陶瓷烧结体、陶瓷烧结体的制造方法及金属气相淀积用发热体的制作方法

文档序号:7006961阅读:348来源:国知局
专利名称:陶瓷烧结体、陶瓷烧结体的制造方法及金属气相淀积用发热体的制作方法
技术领域
本发明涉及陶瓷烧结体、陶瓷烧结体的制造方法及金属气相淀积用发热体。
背景技术
作为金属气相淀积用发热体,迄今已知的有舟形(下文称为“舟”),其中,在主要包含例如氮化硼(BN)、氮化铝(AlN)或二硼化钛(TiB2)的陶瓷烧结体的上表面形成了空腔(专利文献1),作为其市售品的例子,有电气化学工业株式会社制造的商品名为“BN Composite EC”的产品。也有不形成空腔的形状。关于其使用方法,用夹子将舟的两端连接至电极,并对其施加电压,使其产生热从而将送入空腔内的金属例如铝线材熔融并蒸发,由此得到气相淀积膜,之后进行冷却。
在这样的舟中,熔融金属腐蚀舟,从而使有效截面积及电阻变动,导致不能得到充分的气相淀积速度。例如,当熔融金属为铝时,则按如下反应式发生腐蚀
另外,许多情况下腐蚀局部发生于空腔部,即,因熔融铝的润湿扩散局限于空腔的中央部。因此不能充分得到气相淀积材料的膜厚度分布,导致舟寿命的终止。为了延长舟的寿命,所需的仅仅是将舟的相对密度增加至95%或更高(专利文献2)。但这需要高达100-300MPa的高压,因而增加了设备成本,并且生产率也差。另一方面,也有关于从热压烧结体切出的方法使得舟中的BN的晶体取向中不会产生各向异性的方案(专利文献3)。尽管有这些改进,但在铝气相淀积过程中上述反应于高温下仍缓慢进行,因此对延长舟的寿命仍存在改善的余地。
专利文献1特公昭53-20256号公报专利文献2特开昭60-21866号公报专利文献3特公平5-66906号公报发明的公开鉴于上述现有技术中所涉及的问题,本发明人作了进一步研究。结果发现,当采用含有特定的低结晶性BN粉末的混合原料粉末,并在结晶的同时对其进行烧结时,则在所得烧结体的晶界相中存在氮化钛,从而得到不同于常规的促进腐蚀的发展的非晶质且含有大量氧的晶界相,由此完成了本发明。通常,大部分陶瓷材料具有称为多晶的形状,其中具有数微米至数十微米尺寸的晶粒通过烧结而结合,且在许多情况下晶界相是原料粉末杂质浓缩于晶粒之间的部分。
也就是说,本发明涉及陶瓷烧结体,其含有氮化硼、二硼化钛、钙化合物及氮化钛,并具有92%或更高的相对密度,其中钙化合物的含量按CaO换算为0.05~0.8重量%,并且源自氮化钛的(200)面的X射线衍射峰强度相对于BN的(002)面的峰强度为0.06~0.15。在此情况下,优选在晶界相中存在部分或全部的氮化钛。此外,优选进一步含有氮化铝。另外,特别优选同时满足如下条件陶瓷烧结体所含的氮化硼晶体具有6.675埃或更小的C轴晶格常数,且陶瓷烧结体具有1~2重量%的氧量。
本发明还涉及金属气相淀积用发热体,其由上述陶瓷烧结体构成。
此外,本发明涉及陶瓷烧结体的制造方法,其包括将含有二硼化钛粉末、氮化硼粉末、钙系烧结助剂和任选的氮化铝粉末的混合原料粉末在非氧化性气氛中于1800-2100℃温度下进行烧结,其中上述氮化硼粉末的氮化硼晶体的C轴晶格常数为6.690埃或更小、累积平均直径为4~20μm、BET比表面积为25~70m2/g以及氧量为1.0~2.5重量%,且上述混合原料粉末含有按CaO换算的含量为0.09~0.8重量%的钙系烧结助剂。在此情况下,钙系烧结助剂优选为选自CaO、Ca(OH)2和CaCO3的至少一种。
根据本发明,提供了对熔融金属的耐腐蚀性得到改善的陶瓷烧结体,以及可以适用于制造该陶瓷烧结体的陶瓷烧结体制造方法。另外提供了能延长寿命的发热体。
最佳实施方式构成本发明陶瓷烧结体的主成分为氮化硼和二硼化钛。由此可使该陶瓷烧结体具有绝缘性和导电性,并适于例如金属气相淀积用发热体的应用。在此情况下,氮化硼起绝缘材料的作用,因此其可被同为绝缘材料的氮化铝置换最高达50重量%,由此改进了导电特性并使减少成本成为可能。主成分的构成比例的一个例子为,氮化硼为40-55重量%,二硼化钛为45-60重量%,氮化铝为0-20重量%。优选这些主成分在陶瓷烧结体中具有95重量%或更高的含量。
另一方面,构成本发明陶瓷烧结体的上述主成分之外的成分有钙化合物和氮化钛。钙化合物是将陶瓷烧结体相对密度调节至92%或更高所必需的成分,其含量按CaO换算为0.05~0.8重量%。含量低于0.05重量%会导致难以将相对密度调节至92%或更高,而含量高于0.8重量%会导致陶瓷烧结过程中与夹具等粘附在一起的可能性。92%或更高的相对密度的要件对于使陶瓷烧结体具有充分耐腐蚀性是必要的。
氮化钛是对陶瓷烧结体赋予耐腐蚀性的成分,从改进耐腐蚀性的观点来看,优选应使至少一部分氮化钛存在于晶界相中。可通过EPMA(X射线微分析仪)分析横截面研磨部位的元素分布状态并通过与粉末X射线衍射法结合来确认晶界相中TiN的存在。将源自氮化钛的(200)面的X射线衍射峰强度相对于BN的(002)面的峰强度比调节至0.06~0.15。即,将X射线峰强度比(TiN(200)面/BN(002)面)调节至0.06~0.15的比例。当该比例低于0.06时,则耐腐蚀性的改善效果不够充分。当该比值高于0.15时,则陶瓷烧结体变得过硬,导致加工性变差。
通过使TiN至少存在于晶界相中会改进陶瓷烧结体耐腐蚀性的原因通过TiN对熔融金属的亲和性比晶界相其他成分(B2O3、TiO2和Al2O3)小进行说明。也就是说,以熔融金属为铝的情况作为例子来描述,在Al因润湿而发生热力学扩散的1000℃温度,求出形成Al-X(X=晶界构成成分)时的自由能G,对Al-B2O3为-56.1kJ/mol,而对Al-TiO2为-83.7kJ/mol。与此相对,对Al-TiN而言该自由能为-12.2kJ/mol,TiN对Al的亲和性小,从而改进了耐腐蚀性。
在本发明的陶瓷烧结体中,通过同时满足如下条件而进一步改善耐腐蚀性陶瓷烧结体的氧量为1~2重量%,且陶瓷烧结体中所含氮化硼晶体的C轴晶格常数为6.675埃或更小。也就是说,当该C轴晶格常数大于6.675埃时,则BN具有低结晶性和高结晶应变,从而其易于受到熔融金属腐蚀。进一步讲,结晶性低的BN晶粒含有大量的固溶氧和堆垛层错,晶粒中的此类结构缺陷成为因熔融金属而致腐蚀的起点。对C轴晶格常数的下限没有限制,其可达到理论值的6.662埃。高结晶性是优选的,因为可得到更强的耐腐蚀性。
另外,解释陶瓷烧结体的氧含量优选为1~2重量%的原因,已经证实在本发明的陶瓷烧结体中,氧主要存在于BN(AlN)和TiB2晶粒之间作为晶界的间隙中,其熔点一般比BN、AlN和TiB2低。当氧量超过2重量%时,则具有低熔点的晶界相在陶瓷烧结体例如舟的使用温度下形成液相,并易于与熔融金属等发生反应,导致耐腐蚀性受损。另一方面,当氧量低于1重量%时,则BN(AlN)与TiB2之间的晶粒间结合力不够,导致耐腐蚀性受损。
本发明的陶瓷烧结体的制造方法适于制造本发明的陶瓷烧结体。这将在下文描述。
本发明中所用混合原料粉末含有二硼化钛粉末(下文也称为“TiB2粉末”),氮化硼粉末(下文也称为“BN”粉末)和钙系烧结助剂,并任选含有氮化铝粉末(下文也称为“AlN”粉末)。烧结前和烧结后成分的构成比例几乎没有变化,因而各粉末的混合比例可与陶瓷烧结体的上述构成比例相同。尽管此类混合原料粉末迄今已经使用,但本发明的重点在于采用特定的低结晶性BN粉末,并在特定量的钙系烧结助剂存在下,于烧结该低结晶性BN粉末的同时使其结晶。
本发明中所用BN粉末是具有6.690埃或更小的氮化硼晶体的C轴晶格常数、4~20μm的累积平均直径、25~70m2/g的BET比表面积、和1.0~2.5重量%的氧量的BN粉末。本发明中所提及的“累积平均直径”是指个数换算累积率为50%时的粒径(D50)。
BN粉末可广泛购自低结晶性的BN粉末至高结晶性的BN粉末。但是发现采用迄今被认为合适的高结晶性BN粉末对耐腐蚀性的改善效果存在局限性。因此在本发明中,通过采用氧量为1.0~2.5重量%和C轴晶格常数为6.690埃或更小的低氧低结晶性BN粉末,可超过使用常规高结晶性BN粉末的耐腐蚀水平。另外,通过将粒径调节至累积平均直径为4~20μm并将BET比表面积调节至25~70m2/g,可促进该效果。
也就是说,发现在特定条件下,在特定量钙系烧结助剂存在下,将含有上述低氧低结晶性BN粉末的混合原料粉末进行烧结时,所得陶瓷烧结体的晶界相成为TiN为主相的晶界相,即陶瓷烧结体的上述X射线峰强度比(TiN(200)面/BN(002)面)为0.06~0.15,改善了耐腐蚀性。尽管TiN相形成的机理还不确切了解,但可能是烧结过程中TiB2晶粒的表面氧化物层TiO2与存在于BN粉末表面上的B2O3反应形成液相,该液相中BN晶粒溶解并再析出,与此同时TiO2被氮化而形成TiN。
在本发明中,当BN粉末的C轴晶格常数超过6.690埃时,则所得陶瓷烧结体中残留有低结晶性BN,以致不能改进耐腐蚀性。当累积平均直径低于4μm时,则难以将氧量控制在2.5重量%或更低。当累积平均直径超过20μm,或BET比表面积低于25m2/g时,则不能制造出相对密度为92%或更高的陶瓷烧结体。当BET比表面积超过70m2/g时,则烧结前的成形体密度减少,同样导致不能制造出相对密度为92%或更高的陶瓷烧结体。当BN粉末的氧量低于1.0重量%时,则烧结所必需的氧量不足,氧量超过2.5重量%则导致氧在晶界相过度析出从而引起耐腐蚀性不充分。
可用来制造本发明所用BN粉末的方法有,例如在氨气氛中将硼砂与脲的混合物加热至800℃或更高温度的方法;将硼酸或者氧化硼与磷酸钙与含氮化合物如氨或二氰胺的混合物加热至1300℃或更高温度的方法等。在任何BN粉末中,均通过在非氧化性气氛例如氮或氩气氛中于1100-1300℃热处理3-5小时而将氧量调节至1.0~2.5重量%。当热处理温度超过1300℃时,则BN粉末的C轴晶格常数小于6.690埃,导致形成高结晶性BN粉末。另外,优选在热处理后用稀酸如0.1%-1%硝酸进行洗涤。
当混合原料粉末中钙系烧结助剂的含量按CaO换算低于0.09重量%时,则难以在烧结低结晶性BN粉末的同时使其结晶。另一方面,当该含量超过0.8重量%时,则其在晶界中的残留量增加,导致耐腐蚀性不充分。作为钙系烧结助剂而使用的有,例如氮化物如CaCN2和硝酸钙,以及经加热而转变成氧化钙的物质,例如,α-Ca3(PO4)2和Ca4(PO4)2O等,以及各种钙氧化物。优选CaO、Ca(OH)2和CaCO3。优选钙系烧结助剂的平均粒径为0.8μm或更低,特别优选为0.5μm或更低。
作为TiB2粉末和AlN粉末而使用的是,通过将Ti粉末或Al粉末进行直接氮化反应或直接硼化反应而得到的产物,通过将TiO2粉末或Al2O3粉末进行还原氮化反应或还原硼化反应而得到的产物,等等。平均粒径优选为5-25μm。市售产品足以作为上述粉末。
将混合原料粉末在非氧化性气氛中于1800-2100℃烧结,优选在造粒之后烧结。例如,在单轴加压或冷各向同性压力加压之后,将混合原料粉末在常压下于1800-2100℃温度下烧结,或在0.8MPa或更低气氛中烧结。另外,也可在1800-2100℃下于1-100MPa的热压或热各向同性压力加压下将其烧结。烧结温度低于1800℃时,则烧结不充分。另一方面,烧结温度超过2100℃则导致不能制造具有92%或更高相对密度的陶瓷烧结体。作为非氧化性气氛,可以采用的有氮、氩、二氧化碳气体、氨等的气氛。
希望将粉末置于石墨制坩锅、氮化硼制坩锅或衬有氮化硼的坩锅内,并在非氧化性气氛中烧结。在热压法中,采用石墨制或氮化硼制套筒或衬有氮化硼的套筒进行烧结。
当由陶瓷烧结体制作本发明的金属气相淀积用发热体例如舟时,通过常规方法将其加工成合适的形状。其尺寸的一个例子为130-150mm长×25-35mm宽×8-12mm高的条带状。对于舟的情况,该舟上表面的中央部形成有空腔(90-120mm长×20-32mm宽×0.5-2.0深)。加工通过机械加工、激光加工等进行。
实施例实施例1-10和比较例1-7将TiB2粉末(平均粒径12μm,纯度99.9重量%或更高)、AlN粉末(平均粒径10μm,纯度98.5重量%)、CaO粉末(平均粒径0.5μm,纯度99.9重量%或更高)、以及表1中所示的各种BN粉末以表1所示比例混合,制备了各种混合原料粉末。此处所用的各种BN粉末的制造方法为在氨气氛中将硼砂和脲的混合物加热,将氮气氛中、1100-1300℃、3-5小时的热处理条件进行各种变化对所得BN粉末进行热处理。将该混合原料粉末填充于石墨模具中,并于氮气氛中在表2所示条件下进行热压,制造了陶瓷烧结体(柱形,直径200mm,高20mm)。
从该陶瓷烧结体切出矩形平行六面体(150mm长×30mm宽×10mm厚),并通过机械加工在其表面中央部形成空腔(26mm宽×1mm深×120mm长),从而制作了舟。然后,根据如下方式测定该舟的(1)耐腐蚀性和(2)寿命。
(1)耐腐蚀性用夹子将舟的端部连接至电极,设定施加的电压使得腔中央部的温度为1500℃。在真空度为2×10-2Pa的真空中,以6.5g/min的恒定速度对空腔供给直径1.5mm的铝线40min,同时进行气相淀积,然后冷却至室温,将该过程作为一个循环,并重复上述循环。在每一循环中,将样品取出,并采用激光变位仪(仪器”LT-9000”,由Keyence Corporation制造)测定空腔部腐蚀最大处的深度。求出舟被腐蚀40分钟的速度。可以说,腐蚀速度越低则表明陶瓷烧结体的耐腐蚀性越好。
(2)舟寿命基于上述耐腐蚀性试验条件,在舟上方200mm位置处对树脂膜重复进行气相淀积循环,求出每1个循环铝气相淀积膜的厚度变为2000埃时的循环次数。将其作为舟的寿命。
另外,根据如下方法测定陶瓷烧结体的相对密度、BN的C轴晶格常数、氧量、钙化合物量、晶界相和上述X射线峰强度比(TiN(200)面/BN(002)面)。结果示于表2中。
(3)相对密度由实测密度和理论密度计算相对密度。从所得测定值的准确性及再现性的观点来看,通常根据阿基米德法测定实测密度。理论密度表示根据混合原料的堆积比重和配合比求出的值。
(4)C轴晶格常数采用粉末X射线衍射法(仪器“RAD-B”,由Rigaku Corporation制造)在40kV和100mA条件下,在2θ为10°-70°的范围内测定样品,通过Rietveld法计算求出BN晶体的C轴晶格常数。关于将烧结体粉碎成粉末的一般方法,将烧结体在玛瑙乳钵中粉碎数次,并将其小片在乳钵中研磨以使其微细化。另外,使微细粉末通过约200目的筛子,从而能够制得适于粉末X射线衍射法的样品。
(5)氧量采用氮/氧分析仪(程序升温分析)(仪器”TC-436“,由LECO公司制造)测定。
(6)钙化合物量采用诱导偶合等离子体发射光谱仪(“ICP-AES,MODEL ICAP-1000S”,由Nippon Jarrel Ash制造)测定。
(7)晶界相关于晶界相中TiN的存在,将舟加工成直径5mm的模截面形状,以EPMA(X射线微分析仪)测定模截面研磨部位的元素分布状态,进一步地,通过粉末X射线衍射法鉴定晶界相。
(8)X射线峰强度比(TiN(200)面/BN(002)面)由上述粉末X射线衍射结果确定。
表1

表2

如表1和2中所示,可看出本发明陶瓷烧结体的腐蚀速度被抑制在6μm/min或更低,从而显著改善了耐腐蚀性,并且采用该烧结体制成的舟具有15个循环或更高的长寿命。
尽管已参照特定实施方案对本发明作了详细描述,但对本领域技术人员而言,在不背离本发明的主旨和范围的情况下,显然可对其作各种变更和修正。
本申请基于2003年12月11日提交的日本专利申请2003-413533,其内容全部引入本文作为参考。
产业实用性本发明的陶瓷烧结体可用作,例如金属气相淀积用发热体如舟,另外,本发明的金属气相淀积用发热体可用作,例如在将金属如铝、铜、银和锌气相淀积至基材如膜或陶瓷上时所用的夹具。
权利要求
1.陶瓷烧结体,其包括氮化硼、二硼化钛、钙化合物和氮化钛,并具有92%或更高的相对密度,其中钙化合物的含量按CaO换算为0.05~0.8重量%,且源自氮化钛的(200)面的X射线衍射峰强度相对于BN的(002)面的峰强度为0.06~0.15。
2.根据权利要求1的陶瓷烧结体,其中部分或全部氮化钛存在于晶界相中。
3.根据权利要求1或2的陶瓷烧结体,其进一步包含氮化铝。
4.根据权利要求1、2或3的陶瓷烧结体,其中陶瓷烧结体中所含的氮化硼晶体具有6.675埃或更小的C轴晶格常数,且陶瓷烧结体具有1~2重量%的氧量。
5.根据权利要求3的陶瓷烧结体,其中氮化硼和二硼化钛的总含量为95重量%或更高。
6.根据权利要求1的陶瓷烧结体,其中氮化硼、二硼化钛和氮化铝的总含量为95重量%或更高。
7.金属气相淀积用发热体,其由权利要求1~6中任一项的陶瓷烧结体构成。
8.陶瓷烧结体的制造方法,其包括将含有二硼化钛粉末、氮化硼粉末、钙系烧结助剂和任选的氮化铝粉末的混合原料粉末在非氧化性气氛中于1800-2100℃温度下进行烧结,其中氮化硼粉末具有6.690埃或更小的氮化硼晶体的C轴晶格常数、4~20μm的累积平均直径、25~70m2/g的BET比表面积以及1.0~2.5重量%的氧量,且混合原料粉末中钙系烧结助剂的含量按CaO换算为0.09~0.8重量%。
9.根据权利要求8的陶瓷烧结体制造方法,其中钙系烧结助剂是选自CaO、Ca(OH)2和CaCO3的至少一种。
全文摘要
本发明的目的是提供对熔融金属的耐腐蚀性改善的陶瓷烧结体,及用于制造该陶瓷烧结体的陶瓷烧结体制造方法,以及可实现延长寿命的发热体。本发明涉及陶瓷烧结体,其包含氮化硼、二硼化钛、钙化合物和氮化钛,并具有92%或更高的相对密度,其中钙化合物的含量按CaO换算为0.05~0.8重量%,源自氮化钛的(200)面的X射线衍射峰强度相对于BN的(002)面的峰强度为0.06~0.15。另外还公开了用于制造该陶瓷烧结体的陶瓷烧结体制造方法,以及由该陶瓷烧结体构成的金属气相淀积用发热体。
文档编号H01B1/14GK1894171SQ200480036978
公开日2007年1月10日 申请日期2004年12月10日 优先权日2003年12月11日
发明者横田博, 德永文夫, 岩元健太郎, 木村政光, 渡边祥二郎 申请人:电气化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1