于约3.0的CDO材料。
在上述的实施例中,氧气被提供给PECVD装置并且通过施加RF而被激发(例如O·)。作为气体混合物160的一部分而被提供的氧气最初可以是离子氧(即O2-)、分子稳定氧(O2)、元素稳定氧(O)或者臭氧(O3)的形式。无论如何,当氧气进入PECVD装置时施加RF作用于氧气,使得氧分子的至少一部分将处于激发态(例如O·)。被激发的氧分子与CDO前体相互作用以提高CDO沉积的速率。在另一个实施例中,氧以臭氧(O3)的形式被热激发而不使用RF以提高CDO沉积的速率。氧气的臭氧(O3)形式在这种方式下更易激发。
在另一个可选的实施例中,在与气体混合物160的CDO前体相隔较远的位置,和辅助气体随同一起的氧气被激发。在这个实施例中,CDO前体在导入到PECVD装置时被激发,在此处前体与已经被激发的氧气混合。
如上所述,气体混合物160进入PECVD装置,通过引入RF而被赋能。可以于PECVD装置中在传统的压力、温度、射频(RF)和功率下进行该过程。例如在一个实施例中,压力保持在约2.0Torr(托)和约10.0Torr之间,优选约3.0Torr和约6.0Torr之间,支撑衬底100的基座135的温度保持在约250℃和约450℃之间,RF保持在标准频率并且提供约1600瓦特和约1800瓦特之间的功率。
对于上述的实施例,氧气的量小于被氧和CDO前体所占据的体积的约5%。此外,对于气体混合物160中的各单独气体,流速以标准毫升每分钟(Sccm)计可以如下前体气体流速 50-200Sccm辅助气体流速 20-200Sccm氧气流速 1.0-20Sccm
如上的流速可以根据诸如温度和压力条件的各种因素来确定。实际上,在不脱离本发明的精神和范围的情况下,不同于上面所描述的流速也可以被使用。
以如上所述的方式将氧加入到气体混合物160中可使CDO沉积到衬底100上的速率可以超过约每分钟5620埃。在一个实施例中,CDO沉积速率在约每分钟5620埃和约每分钟9600埃之间,优选沉积速率达到约每分钟9580埃。与不引入氧的传统CDO的PECVD沉积相比,CDO沉积速率提高了约70%。
参照图2A,图1中的实施例的衬底100被示出,该衬底100具有沉积在刻蚀终止层120上的CDO膜200。CDO膜200具有小于约3.0的介电常数。在一个实施例中,CDO膜的介电常数小于约2.7。此外,当与无氧条件下同样的CDO膜200的沉积相比,在有氧条件下CDO膜200的沉积可以提供一个稍微低一些的介电常数。在所示出的实施例中,CDO膜200将形成CDO ILD(见图3)。但这并不是必需的。可以将CDO膜200用于各种绝缘用途。
参照图2B,CDO膜200被刻蚀以形成沟槽250。在所示出的实施例中,CDO膜200通过传统的方式进行图案化和刻蚀。例如,可以将保护性掩模图案放置CDO膜200上,使若干区域暴露以形成平行沟槽250。然后通过CDO膜200的暴露部分施加化学刻蚀剂以进行刻蚀。刻蚀终止层120是抗化学刻蚀剂的材料,并且帮助控制被刻蚀沟槽250的深度。刻蚀终止层120可以是氮化硅(SiN)、碳化硅(SiC)或者其它传统的刻蚀终止材料。
参照图2C,被沉积的CDO膜200以CDO ILD的形式提供导电线275的结构支撑和隔离。在所示出的实施例中,将导电线275沉积到对用于形成CDO ILD的CDO膜的向下至刻蚀终止层120的刻蚀上。在一个实施例中,导电线275是由铜(Cu)制成的。此外,在一个实施例中,刻蚀终止层120也作为阻挡层以防止铜离子(Cu+)扩散到刻蚀终止层120之下,因而保持了导电线275的隔离度。
导电线275可以通过传统的方式沉积。例如,在一个实施例中,可以以蒸汽形式将导电线材料的离子化形式(例如Cu+)提供给传统的PECVD装置。RF可以被施加到该装置以产生等离子体,并且实现包括导电线275的导电层的沉积。如图2C所示,其它导电层的多余部分可以通过传统的化学机械抛光(CMP)技术除去,使得衬底100包含一个平滑的上表面290,并且进一步使导电线275隔离。
被沉积的导电线275相隔距离(d),其中ILD材料200的存在使导电线275相隔离。如前面所述的,如果电容(C)为 则距离(d)的减小可以增大电容(C)。然而,这里描述的实施例包括使用“低k”CDO ILD材料200来平衡这一问题,以便不至于因CDO沉积时间长而牺牲合理的产量(例如半导体处理时间)。
参照图3,以流程图的形式示出了根据上述方法的CDO沉积的优选实施例的概述。在此处所描述的实施例中,衬底被放置在一个反应器中,将CDO前体和氧导入反应器中(310)。沉积导致在衬底上形成CDO膜。沉积可以其它传统方式进行,如在传统条件下运行的PECVD装置中进行。由于氧的存在,这种方式的沉积进行的速率提高。CDO膜随后被刻蚀(320)。CDO的刻蚀(320)通过传统方法将传统的刻蚀剂应用到CDO膜而完成。一旦刻蚀(320)完成,就再次通过传统的方式,如在传统条件下运行的PECVD装置中沉积导电线275(330)。随后应用CMP(340),且衬底可被用于实施进一步处理和封装(350)。
上述的实施例包括在氧存在下的CDO沉积。此外,实施例涉及被沉积以形成ILD的具体的“低k”材料。虽然示意性实施例描述了被沉积以形成ILD的具体的CDO材料,但是另外的实施例也是可以的。例如,根据上面所讨论的实施例,可以以增大的速率形成CDO膜,它除了形成ILD外还具有绝缘用途。并且,在不脱离这些实施例的精神和范围的情况下,可以进行许多变化、修改和替换。
权利要求
1.一种方法,包括提供衬底;以及在所述衬底存在的情况下,将氧导入到掺碳氧化物前体,以在所述衬底上沉积掺碳氧化物膜。
2.如权利要求1所述的方法,其中所述的掺碳氧化物前体从由四甲基环四硅氧烷、具有分子式为HxSi(CH3)4-x的前体和具有分子式为(CH3)xSi(OCH3)4-x的前体组成的组中选取。
3.如权利要求1所述的方法,其中所述的氧从由离子氧、分子稳定氧、元素稳定氧和臭氧组成的组中选取。
4.如权利要求1所述的方法,其中所述的导入包括在所述的衬底存在的情况下加入一种惰性辅助气体来提供体积填充物,以沉积所述的掺碳氧化物膜。
5.如权利要求1所述的方法,其中所述的导入经由化学气相沉积装置。
6.如权利要求1所述的方法,其中所述的掺碳氧化物膜的介电常数小于约3.0。
7.如权利要求1所述的方法,其中所述的掺碳氧化物膜的所述沉积以大于约每分钟5620埃的速率进行。
8.如权利要求1所述的方法,还包括刻蚀所述的掺碳氧化物膜以沉积导电线,所述的掺碳氧化物膜作为所述导电线之间的层间电介质。
9.一种在衬底上形成掺碳氧化物膜的方法,所述的方法包括将所述的衬底放置在化学气相沉积装置的基座上;将辅助气体、掺碳氧化物前体和氧导入到所述的装置之中;以及在使得所述的掺碳氧化物膜形成在所述的衬底上的条件下运行所述的装置。
10.如权利要求9所述的方法,其中所述的掺碳氧化物前体从由四甲基环四硅氧烷、具有分子式为HxSi(CH3)4-x的前体和具有分子式为(CH3)xSi(OCH3)4-x的前体组成的组中选取。
11.如权利要求9所述的方法,其中所述的条件包括所述的基座的温度在约250℃和约450℃之间。
12.如权利要求9所述的方法,其中所述的条件包括所述的装置中的压力在约2托和约10托之间。
13.如权利要求9所述的方法,其中所述的辅助气体是惰性氦。
14.如权利要求9所述的方法,其中所述的导入包括所述的掺碳氧化物前体的流速在约50Sccm和约200Sccm之间,所述的辅助气体的流速在约20Sccm和约200Sccm之间,以及所述的氧的流速在约1.0Sccm和约20Sccm之间。
15.如权利要求9所述的方法,其中所述的化学气相沉积装置是等离子体增强化学气相沉积装置。
16.如权利要求9所述的方法,其中所述的掺碳氧化物膜是二甲基二甲氧基硅烷。
17.一种掺碳氧化物膜,由掺碳氧化物前体在氧存在的情况下形成在衬底上。
18.如权利要求17所述的掺碳氧化物膜,所述掺碳氧化物膜作为导电线之间的层间电介质,所述导电线在刻蚀所述的掺碳氧化物膜之后被沉积在衬底上。
19.如权利要求17所述的掺碳氧化物膜,所述掺碳氧化物膜的介电常数小于约3.0。
20.如权利要求17所述的掺碳氧化物膜,所述掺碳氧化物膜以大于约每分钟5620埃的速率在所述的衬底上形成。
全文摘要
沉积掺碳氧化物(CDO)。一种沉积方法,包括提供衬底;以及在衬底存在的情况下,将氧导入到掺碳氧化物前体中。掺碳氧化物膜形成在衬底上。在另一种方法中,衬底被放置在化学气相沉积装置的基座上。辅助气体随同掺碳氧化物前体和氧一起被导入,以在衬底上形成掺碳氧化物膜。
文档编号H01L21/316GK1723295SQ02811810
公开日2006年1月18日 申请日期2002年10月1日 优先权日2001年10月5日
发明者易卜拉欣·安迪戴丝, 凯文·彼得森, 杰弗里·比耶夫菲尔德 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1